’; j‘“m Institute of TU
‘ YIJ =L Applied Mechanics Grazm

Institut fiir Baumechanik Graz University of Technology

Preprint Series
Institute of Applied Mechanics

Graz University of Technology

Preprint No 1/2010



An accelerated symmetric time-domain
boundary element formulation for elasticity

Matthias Messner, Martin Schanz
Institute of Applied Mechanics, Graz University of Technology

Published in: Engineering Analysis with Boundary Elements, 34(11),
944-955, 2010
Doi: 10.1016/j.enganabound.2010.06.007

Latest revision: April 22, 2010

Abstract

Wave propagation phenomena occur often in semi-infinite regions. It is well known that
such problems can be handled well with the Boundary Element Method (BEM). However,
it is also known that the BEM, with its dense matrices, becomes prohibitive with respect to
storage and computing time. Focusing on wave propagation problems, where a formulation
in time domain is preferable, the mentioned limit of the method becomes evident. Several
approaches, amongst them the Adaptive Cross Approximation (ACA), have been developed
in order to overcome these drawbacks mainly for elliptic problems.

The present work focuses on time dependent elastic problems, which are indeed not ellip-
tic. The application of the presented fast boundary element formulation on such problems
is enabled by introducing the well known Convolution Quadrature Method (CQM) as time
stepping scheme. Thus, the solution of the time dependent problem ends up in the solution
of a system of decoupled Laplace domain problems. This detour is worth since the resulting
problems are again elliptic and, therefore, the ACA can be used in its standard fashion.

The main advantage of this approach of accelerating a time dependent BEM is that it can
be easily applied to other fundamental solutions as, e.g., visco- or poroelasticity.
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1 Introduction

The boundary element method (BEM) is suited to treat wave propagation problems. In the
present work, this method is applied on the numerical solution of initial boundary value problems
in 3-d elastodynamics. For problems of rather restricted size this is done in numerous works.
The first boundary integral formulation for elastodynamics in Laplace, respectively Fourier do-
main with a subsequent inverse transformation has been published by Cruse and Rizzo [20] and
Dominguez [21]. Alternatively, the first formulation in time domain has been developed by
Mansur [37]. A detailed review on elastodynamic boundary element formulations can be found
in the articles of Beskos [12, 13], Chudinovich [17], and Costabel [18]. However, in order to
obtain reasonable results both classes of approaches, Laplace domain with subsequent inverse
transformation as well as time domain, depend strongly on a proper choice of parameters. Be-
side these approaches, the Convolution Quadrature Method (CQM), a more stable time stepping
procedure, was proposed by Lubich [34, 35]. The method uses the Laplace domain fundamental
solution. This is essential in the case of visco- and poroelasticity (see [46, 44]) since their funda-
mental solutions are available in closed form only in Laplace or Fourier domain. In the context
of fast BE formulations this method is used in the work of Hackbusch et al. [32].

A reformulated CQM was published by Banjai and Sauter [4] and has been extended to mixed
problems by Schanz [45]. The proposed reformulation transfers the time stepping procedure
to the solution of decoupled Laplace domain problems. This approach is adopted for the time
discretization in the present work. An improved version can be found in [2].

For the space discretization, here, the symmetric Galerkin BEM, as presented in the work of
Kielhorn and Schanz [33], is applied. In the work of Bldzquez et al. [14] some comparative
studies of this method with respect to other formulations are presented. Nowadays, due to im-
proved capabilities of computer systems, larger and larger problems can be solved. However,
by just increasing the size of problems, the effort of solving dense matrices scales quadratically.
Thus, even though better computer hardware exists the BEM reaches its limits. Hence, in the
last two decades fast methods have become popular in the field of applied mathematics and en-
gineering. The history of such methods, i.e., asymptotically optimal approximations of dense
matrices, starts with the paper by Rokhlin [42]. For the first time an algorithm was presented
which scales like O(nlogn). Subsequently, the so called Fast Multipole Method (FMM) has
been developed in [26, 16] for some large-scale n-body problems. The method was significantly
improved in [27]. In the work of Of et al. [39] the FMM is applied to elastostatic problems based
on a Galerkin BEM discretization. The extension to elastodynamics in Fourier domain has been
published in [15] based on a collocation approach. In time domain, the FMM with a plane wave
expansion is presented in [49]. A black-box FMM approach for scalar-valued-problems has been
proposed by Fong and Darve [22].

Other approaches are Panel Clustering (see [31]) and the wavelet based BEM [1]. The latter
method produces sparse matrices based on orthogonal systems of wavelet like functions.

All these methodologies allow to perform the matrix-vector-multiplication with almost linear
complexity. However, the only approach that allows to do all matrix operations (matrix-vector-,
matrix-matrix-product, matrix-matrix-addition, matrix-inversion, LU-decomposition, etc. ) with
almost linear complexity are the so called 7{-matrices introduced by Hackbusch [29]. They can
be understood as algebraic structure reflecting a geometrically motivated partitioning into sub-
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blocks. Each sub-block is classified to be either admissible or not. This block structure points
out the fact that H-matrix arithmetics is easy parallelizable [9].

