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Introduction Ty

ﬂ m Numerical investigation of fluids and solids (particle flow, mass transfer, heat
transfer, stresses etc.)
m We have different numerical methods in order to solve a system of equations
FEM, FVM and BEM
m The difference is in the accuracy of the numerical methods and computational
cost

m The optimal numerical method has to have a high accuracy and low
computational cost

m Most examples in practical engineering are non-linear
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Boundary-Domain Integral Method Ty

m The Boundary-Domain Integral Method is a numerical method which is used to
solve Partial Differential Equations (PDE)

m The method is based on the Green’s second identity

m The computational cost of the BDIM scales of O(nm), thus the application is
limited to a small number of examples

m In the past different approximation methods were introduced, to reduce the
computational demand to the order of O(mlogm) or O(m)

m We use the H-matrix or the H?-matrix form to approximate the full matrices

m To the H-matrix an approximation is employed: SVD(Singular Value
Decomposition), ACA(Adaptive Cross Approximation)

m Here we employ the H?-matrix form in combination with the ACA.
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Governing equations Ty,

m The velocity-vorticity formulation of the Navier-Stokes equations
Vy x &+ V2V =0,
0 = ., .= 1 Ra - _
5+ (V-V)0 = (0-Vy)V+ —V2H— ———V, x G0

Re * PrRe?
m For lid-driven cavity

m Re= "ﬁ%L is the Reynolds number, where v is the characteristic velocity, L the

dimension and ¥y kinematic viscosity
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Modified Helmholtz equation Ty

m The modified Helmhotz kinematic equation has this form

V(% 1) — V(% trr)
At

= V2V(X,1,) + Vy x B(%, tn)

1
NE

b(x,t,) = At V(X, th— 1)+V x ®(X, t,) results in the Yukawa kinematic equation

[ Rearrangement and the abbreviations u?

(V)z( _luz) V(}'v tﬂ) + b(}7 tn) =0

m Integral form of the modified Helmholtz equation

()W 1n) +/v(x t)q I/S(’)dF:/V(S(’ ) % [7  V]u* (7, %)dl
+/(7)(3(',tn)><Vu y}dm/ (7 )PV(%, 1 1)dQ Yy €T

m For the case that u — 0 the equations reforms back to the kinematic equation
form
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Discretiztaion Ty

m The respective shape functions are
9 4 27
V(X) & ) Va9a(X),  GF )~ Y @Wp(X),  B(F) = Y Bcde(X)
a=1 b=1 c=1

m The matrix form of the modified Helmhotz equation for the solution of the
domain velocity

[Hl{vi} = [Hi] {vi} = [H] {ve} + [D] {oy} — [D] {ok} + [B] { v/}
m The matrix form for the solution of the boundary vorticity
(Im] D]+ [ D] + [nk] [Dx]) { @i} =
([ [H] + [ [HD Vit + (I [H] = [ [HT) v
—([m][H] + [m][H]) {vi}r + [nd (D] {ow e + [ (D] {0y}
+[ni][Dil{@i}r — ([][Dle/r + [Pl [Prlasr) {®it o r + [M][Dia/r { @5} r
HndIDlasr {odosr — I IIB (v} + B { '}, i =1, 2,3

m There are 8 matrices of size nx mand nx m
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Discretiztaion Ty

m The respective shape functions are
9 4 27
V(X) & ) Va9a(X),  GF )~ Y @Wp(X),  B(F) = Y Bcde(X)
a=1 b=1 c=1

m The matrix form of the modified Helmhotz equation for the solution of the
domain velocity

[HI{vi} = [Hi] {vi} = [H] {vi} + [Dc] {o;} — [D)] {ok} + [B] {v/ "}
m The matrix form for the solution of the boundary vorticity
([n][Di] + [m][Dj] + [Pe] [Di]) {0 }r =
(IHT+ In[H) {vid e + Il H] = [ [H]) v b
—([m[H] + [1[H1) {vi} + k] [D] {ok - + [n1[D] { ey}
+ni][Dil{oi}r = ([][Dlo/r + M [Cklasr) {@it o r + [M][Dia/r {@j} g r
Do {odosr — IR 1IB (v} + BT { '}, i =1, 2,3

m There are 8 matrices of size nx mand nx m
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H-structure Ty

m Let us consider a matrix [B] that is of the form nx m

m We split the matrix into smaller matrices [B]sx
m In order to form the 7{?-matrix and 7{-matrix we build cluster trees with the
bottom-up approach

m The cluster tree that is built from the boundary elements is T, and the cluster
tree that is built from the domain cells is T;

