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Abstract

This project is part of a digitalisation offensive at Graz Technical University (TU Graz).
It will enhance the digital learning in Engineering Mechanics at TU Graz in multiple de-
partments. The innovative part being that it is possible to create individual scalable assign-
ments for every student.

To make this possible a python script was written in order to automatically create and solve
homework assignments. For the calculation of beam structures often numerical solutions
are used, however in the course Strength of Materials the mechanical systems should be
solved in a symbolic way.

Therefore, using the Euler-Bernoulli beam theory in the governing equations a system of
linear equations has been set up and later on solved. The most challenging part was to
implement beams with varying flexural and axial rigidity as well as stiff elements. Fur-
thermore, joints and different types of bearings can be used at the nodes.

Zusammenfassung

Dieses Bachelorprojekt ist Teil einer Digitalisierungsoffensive an der Technischen Univer-
sität Graz. Es stärkt die digitale Lehre im Bereich Mechanik an der TU Graz an verschie-
denen Instituten. Innovativ hierbei ist es, dass skalierbare individuelle Übungsaufgaben
für alle Student:innen erstellt werden können.

Es wurde hierfür ein Python Skript verfasst, um das Erstellen und Lösen von Hausübungs-
beispielen für die Übung Baumechanik 2 an der TU Graz zu automatisieren. Die Lehrver-
anstaltungen zur Festigkeitslehre verwenden für die Berechnung von Stabtragwerken keine
numerische Methode. Daraus ergibt sich die spezielle Anforderung, dass Stabtragwerke
symbolisch gelöst werden müssen.

Es wurde ein System von linearen Gleichungen aufgestellt und später gelöst. Dabei wurde
die Euler-Bernoulli Balkentheorie für die bestimmenden Gleichungen angewendet. Die
größte Herausforderung war es, Stäbe mit unterschiedlichen Biege- und Dehnsteifigkeiten
sowie starren Stäbe zu implementieren. Außerdem ist es möglich unterschiedliche Aufla-
ger sowie Momentengelenke an den Knoten einzufügen.
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1. INTRODUCTION

Teaching theoretical principles of Strength of Materials is an essential part of university
education for civil engineers. However, to create individual supervision for each student
is often not possible due to limited resources in teaching staff. Thus, digitalisation is one
way to efficiently enhance the existing capabilities.

For calculating the deformation of a beam structure often numerical solutions are used. But
in the course Baumechanik 2 the systems are solved in a symbolic way [1]. The following
method was necessary to automatically create examples and solutions so that each student
can have a different assignment.

The goal was to implement beams, joints and bearings so that varying beam structures
can be designed. Furthermore, it should be possible to use an individual stiffness for each
beam as well as using an infinite stiffness and therefore rigid beams.

The governing equations are based on Euler-Bernoulli beam theory. These equations are
adapted so that they can be used for setting up a system of linear equations. We do not
look at each beam in a system but we set up the linear equations for each node. At each
node governing equations are combined with supporting conditions of the bearings and
joints [2].
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2. GOVERNING EQUATIONS FOR A SINGLE BEAM

In this section the governing equations for a single beam are introduced and are used for
assembling a system of beams in Chapter 3. The following governing equations are based
on the well-known Euler-Bernoulli beam theory, see for instance [3] or [4]. Along the
beam axis constant geometrical and material parameters are assumed. In the following, E
is the Youngs Modul, A the cross section area and I the area moment of inertia.

The axial deformation u(x) is governed by the equilibrium equation

N′(x) =−n(x), (2.1)

and the constitutive equation
N(x) = EAu′(x). (2.2)

Here, n(x) is the external and N(x) is the internal axial force and EA the axial rigidity.
Furthermore, ()′ denotes the derivative with respects to x, where x describes the position
within the beam x ∈ [0, `], where ` is the length of the beam. In the following, co - c5 are
the integration constants.

