
Numerical simulation of fluid flow with fast
Boundary-Domain Integral Method

Jan Tibaut[1], Jure Ravnik[2], Martin Schanz[1]

GAMM2022, Aachen 15.8.-19.8.2022
[1] Institute of Applied Mechanics, Graz University of Technology
[2] Institute of Power, Process and Environmental Engineering, University of Maribor

Institute of Applied Mechanics, Graz University of Technology > www.mech.tugraz.at



Introduction

Numerical investigation of fluids and solids (particle flow, mass transfer, heat
transfer, stresses etc.)

We have different numerical methods in order to solve a system of equations
FEM, FVM and BEM

The difference is in the accuracy of the numerical methods and computational
cost

The optimal numerical method has to have a high accuracy and low
computational cost

Most examples in practical engineering are non-linear

Jan Tibaut | Numerical simulation of fluid flow with fast Boundary-Domain Integral Method



Boundary-Domain Integral Method

The Boundary-Domain Integral Method is a numerical method which is used to
solve Partial Differential Equations (PDE)

The method is based on the Green’s second identity

The computational cost of the BDIM scales of O(nm), thus the application is
limited to a small number of examples

In the past different approximation methods were introduced, to reduce the
computational demand to the order of O(m log m) or O(m)

We use theH-matrix or theH2-matrix form to approximate the full matrices

To theH-matrix an approximation is employed: SVD(Singular Value
Decomposition), ACA(Adaptive Cross Approximation)

Here we employ theH2-matrix form in combination with the ACA.
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Governing equations

The velocity-vorticity formulation of the Navier-Stokes equations

~∇x ×~ω + ∇
2
x~v = 0,

∂~ω

∂t
+ (~v ·~∇x )~ω = (~ω ·~∇x )~v +

1
Re

∇
2
x~ω−

Ra
PrRe2

~∇x ×~gθ

For lid-driven cavity

∂~ω

∂t
+ (~v ·~∇x )~ω = (~ω ·~∇x )~v +

1
Re

∇
2
x~ω

Re = v0L
ϑ0

is the Reynolds number, where v0 is the characteristic velocity, L the
dimension and ϑ0 kinematic viscosity
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Modified Helmholtz equation

The modified Helmhotz kinematic equation has this form

~v(~x , tn)−~v(~x , tn−1)

∆t
= ∇

2
x~v(~x , tn) +~∇x ×~ω(~x , tn)

Rearrangement and the abbreviations µ2 = 1
∆t ,

b(~x , tn) = 1
∆t~v(~x , tn−1) +~∇x ×~ω(~x , tn) results in the Yukawa kinematic equation(

∇
2
x −µ2)~v(~x , tn) + b(~x , tn) = 0

Integral form of the modified Helmholtz equation

c(~y)~v(~y , tn) +
∫
Γ

~v(~x , tn)q∗(~y ,~x)dΓ =
∫
Γ

~v(~x , tn)× [~n×~∇]u∗(~y ,~x)dΓ

+
∫
Ω

~ω(~x , tn)×~∇u∗(~y ,~x)dΩ +
∫
Ω

u∗(~y ,~x)µ2~v(~x , tn−1)dΩ ∀~y ∈ Γ

For the case that µ→ 0 the equations reforms back to the kinematic equation
form

Jan Tibaut | Numerical simulation of fluid flow with fast Boundary-Domain Integral Method



Discretiztaion

The respective shape functions are

~v(~x)≈
9

∑
a=1

~vaϕa(~x), ~q(~x , t)≈
4

∑
b=1

~qbψb(~x), ~ω(~x)≈
27

∑
c=1

~ωcΦc(~x)

The matrix form of the modified Helmhotz equation for the solution of the
domain velocity

[H]{vi}=
[
H t

k

]
{vj}−

[
H t

j

]
{vk}+ [Dk ]{ωj}− [Dj ]{ωk}+ [B]