Y

k.,

J50

e ] L
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H-structure Ty

m The block cluster tree is a combination of cluster tree T, and T,

m After the block clusters are formed, each one is tested for admissibility:
m min{aim(1"), dim(4{")} <n dist(11", 4"
w max{dim(l"), dim(J")} < n dist(1", 4

m The matrix is eliminated if Frobenius norm ||Bj,5|| < 1071°

m The integral kernel is approximated if dist(ll-(i),J,Ei)) > disty
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H-structure Ty
ﬂ m The block cluster tree is a combination of cluster tree T, and T,
m After the block clusters are formed, each one is tested for admissibility:
m min{dim(1"), dim(4{")} <n dist(11", 4"
w max{dim(l"), dim(J")} < n dist(1", 4

<1071

m The matrix is eliminated if Frobenius norm || By 5

m The integral kernel is approximated if dist(ll-(i),J,Ei)) > disty
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H-structure Ty
]

m Matrix [B]nxm for value of u =20 and u = 50

m Yelow matrices have the Frobenius norm ||Bj..4|| < 1075, for the green
matrices the integral kernel is not approximated and white matrices the integral
kernel is approximated
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Approximation of the kernel Ty

m Approximation of the fundamental solution and its derivative with the Lagrange
interpolation function:

o3 B3
Z Z L (y)u* (W, %¢) L (X)

1=1x=1

1_¢1 2 3_ g3
L=t x[]2 ggxni S el = 1,003
151 755 §11 - &f £l &12 - E"é 1375[ §l3 - &[

o B AL (¥)
Lo () u* (W, %) Ni—
;KZ 1 1 K aXi
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Approximation of the kernel

Ty

m The Lagrange interpolation of the fundamental solution gives this:

o B

I/:lfa:ZZ,ﬁl

1=1k=

ol B

hn‘azzzﬁl yf

1=1k=

ol pd

/fc Z Z L, (yf

1=1x=

ol B

bfc = Z Z Ly (}’f

1=1k=

ylaXK) / a(X) i ( )dra
supp(Pa)
Lo 0L (X oL (X
05 [ e e -,
supp(Pa)
0L (X
* (Vs %) / o, (X) aKXEX)dQc
supp(®c)
(7 %) / 6o(%) Ly (%) I

supp(®c)
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Approximation of the kernel Ty

m The matrix formulation of the admissible block cluster has this form after the
approximation:

[A]=101SIVW]  [A] = [D1S]1V]
(D] =[01[8][Vo]  [B] = [U][S][Ve]
m The matrices [ V] are compressed by employing the nested cluster basis:
r v
= x21 LoGa) La(R),  A(R)- VLl (%) = Z X)- Vi L'(X))
m This gives the matrices [T]:

. L oL (X
n=05), (a= [ ean 2 Par,

oX;
supp(Pa)
e 0L (X oLy (X
(o= [ ou0ln 2520 0, L2,
supp(V;)
9L, (X)

(Toda= [ @0 2d% (Toa= [ @c(X)C2(Dd0%
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Approximation of the kernel Ty

ﬂ m To further reduce the memory cost the matrix [S] is approximated with the ACA.
The algorithm is of this form:
m Set RO =[]
m For (=1,2,... .k
1. ( ¥ )[ ArgMax\Ft‘f i

2t =(R)
3. —rR“ b= (RLNT
4. Rf R~ ‘fa[b; S=8-14+3b
= If (HRfHFgeHsfHFva)Stop
m EndFor
BT
4
5 A 4
6
12 3

m Pleas note only the matrices [ 7] have to be saved in memory. This reduces the
complexity to linear O(m). However the CPU time for the matrix-vector product
increases.
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Numerical test Ty

m Flow flow in a lid driven cavity was simulated

m The solved velocity and vorticity field was compared with the non-approximated
and approximated version

1

i (o— 53:‘)2> 2
TP (o)

m The Reynolds number was changed from 100 to 400 and 1000

RMS,, = (

m The velocity vy on plane x-z at y=0.5.
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Results Ty

m Velocity profile for the three Reynolds numbers and different mesh densities

m J. Yen Yang, S. Chang Yang, Y. Nan Chen, C. An Hsu, Implicit Weighted ENO
Schemes for the Three-Dimensional Incompressible Navier — Stokes Equations,
Journal of Computational Physics 487(1998) 464-487
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Results Ty

m Influence of the 7{2-approximation without the ACA on the solution of the
vorticity and velocity field:

Re=100 Re=1000
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Results

Ty

m The velocity profile solved with ?-approximation without the ACA compression:
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Results

Ty

m The velocity profile solved with #2-approximation with the ACA compression
m The ACA stopping condition is € = 1078
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Conclusion Ty

m The presented method can reduce the complexity to linear O(m)
m This allows to solve cases with a denser mesh

m The amount of computer memory needed to store the matrices depending on
the mesh density:

10°

‘‘‘‘‘‘‘‘‘‘‘‘ ——+—— o(m)
= e O(mLogm)
=== O(m)
——=—— Without Approx.
——e—— ACA-USV form
——— ACA-T form

-1 L L L 1 M R R |
10 5 101520

mx10* (Number of unknowns)
m The accuracy of the solution depends interpolation accuracy and ACA stopping
condition
m CPU-time to solve a case increases depending on the matrix approximation
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