For the case EA < ∞, we use the approach

u(x) = c0x+ c1−
1

EA

∫∫
n(x) dx, (2.3)

which results in the following derived equations

u′(x) = c0−
1

EA

∫∫
n(x) dx, (2.4a)

N(x) = EAc0−
∫

n(x) dx. (2.4b)

Whereas, for the case EA→ ∞ we use

u(x) = c1, (2.5a)

N(x) = c0−
∫

n(x) dx. (2.5b)

The transversal deformation w(x) is governed by the equilibrium equation

M′′(x) = Q′(x) =−q(x), (2.6)

and the constitutive equation
M(x) =−EIw′′(x), (2.7)
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4 2. Governing equations for a single beam

where M(x) is the internal bending moment, Q(x) the internal shear force and q(t) the
external transversal loading force, EI describing the flexural rigidity and w′(x) is related
to the rotation of the beam.

For EI < ∞ we use the approach

w(x) = c2x3 + c3x2 + c4x+ c5 +
1

EI

∫∫∫∫
q(x) dx, (2.8)

which results in the following derived equations

w′(x) = 3c2x2 +2c3x+ c4 +
1

EI

∫∫∫
q(x) dx, (2.9a)

w′′(x) = 6c2x+2c3 +
1

EI

∫∫
q(x) dx, (2.9b)

M(x) =−EI(6c2x+2c3)−
∫∫

q(x) dx, (2.9c)

Q(x) =−EI6c2−
∫

q(x) dx. (2.9d)

If EI→ ∞ we use the approach

w(x) = c4x+ c5, (2.10a)

M(x) = c2x+ c3−
∫∫

q(x) dx, (2.10b)

which results in the following derived equations

w′(x) = c4, (2.11a)

Q(x) = c2−
∫

q(x) dx. (2.11b)



3. SOLUTION OF A SYSTEM OF BEAMS

3.1. Mechanical system of beams

In this section a system of beams is introduced. The systems can contain multiple nodes,
where an arbitrary number of beams can be attached. Joints and bearings can be located at
nodes. On beams different types of distributed external loads can be applied. An example
is illustrated in Figure 3.1.
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−

1+
√

3 )
2

L(
√
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qV1(x1)

qz2(x2)

Figure 3.1.: Example for a system of beams

The vectors ~ni and~ti are introduced to describe the direction of beam i

~ti =
(

tx
ty

)
=

~xB−~xA

|~xB−~xA|
, (3.1a)

~ni =

(
−ty
tx

)
. (3.1b)

~ni is the normal vector and ~ti is the parallel vector to the axis of the beam as seen in
Figure 3.2.

~ni and ~ti are later on used to separate the components of certain equations in x- and y-
direction.
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6 3. Solution of a system of beams

A

B

ti
ni

Figure 3.2.: Depiction of ~ni and~ti

3.2. System of equations

In order to solve a system of beams a system of linear equations is set up. The system of
linear equations reads

Ac = r, (3.2)

where A is the system matrix, c the solution vector and r is right hand side due to dis-
tributed loads. The number of equations is depended on the number of elements, e.g. it
holds

number equations = 6∗number elements. (3.3)

3.3. Setting up the equations

The linear equations are set up for each node separately. The governing equations are
combined with the supporting conditions of the bearings and joints.

The system matrix and the right hand side are built in several steps. The first step is to
consider the translational movement.
The basic idea is, that with the exception of the Querkraftgelenk the translational move-
ment of all attached elements at one node must be equal. Also to be considered is if the
node movement is restricted and therefore a fixed displacement is needed.

3.3.1. Displacement compatibility

The first set of equations we describe considers the displacement compatibility. This means
that the displacement at one node has to be equal for all attached beams. We formulate this



3.3. Setting up the equations 7

condition for node k, where we assume that nk beams are attached. Therefore, for two
beams i and i+1 the equation reads

wi|k~ni +ui|k~ti = wi+1|k~ni+1 +ui+1|k~ti+1, (3.4)

where we used the notation that for a quantity yi(x), yi|k denotes the evaluation at node k,
i.e. yi(xk). In total (3.4) is formulated for i = 1, ...,nk−1.