{
vn−1

i

}
The matrix form for the solution of the boundary vorticity

([ni ][Di ] + [nj ][Dj ] + [nk ][Dk ]){ωi}Γ =

([nj ][H
t
j ] + [nk ][H t

k ]){vi}Γ + ([nj ][H]− [nk ][H t
i ]){vk}Γ

−([ni ][H] + [nj ][H
t
i ]){vj}Γ + [nk ][Di ]{ωk}Γ + [nj ][Di ]{ωj}Γ

+[ni ][Di ]{ωi}Γ− ([nj ][Dj ]Ω/Γ + [nk ][Dk ]Ω/Γ){ωi}Ω/Γ + [nj ][Di ]Ω/Γ {ωj}Ω/Γ

+[nk ][Di ]Ω/Γ {ωk}Ω/Γ− [nj ][B]
{

vn−1
k

}
+ [nk ][B]

{
vn−1

j

}
, i = 1, 2, 3

There are 8 matrices of size n×m and n×m
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H-structure

Let us consider a matrix [B] that is of the form n×m

We split the matrix into smaller matrices [B]n̂×m̂

In order to form theH2-matrix andH-matrix we build cluster trees with the
bottom-up approach

The cluster tree that is built from the boundary elements is TJ and the cluster
tree that is built from the domain cells is TI

J
(0)
1

J
(1)
1 J

(1)
2

J
(2)
1 J

(2)
2 J

(2)
3 J

(2)
4

2
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H-structure

The block cluster tree is a combination of cluster tree TI and TJ

After the block clusters are formed, each one is tested for admissibility:

min{dim(I (i)
j ),dim(J (i)

k )} ≤ η dist(I (i)
j ,J (i)

k )

max{dim(I (i)
j ),dim(J (i)

k )} ≤ η dist(I (i)
j ,J (i)

k )

The matrix is eliminated if Frobenius norm ||B̂m̂×n̂|| ≤ 10−15

The integral kernel is approximated if dist(I(i)
j ,J(i)

k )≥ distm
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H-structure

Matrix [B]n×m for value of µ = 20 and µ = 50

Yelow matrices have the Frobenius norm ||B̂n̂×m̂|| ≤ 10−15, for the green
matrices the integral kernel is not approximated and white matrices the integral
kernel is approximated
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Approximation of the kernel

Approximation of the fundamental solution and its derivative with the Lagrange
interpolation function:

u∗ (~y ,~x)≈
α3

∑
ι=1

β3

∑
κ=1
Lι (~y)u∗ (~yι,~xκ)Lκ (~x)

Lι(~y) = ∏
ι1 6=`

ξ1−ξ1
`

ξ1
ι1
−ξ1

`

×∏
ι2 6=`

ξ2−ξ2
`

ξ2
ι2
−ξ2

`

×∏
ι3 6=`

ξ3−ξ3
`

ξ3
ι3 −ξ3

`

ι1, ι2, ι3,` = 1, . . . ,α3

q∗ (~y ,~x)≈
α3

∑
ι=1

β3

∑
κ=1
Lι (~y)u∗ (~yι,~xκ)ni

∂Lκ (~x)

∂xi
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Approximation of the kernel

The Lagrange interpolation of the fundamental solution gives this:

ĥfa =
α3

∑
ι=1

β3

∑
κ=1
Lι (~yf )u∗ (~yι,~xκ)

∫
supp(ϕa)

ϕa(~x) ni
∂Lκ (~x)

∂xi
dΓa

ĥt
ifa =

α3

∑
ι=1

β3

∑
κ=1
Lι (~yf )u∗ (~yι,~xκ)

∫
supp(ϕa)

ϕa(~x)[nj
∂Lκ (~x)

∂xk
−nk

∂Lκ (~x)

∂xj
]dΓa

d̂ t
ifc =

α3

∑
ι=1

β3

∑
κ=1
Lι (~yf )u∗ (~yι,~xκ)

∫
supp(Φc)

Φc(~x)
∂Lκ (~x)

∂xi
dΩc

b̂fc =
α3

∑
ι=1

β3

∑
κ=1
Lι (~yf )u∗ (~yι,~xκ)

∫
supp(Φc)

