

Fast formation and assembly for spline-based fictitious domain methods

Benjamin Marussig

Institute of Applied Mechanics Graz Center of Computational Engineering Graz University of Technology

www.mech.tugraz.at, www.gcce.tugraz.at

Outline

1. Fast formation and assembly

2. Application to fictitious domains

3. Numerical results

Fast formation and assembly – key ingredients

Sum factorization (2D tensor product basis)

(P. Antolin et al., CMAME 2015)

$$egin{aligned} m_{i,j} &= \int_{\Omega} B_i(\xi) B_j(\xi) c(\xi) d\xi \ &= \int_{\Omega_1} B_{i_1}(\xi_1) B_{j_1}(\xi_1) imes \left[\int_{\Omega_2} B_{i_2}(\xi_2) B_{j_2}(\xi_2) c(\xi_1,\xi_2) d\xi_2
ight] d\xi_1 \end{aligned}$$

Fast formation and assembly – key ingredients

Sum factorization (2D tensor product basis)

(P. Antolin et al., CMAME 2015)

$$egin{aligned} m_{i,j} &= \int_{\Omega} B_i(\xi) B_j(\xi) c(\xi) d\xi \ &= \int_{\Omega_1} B_{i_1}(\xi_1) B_{j_1}(\xi_1) imes \left[\int_{\Omega_2} B_{i_2}(\xi_2) B_{j_2}(\xi_2) c(\xi_1,\xi_2) d\xi_2
ight] d\xi_1 \end{aligned}$$

• Weighted quadrature \mathbb{Q}_i (for smooth splines)

(F. Calabrò et al., CMAME 2017)

$$\mathbb{Q} = \sum_{k} B_i(x_k) B_j(x_k) w_k \coloneqq \int_{\Omega} B_i(\xi) B_j(\xi) d\xi$$

 $\Rightarrow \mathbb{Q}_i = \sum_{k} B_j(x_k) w_{k,i} \coloneqq \int_{\Omega} B_j(\xi) (B_i(\xi) d\xi)$

Fast formation and assembly – key ingredients

Sum factorization (2D tensor product basis)

(P. Antolin et al., CMAME 2015)

$$egin{aligned} m_{i,j} &= \int_{\Omega} B_i(\xi) B_j(\xi) c(\xi) d\xi \ &= \int_{\Omega_1} B_{i_1}(\xi_1) B_{j_1}(\xi_1) imes \left[\int_{\Omega_2} B_{i_2}(\xi_2) B_{j_2}(\xi_2) c(\xi_1,\xi_2) d\xi_2
ight] d\xi_1 \end{aligned}$$

• Weighted quadrature \mathbb{Q}_i (for smooth splines)

(F. Calabrò et al., CMAME 2017)

$$\mathbb{Q} = \sum_{k} B_{i}(x_{k})B_{j}(x_{k})w_{k} \coloneqq \int_{\Omega} B_{i}(\xi)B_{j}(\xi)d\xi$$
$$\Rightarrow \mathbb{Q}_{i} = \sum_{k} B_{j}(x_{k})w_{k,i} \coloneqq \int_{\Omega} B_{j}(\xi) (B_{i}(\xi)d\xi)$$

Row/column-based assembly

Weighted quadrature point distribution

Weighted quadrature point distribution

Weighted quadrature point distribution

	-	•••••	·	•	·	•	•	•	·	·	·	·	·	•		
			·	•	•	•	•	•	•	•	•	•	·	•		
		•••••	ŀ		•	•	•	•	•	•	•	•	•	•	••••	
1		•••••	•	•	•	•	•	•	•	•	•	•	•	•	••••	••••
$\left[\right]$	[•••••	·	•	•	•	•	•	•	•	•	•	•	•	••••	
	L	•••••	·	•	•	•	•	•	•	•	•	•	•	•	••••	••••
	Γ	•••••	·	•	•	•	•	•	•	•	•	•	·	•	••••	
_ \		• • • • • • •	·	•	•	•	•	•	•	•	•	•	•	•	••••	••••
		•••••	·	•	•	•	•	•	•	•	•	•	·	•	••••	
		• • • • • • •	•		•	•	•	•	•	•	•	•	•	•	••••	•••
	[•••••	·	•	•	•	•	•	•	•	•	•	·	•	••••	
		• • • • • • •	•	•	•	•	•	•	•	•	•	•	•	•	••••	•••
				-	1	-	÷		1	1	1	1		1		
	L			1	÷	1	÷	1	1	1		1		÷		
i-d	le	egre	е	p :	_	6,	С	;p-	-1	В	-s	pl	ine	ə I	ba	sis