In view of the implementation we reformulate (2.8) to

wi = ŵiCi +
1

EIi

∫∫∫∫
qi(x) dx, (3.5)

where we introduced the row vector ŵi,

ŵi =





[
0,0,x3,x2,x,1

]
for EI < ∞

[
0,0,0,0,x,1

]
for EI→ ∞

, (3.6)

and the column vector Ci with the integration constants related to element i,

Ci =




Ci
Ci+1
Ci+2
Ci+3
Ci+4
Ci+5



. (3.7)

The displacement u(x) in (2.3) is reformulated to

ui = ûi~Ci−
1

EAi

∫∫
ni(x) dx, (3.8)

where we introduced the row vector ûi

ûi =





[
x,1,0,0,0,0

]
for EA < ∞

[
0,1,0,0,0,0

]
for EA→ ∞

. (3.9)

Rearrangement of (3.4) yields

wi+1|k~ni+1 +ui+1|k~ti+1−wi|k~ni−ui|k~ti = 0 (3.10)

and collecting terms with integration constants on the left side and known terms on the
right side yields

(ŵi+i|kCi+1)~ni+1 +(ûi+1|kCi+1)~ti+1− (ŵi|kiCi)~ni− (ûi|kCi)~ti =~ri−~ri+1, (3.11)



8 3. Solution of a system of beams

where we introduced

~ri =~ni
1

EIi

∫∫∫∫
qi(x) dx−~ti

1
EAi

∫∫
ni(x) dx. (3.12)

Note that in the case of EI→ ∞ we have

~ri =−~ti
1

EAi

∫∫
ni(x) dx, (3.13)

whereas in the case of EA→ ∞ it is

~ri =~ni
1

EIi

∫∫∫∫
qi(x) dx. (3.14)

Furthermore, if EI→ ∞ and EA→ ∞ we have simultaneously

~ri = 0. (3.15)

3.3.2. Fixed displacement

The displacement of a node can already be a given condition, e. g. when there are pinned
or clamped support types. In this case we have the condition

wi|k~ni +ui|k~ti = 0. (3.16)

Here only one attached element is considered. The condition is applied to other elements
of the node through displacement coupling.

In case of a roller bearing the condition reads

(wi|k~ni +ui|k~ti) ·~N = 0, (3.17)

where ~N is the direction in which the bearing prevents movement see Figure 3.3.

3.3.3. Rotation compatibility

Rotation compatibility is used when all attached beams must have the same rotation. This
is the case when there is no joint and not a bearing of the type clamped or parallel guide.
For the rotation compatibility only w′ is considered and the condition reads

w′i|k = w′i+1|k. (3.18)
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A

B

~T

~N

~ti
~ni

Figure 3.3.: Roller bearing with ~N and ~T

In view of the implementation we reformulate (2.9b) to

w′i = ŵ′iCi +
1

EIi

∫∫∫
qi(x) dx, (3.19)

where ŵ′i is depended on the stiffness

ŵ′i =





[
0,0,3x2,2x,1,0

]
for EI < ∞

[
0,0,0,0,1,0

]
for EI→ ∞

, (3.20)

and Ci used as in (3.7).

Rearrangement of (3.18) and collecting known terms on the right side yields

ŵ′iCi− ŵ′i+1Ci+1 =~ri+1−~ri, (3.21)

where~ri is depended on flexural rigidity

~ri =
1

EIi

∫∫∫
qi(x) dx. (3.22)

In case of EI→ ∞ this leads to
~ri = 0. (3.23)

3.3.4. Fixed rotation

The rotations of beams attached to one node can be a given condition, e. g. when there are
bearings of the type pinned or clamped. Therefore, the equations reads

w′i|k = 0. (3.24)



10 3. Solution of a system of beams

3.3.5. Internal bending moments

For internal moments two different scenarios have to be considered. The first one is a joint.
In this case the internal moment of each beam at the given node has to be zero [5],

Mi|k = 0. (3.25)

The equation (3.25) can be reformulated to

M̂iCi−
∫∫

qi(x) dx = 0, (3.26)

where we introduced the row vector M̂i

M̂i =





[
0,0,−6EIix,−2EIi,0,0

]
for EI < ∞

[
0,0,x,1,0,0

]
for EI→ ∞

, (3.27)

and Ci used as in (3.7).