Φc(~x) Lκ (~x)dΩc
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Approximation of the kernel

The matrix formulation of the admissible block cluster has this form after the
approximation:

[Ĥ] = [Û][Ŝ][V̂H ] [Ĥ t
i ] = [Û][Ŝ][V̂ t

Hi ]

[D̂i ] = [Û][Ŝ][V̂Di ] [B̂] = [Û][Ŝ][V̂B]

The matrices [Vx ] are compressed by employing the nested cluster basis:

Lι (~x) =
γ3

∑
λ=1

Lι (~xλ)L′λ(~x), ~n(~x) ·~∇ηLκ (~x) =
γ3

∑
λ=1

Lκ (~xλ)(~n(~x) ·~∇xL′λ(~x))

This gives the matrices [Tx ]:

Tλ = L′λ(~x), (TH)aλ =
∫

supp(ϕa)

ϕa(~x)ni
∂L′λ (~x)

∂xi
dΓa

(T t
Hi )aλ =

∫
supp(ψi )

ϕa(~x)[nj
∂L′λ (~x)

∂xk
−nk

∂L′λ (~x)

∂xj
]dΓa

(TDi )cλ =
∫

supp(Φc)

Φc(~x)
∂L′λ (~x)

∂xi
dΩc (TB)cλ =

∫
supp(Φc)

Φc(~x)L′λ(~x)dΩc
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Approximation of the kernel

To further reduce the memory cost the matrix [S] is approximated with the ACA.
The algorithm is of this form:

Set R0 = [Ŝ]
For `= 1,2, . . . ,k
1. (i∗, j∗)` = ArgMax |R`−1|
2. τ` = (R`−1

i∗ ,j∗ )
−1

3. ~a` = τ`R`−1
:,j∗ ,

~b` = (R`−1
i∗ ,: )T

4. R` = R`−1−~a ~̀b` , Ŝ` = Ŝ`−1 +~a ~̀b`
If (
∥∥R`

∥∥
F ≤ ε

∥∥Ŝ`
∥∥

F ∨ `= k ) Stop
EndFor

4

5

6

Gn×m

1 2 3

Sm∗×n∗

4
BT

An×r Br×m

A

Gn×m∗ Gn∗×m

321

6
5

1

4

5

6

Gn×m

1 2 3

Sm∗×n∗

4
BT

An×r Br×m

A

Gn×m∗ Gn∗×m

321

6
5

1

Pleas note only the matrices [Tx ] have to be saved in memory. This reduces the
complexity to linear O(m). However the CPU time for the matrix-vector product
increases.
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Numerical test

Flow flow in a lid driven cavity was simulated

The solved velocity and vorticity field was compared with the non-approximated
and approximated version

RMSω =

(
∑

n
i=1(ωi − ω̃i )

2

∑
n
i=1 (ωi )

2

) 1
2

The Reynolds number was changed from 100 to 400 and 1000

The velocity vx on plane x-z at y=0.5.
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Results

Velocity profile for the three Reynolds numbers and different mesh densities

J. Yen Yang, S. Chang Yang, Y. Nan Chen, C. An Hsu, Implicit Weighted ENO
Schemes for the Three-Dimensional Incompressible Navier – Stokes Equations,
Journal of Computational Physics 487(1998) 464–487
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Results

Influence of theH2-approximation without the ACA on the solution of the
vorticity and velocity field:
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Results

The velocity profile solved withH2-approximation without the ACA compression:
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Results

The velocity profile solved withH2-approximation with the ACA compression
The ACA stopping condition is ε = 10−8
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Conclusion

The presented method can reduce the complexity to linear O(m)
This allows to solve cases with a denser mesh
The amount of computer memory needed to store the matrices depending on
the mesh density:

mx104 (Number of unknowns)

R
A

M
 [G

B
]

5 10 15 2010-1

100

101

102

103

O(nm)
O(mLogm)
O(m)
Without Approx.
ACA-USV form
ACA-T form

The accuracy of the solution depends interpolation accuracy and ACA stopping
condition
CPU-time to solve a case increases depending on the matrix approximation
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