R

(R. Hiemstra et al., CMAME 2019)

Fast formation and assembly - impact

FLOPS for 3D mass matrix for C^{p-1} splines

- $\mathcal{O}\left(\boldsymbol{\rho}^{3}
ight)$ quadrature points per element

Assembly \setminus Formation	Quadrature loop	Sum factorization
Element loop	$c \cdot p^9$	$c_1 \cdot p^5 + c_2 \cdot p^6 + c_3 \cdot p^7$
Row/column loop	$c \cdot p^9$	$c_1 \cdot p^7 + c_2 \cdot p^6 + c_3 \cdot p^5$

(R. Hiemstra et al., CMAME 2019)

Fast formation and assembly - impact

FLOPS for 3D mass matrix for C^{p-1} splines

- $\mathcal{O}\left(\boldsymbol{\rho}^{3}
ight)$ quadrature points per element

Assembly \setminus Formation	Quadrature loop	Sum factorization
Element loop	$c \cdot p^9$	$c_1 \cdot p^5 + c_2 \cdot p^6 + c_3 \cdot p^7$
Row/column loop	$c \cdot p^9$	$c_1 \cdot p^7 + c_2 \cdot p^6 + c_3 \cdot p^5$

• $\mathcal{O}(1)$ quadrature points per element

Assembly \setminus Formation	Quadrature loop	Sum factorization
Element loop	$c \cdot p^6$	$c_1 \cdot p^2 + c_2 \cdot p^4 + c_3 \cdot p^6$
Row/column loop	$c \cdot p^6$	$c_1 \cdot p^4 + c_2 \cdot p^4 + c_3 \cdot p^4$

Fast formation and assembly - impact

Single threat formation of a 3D mass matrix

Beniamin Marussig

GAMM 2022 - Fast formation and assembly for spline-based fictitious domain methods

Outline

1. Fast formation and assembly

2. Application to fictitious domains

3. Numerical results

The challenge of fictitious domains

 Sum factorization and weighted quadrature take full advantage of the tensor product structure ...

•	•															•		٠.	•
۰.	1	1	1	1.1	1.	1.1	1.1	1.1	11	1 × 1	1.	1.1	1.1	1.1	11	۰.	1	1	
۰.	1	1	1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	۰.	1	1	1
	•			•	•					•	•	•				•		•	•
÷	÷	ł	÷	÷.,	1	1	1	1	1	÷.	1	1	1	÷.,	1	ŀ	÷	÷	÷
÷	÷	÷	÷		÷	÷.		+	÷	· ·	÷	÷.,	$^{\circ}$		÷	·	÷	÷	•
÷	÷	÷	÷		÷	1			÷	· •	÷		1		÷	·	÷	÷	•
÷	÷	ł	÷	(\cdot, \cdot)	$^{\circ}$	\mathbf{r}_{i}		+	÷	÷.	$^{\circ}$	(\cdot, \cdot)	$^{\circ}$	\mathbf{r}	÷	·	÷	÷	ł
÷	÷	÷	÷		1	1			÷	· •	÷		1	1	÷	·	÷	÷	÷
ł	÷	÷	÷	(\cdot)	$^{\circ}$	(\cdot, \cdot)		(\cdot, \cdot)	÷	÷.	$^{\circ}$	(\cdot, \cdot)	$^{\circ}$	(\cdot, \cdot)	÷	•	÷	÷	÷
ł	÷	÷	÷			1			÷	•	+			1	÷	·	÷	÷	•
ł	÷	÷	÷	(\cdot)	$^{\circ}$	(\cdot, \cdot)		(\cdot, \cdot)	÷	· •	$^{+}$	(\cdot, \cdot)	$^{\circ}$	(\cdot, \cdot)	÷		÷	÷	•
÷	÷	÷	÷	+	÷	1	1	+	÷	•	÷		1		÷	·	÷	÷	•
ł	÷	÷	÷	(\cdot)	$^{\circ}$	(\cdot, \cdot)		(\cdot, \cdot)	÷	÷.	$^{\circ}$	(\cdot, \cdot)	$^{\circ}$	(\cdot, \cdot)	÷	•	÷	÷	•
÷	÷	÷	÷	+	÷	1	1	+	÷	•	1		1	1	÷	•	÷	÷	•
÷	÷	÷	÷	(\cdot)	\cdot	(\cdot, \cdot)		(\cdot, \cdot)	÷	÷.	\cdot	(\cdot, \cdot)	$^{+}$	(\cdot, \cdot)	÷	•	÷	÷	ł
•	•	•	•	1		1	1	1.1	1.1					1	1.1	•	•	•	•
1	1	1	•	1.1	1	1.1	1.1	1.1	1.1	1.1	1	1.1	1	1.1	1.1	•	1	1	•
•	1	•	•		•	1	1	1	1					1	1	•		•	•