The known term is than arranged on the right side what leads to

M̂iCi =−~ri, (3.28)

where ~ri is in this case independent from flexural rigidity and can always be formulated
as

~ri =−
∫∫

qi(x) dx. (3.29)

If there is no node as well as no bearing of the type clamped or parallel guide the sum of
all internal moments at the node has to be zero,

∑
i∈βk

Mi|k = 0, (3.30)

where βk is the index set of the beams attached to the node k [6].

3.3.6. Internal Forces

The sum of all internal forces at one node has to be zero when there is no bearing,

∑
i∈βk

Qi|k~ni +Ni|k~ti = 0. (3.31)



3.3. Setting up the equations 11

The components of the equation can also be written like

Qi = Q̂iCi−
∫

qi(x) dx, (3.32)

where we introduced the row vector Q̂i,

Q̂i =





[
0,0,−6EIi,0,0,0

]
for EI < ∞

[
0,0,1,0,0,0

]
for EI→ ∞

, (3.33)

and Ci used as in (3.7).

The second component reads

Ni = N̂iCi−
∫

ni(x) dx, (3.34)

where we introduced the row vector N̂i,

N̂i =





[
EAi,0,0,0,0,0

]
for EA < ∞

[
1,0,0,0,0,0

]
for EA→ ∞

. (3.35)

Now we can formulate (3.31) to

∑
i∈βk

(Q̂iCi)~ni +(N̂iCi)~ti =−~ri, (3.36)

where~ri is independent from flexural and axial rigidity and therefore always yields

~ri =−
∫

qi(x) dx−
∫

ni(x) dx. (3.37)

In case of a roller bearing, the sum of all internal forces has to be zero in the direction of
~T as seen in Figure 3.3, normal to the direction in which the bearing prevents movement.
This leads to

∑
i∈βk

(Qi|k~ni +Ni|k~ti) ·~T = 0. (3.38)





4. APPLICATION IN UNIVERSITY COURSES

This bachelor project is part of an initiative to enhance digital learning in Engineering
Mechanics. The aim was to create scalable individual assignments.

It should be possible to:

1. Automatically create individual assignments

2. Automatically create the solution for each assignment

3. Digitally distribute the assignments

4. That students can digitally hand in their answers

5. That these answers are checked automatically

6. Digitally judge the input and give back an evaluation to the student

It was important that lots of assignments can be created, that are similar in complexity and
needed work effort, but can not be solved in the same way. Therefore, the assignments
have to be automatically scalable and designed with abstract rules.

The points 1 and 2 have been realized with a python-script. The points 3-6 were imple-
mented with Moodle-STACK-questions, a feature of the online learning platform TeachCenter
used at TU Graz.

There are two main reasons why individual scalable assignments are important for me-
chanical comprehension:

1) Even though the assignments are similar when it comes to the needed effort, they can
not be solved in the exact same way. Therefore students need to find their own solution but
it still helps to communicate with other students about how they solved their problem.

2) The students are automatically judged and get an evaluation immediately. Therefore,
they have the opportunity to correct their mistakes without the fear of judgement from
teaching staff.

The following assignment see Figure 4.1 is an example for what kind of systems can be
created. It is one of 370 assignments which were generated for the course Baumechanik
2 held by the Institute of Applied Mechanics. A solution file is also compiled. Different
homework assignments are included in the appendix.
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14 4. Application in university courses

Baumechanik 2
Sommersemester 2022

TU Graz
Institut für Baumechanik

Hausübung Systemberechnung

Berechnen Sie für das dargestellte mechanische System

a) die Biegelinie w2(x2), sowie

b) den Verschiebungsverlauf u1(x1).

A

B C

D

x1

z1

x2z2 x3
z3

√
3L
2 L

√
2L
2

L
(−

1
+
√
2
)

2

L 2

L(
√
2+
√
3+2)

2

√
2
L

2

qV1(x1)

qz2(x2)

Die Belastungsfunktionen lauten:

qV1(x1) =
qx1
L

qz2(x2) =
q (L− x2)

L

Die Steifigkeiten der Einzelstäbe betragen:

EI1 →∞

EA1 =
EI

L2

EI2 = EI

EA2 →∞
EI3 →∞
EA3 →∞

Figure 4.1.: Example assignment 1



5. CONCLUSION

In the present thesis a method for the symbolic calculation of arbitrary plane systems has
been developed and implemented in python. As a special feature the method can deal
with flexible as well as rigid elements. In contrast to the formulation of the boundary
and interface conditions in [2], the present formulation avoids bearing forces in the system
matrix. Thus, the size of the system of linear equations is reduced and therefore the method
is more efficient.

Furthermore, the method has been successfully used to create individual assignments for
over 300 students. The assignments were automatically generated based on abstract rules
and also automatically checked by using Moodle-STACK-questions.

The system has potential to be further developed. In future work the implementation of
springs, single moments and loads, half joints and Zwangseinbau should be considered.
Then all of the practise assignments used in Baumechanik 2 can be recreated.

Considering the digitalisation aspect of this project the interface between the python script
and the online learning platform has the most potential to be further optimised. For exam-
ple, the feedback given back to the students can be more specific.
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A. EXAMPLE ASSIGNMENTS

Baumechanik 2
Sommersemester 2022

TU Graz
Institut für Baumechanik

Hausübung Systemberechnung

Berechnen Sie für das dargestellte mechanische System

a) die Biegelinie w2(x2), sowie

b) den Verschiebungsverlauf u1(x1).

A

B C

D

x1
z1

x2z2 x3

z3

√
3L
2 L

L
2

√
3
L

2

L 2

L(
√
3+3)
2

L
(1

+
√
3
)

2

qz2(x2)

qV3(x3)

Die Belastungsfunktionen lauten:

qz2(x2) =
q (L− x2)

L

qV3(x3) =
qx3
L

Die Steifigkeiten der Einzelstäbe betragen:

EI1 →∞

EA1 =
EI

L2

EI2 = EI

EA2 →∞
EI3 →∞
EA3 →∞

Figure A.1.: Example assignment 2
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20 A. Example assignments

Baumechanik 2
Sommersemester 2022

TU Graz
Institut für Baumechanik

Hausübung Systemberechnung

Berechnen Sie für das dargestellte mechanische System

a) die Biegelinie w2(x2), sowie

b) den Verschiebungsverlauf u1(x1).

A

B C

D

x1

z1

x2z2

x3

z3

L
2 L

√
3L
2

√
3
L

2

L 2

L(
√
3+3)
2

L
(1

+
√
3
)

2

qV1(x1)
qx2(x2)

qz2(x2)

Die Belastungsfunktionen lauten:

qV1(x1) =
qx1
L

qx2(x2) = q

qz2(x2) = q

Die Steifigkeiten der Einzelstäbe betragen:

EI1 → ∞

EA1 =
EI

L2

EI2 = EI

EA2 → ∞
EI3 → ∞
EA3 → ∞

Figure A.2.: Example assignment 3
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Baumechanik 2
Sommersemester 2022

TU Graz
Institut für Baumechanik

Hausübung Systemberechnung

Berechnen Sie für das dargestellte mechanische System

a) die Biegelinie w2(x2), sowie

b) den Verschiebungsverlauf u1(x1).

A

B C

D

x1
z1

x2z2

x3

z3

√
3L
2 L

√
3L
2

L 2

L
(
1 +

√
3
)

L 2

qx2(x2)

qz2(x2) qH3(x3)

Die Belastungsfunktionen lauten:

qx2(x2) = q

qz2(x2) = q

qH3(x3) =
qx3
L

Die Steifigkeiten der Einzelstäbe betragen:

EI1 → ∞

EA1 =
EI

L2

EI2 = EI

EA2 → ∞
EI3 → ∞
EA3 → ∞

Figure A.3.: Example assignment 4