The challenge of fictitious domains

- Sum factorization and weighted quadrature take full advantage of the tensor product structure ...
- ... which is violated by an arbitrarily located interface Γ.

Function types of cut background meshes

Classification by valid support size $S_i^{v} := \text{supp}\{B_i\} \cap \overline{\Omega^{v}}$

- Exterior if $\mathcal{S}_i^{\mathsf{v}} = \emptyset$
- Interior if $S_i^{v} = \sup\{B_i\}$
- Cut if $0 < |S_i^v| < |\mathsf{supp}\{B_i\}|$

	•		1.1						1.1		1.1				•
	1 × 1	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.1	1.1	1.1		÷	•
6 A. A. A.	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1			•
· · • • • •	· ·	1.1	1.0	1.0		1.1	1.0	1.1	1.0	1.0	1.0	1.0	•		
77															
	· •	1.1	1.1	1.1		1.1		1.0		1.1	· • •	1.0		х.	
	-		_											_	
	1 × 1	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0		÷	
	1 × 1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	12	1.1	12	٠.	1	•
	-					_							F	-	_
	1.1	11	1.1	11	1.1	1.1	1.1	11	1.1	12	1.1	12.1	•	1	
		1		1.	1 C	- C.	1 C	1.1	1 · ·	1.	1.1	1.1	•	1	÷.,
		-													
		Ľ.											Ľ		
	1 A .	÷	1.1	1.0		1.1	1.1					1.1			
				_									-	_	_
	1 × 1	1.0	1.0		1.0	1.0							•		•
	1 ·	1.1		1.1	1.1	1.1	12	1.1	1.1	1	1.1	1	÷	1	•
	-			-		_			-					_	
	1 ·	1.1	1.1	1.1		-		1.1	1.1	11	1.1	11	۰.	2	1
	L .	· ·	1.1	1.1				1		÷.	· ·	÷.	Ľ	1	
	•		1.				1			1			÷		
	· ·	1.1	1.1				1.1	1.	1.1	1		1	•		1
	· ·		1.1		1.1	1				1	1.1	1	•	•	•
	1.1	1.1	1.1	1.1	1.1	1.1	1	1.	1.1	1.	1.1	1.	۰.	1	1
						1.									

С

Integration of cut basis functions

Split of the basis function's valid support S_i^{v} into...

$$\int_{\mathcal{S}_{i}^{\mathsf{v}}}B_{i}(\xi)d\xi=\int_{\mathcal{S}_{i}^{\mathsf{c}}}B_{i}(\xi)d\xi+\int_{\mathcal{S}_{i}^{\mathsf{r}}}B_{i}(\xi)d\xi$$

Integration of cut basis functions

Split of the basis function's valid support S_i^{v} into...

$$\int_{\mathcal{S}_{i}^{\mathsf{v}}} B_{i}(\xi) d\xi = \int_{\mathcal{S}_{i}^{\mathsf{v}}} B_{i}(\xi) d\xi + \int_{\mathcal{S}_{i}^{\mathsf{v}}} B_{i}(\xi) d\xi$$

Cut part S^c_i:

Element-wise assembly using higher-order accurate quadrature

(e.g., T.-P. Fries et al., CMAME 2017; R.I. Saye, SISC 2015; R.I. Saye, J. Comput. Phys. 2022)

Integration of cut basis functions

Split of the basis function's valid support S_i^{v} into...

$$\int_{\mathcal{S}_{i}^{\mathsf{v}}} B_{i}(\xi) d\xi = \int_{\mathcal{S}_{i}^{\mathsf{v}}} B_{i}(\xi) d\xi + \int_{\mathcal{S}_{i}^{\mathsf{v}}} B_{i}(\xi) d\xi$$

• **Cut** part S_i^c :

Element-wise assembly using higher-order accurate quadrature

(e.g., T.-P. Fries et al., CMAME 2017; R.I. Saye, SISC 2015; R.I. Saye, J. Comput. Phys. 2022)

Regular part S_i: Integration that exploits the tensor product structure

Integration of S_i^r : weighted quadrature (WQ)

Mass matrix deviation

- p Error
- 1 3.330e-03
- 2 3.389e-04
- 3 3.038e-04
- 4 1.782e-04
- 5 1.599e-04
- 6 1.282e-04

Integration of S_i^r : weighted quadrature (WQ)

Mass matrix deviation

- p Error
- 1 3.330e-03
- 2 3.389e-04
- 3 3.038e-04
- 4 1.782e-04
- 5 1.599e-04
- 6 1.282e-04

Straightforward use of weighted quadrature is **not** possible since a **discontinuity** is introduced in the integration domain.

Integration of S_i^r : Gauss quadrature (GQ)

Gauss points for all cut basis functions

Benjamin Marussig GAMM 2022 – Fast formation and assembly for spline-based fictitious domain methods

11

Integration of S_i^r : Gauss quadrature (GQ)

Gauss points for all cut basis functions

Benjamin Marussig GAMM 2022 – Fast formation and assembly for spline-based fictitious domain methods

Cut B-spline and its WQ rule

Benjamin Marussig GAMM 2022 – Fast formation and assembly for spline-based fictitious domain methods

 Implementation remark: Use Gauss point locations for DWQ to reuse evaluations

Outline

1. Fast formation and assembly

2. Application to fictitious domains

3. Numerical results

3D mass matrix

L²-projection of the target function

$$f = \sin(2xz)\cos(3yz)$$

- Degrees *p* = {2,...,6}
- Elements per dimension e = {4, 8, 16, 32}
- Ill-conditioning due to cut elements is treated by extended B-splines (K. Höllig et al., SINUM 2002)

3D mass matrix: Convergence and timings

Approximation error

Total time^{*} for e = 32

* Timings without cut elements

Benjamin Marussig GAMM 2022 – Fast formation and assembly for spline-based fictitious domain methods

Conclusions

Fast formation and assembly key ingredients:

- Spline-based background mesh
- Sum factorization
- Row/column assembly
- (Discontinuous¹) weighted quadrature

(P. Antolin et al., CMAME 2015)

(F. Calabrò et al., CMAME 2017)

¹BM, Fast formation and assembly of isogeometric Galerkin matrices for trimmed patches, INdAM Series 2021

Conclusions

Fast formation and assembly key ingredients:

- Spline-based background mesh
- Sum factorization
- Row/column assembly
- (Discontinuous¹) weighted quadrature

Impact

- Significant reduction of FLOPS for setting up system matrices
- Overall performance depends on degree, interface shape, and mesh size

¹BM, Fast formation and assembly of isogeometric Galerkin matrices for trimmed patches, INdAM Series 2021

GCCE

(P. Antolin et al., CMAME 2015)

(F. Calabrò et al., CMAME 2017)

Conclusions

Fast formation and assembly key ingredients:

- Spline-based background mesh
- Sum factorization
- Row/column assembly
- (Discontinuous¹) weighted quadrature

Impact

- Significant reduction of FLOPS for setting up system matrices
- Overall performance depends on degree, interface shape, and mesh size

Potential drawbacks

- Weighted quadrature does not preserve symmetry
- Code requires a completely new structure
- Many quantities have to be pre-computed for sum factorization

¹BM, Fast formation and assembly of isogeometric Galerkin matrices for trimmed patches, INdAM Series 2021

(P. Antolin et al., CMAME 2015)

(F. Calabrò et al., CMAME 2017)

Fast formation and assembly for spline-based fictitious domain methods

Benjamin Marussig

Institute of Applied Mechanics Graz Center of Computational Engineering Graz University of Technology

www.mech.tugraz.at, www.gcce.tugraz.at