After having concluded the setup of an H-matrix, admissible blocks have to be approximated.
All previously mentioned methods, such as FMM, Panel Clustering, and wavelet based methods
approximate discrete integral operators in a very specific way. They deal with the analytical
decomposition of integral kernels and, hence, the procedure becomes problem dependent. This
fact holds also for the coding of this class of methodologies. A second class are the so called
algebraic approximation methods. The Singular Value Decomposition (SVD) leads to the opti-
mal approximation, however, with O(n?) complexity. Less expensive algorithms are the Mosaic
Skeleton Method developed in [24] and the successively developed Adaptive Cross Approxi-
mation (ACA). The latter one is chosen in the present work. It has been applied by Bebendorf
[5], Bebendorf and Rjasanow [10] to the approximation of BEM matrices for the first time. The
outstanding feature of ACA compared to SVD is that it requires only the evaluation of some
original matrix entries and the approximation is still almost optimal. Due to this fact, it can be
used in a black-box-like manner. Its coding and adaptation to existing codes is straight forward.
The algorithm is robust and it is based on a stopping criterion depending on a prescribed ap-
proximation accuracy €. Here only some, focusing on elasticity problems will be pointed out.
In elasticity, Bebendorf and Grzibovski [8] used the ACA for the solution of mixed elastostatic
boundary value problems. In that work an error estimate for approximated Galerkin matrices is
presented. Furthermore, an improved pivoting strategy is given, such that the ACA algorithm
will not fail in some special cases. An engineering approach for the acceleration of elastostatic
problems is presented in the recent work by Maerten [36]. In [11] and [28], the ACA in combi-
nation with H-matrices is efficiently applied to crack problems in elastic media solved by using
a collocation boundary element formulation. The first publication studies the behaviour of a
single penny shaped crack, whereas the second one solves large crack systems.

To resume, in the paper at hand, the symmetric Galerkin BEM will be used together with the
reformulated CQM in order to accelerate the solution of elastodynamic boundary value problems
in time domain. The latter mentioned time discretization is essential as will be illustrated in the
following. Finally, the present formulation will be validated by numerical examples.

Throughout this paper, vectors and tensors are denoted by bold symbols and matrices and
vectors of the discretised system by upper case and lower case sans serif symbols, respectively.
No summation convention is used in the entire work. The indices of a matrix (A);; indicate
the ij-th entry, which is a scalar in the case of scalar-valued-problems. However, in the case of
vector-valued-problems an entry is meant to be matrix-valued.
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2 Symmetric Boundary Element Formulation

2.1 Problem formulation

In an elastic body Q C R? with a Lipschitz boundary I' = I'p UT'y and a fixed final time 7 € R*
the following mixed initial boundary value problem has to be solved

—(A+u)VV -u(X,1) — uAu(x,1) +paazt;l(i,t) =0 (x,1)eQx(0,T)
u(x,7) =gp(x,7) (x,t) €elpx(0,T) 0
t(x,1) = Txu(x,t) = gy(x,t) (x,¢) €Ty x(0,7T)
u(x,0) = ?;;(i,O) =0 (x,1)eQx(0)

The surface displacements u(x,#) and tractions t(x,7) are prescribed by some given data gp(x,1)
on I'p and gy (x,7) on 'y, respectively. The traction operator 7y reads as

(Txu)(x,1) = (6-m)(x,7) 2)

with the stress tensor 6(x, ) incorporating Hooke’s law and the outward normal vector n(x) on
the boundary I'. The Lamé constants u and A are connected to the modulus of elasticity £ and

Poisson’s ration v £ £
\Y
= A=— 3
=20 +vy (1+v)(1—2v)’ )

whose physical significance is more immediate.

2.2 Boundary integrals

For a given time 7 € (0,7) the displacement field u(X,) at any interior point X € Q is given by
the Somigliana identity (e.g. [20, 21])

u(%,1) ://U(y—f(,t—’c) t(y, 1) dsydt
0 rt @
—//(TyU)(y—i,t—'c)-u(y,’t) dsydt  XeQ yel
0or

with the fundamental solution U(y — X,z —t). In order to obtain a symmetric formulation the
traction integral equation is needed in addition to (4). This equation is obtained by applying
the traction operator 7z on (4). Next, a limiting process Q 3 X — x € I" is performed on both
equations

u(x)= _lim_u(®0) )=l R 5)

The first boundary integral equation for u(x,¢) is used on I'p and the second one for t(x,#) on
I'v. Then 8p(x,t), gv(x,7) € I are chosen to be arbitrary but fixed extensions to the whole
boundary of gp(x,#) and gy(x,7). Inserting the extended decompositions of the Cauchy data

u(x,t) =u(x,t) + gp(x,) t(x, 1) = t(x,1) + gn(x,1) (6)
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into (5) leads to the symmetric boundary integral formulation [47, 19]

(V) (x,1) — (Kxt)(x,1) = —(Vgn)(x,0) + (3T +K) *8p) (x,1)

(X,t)GFDX( )
. N . (7
(K'%8)(x,0) + (Dx1)(x,1) = (37— K') *&w) (x,1) — (D* &p) (x,1)
(x, t)eFNx( 7).

The introduced integral operators are the single layer V), the double layer K, the adjoint double
layer K, and the hypersingular operator D, respectively. They are defined with the convolution
operator

(V¥ Dr(x,1) ://f(y,'c)U(y—x,tf’c)dsyd'c
0or

(Ks)r(x,s) = [ lim / i(y,7)(T,U) T (y — x,t — T)dsydt

£—0
0 yels|ly—x|>¢

t

(K sr(x,0) = [ lim / Ty, 1) (TRU) (v — x, — T)dsy dT

£—0
0 yelt|ly—x|>¢

®)

t

(D*ﬁ)r(x,t):—/ lim 7;/ﬁ<y,r>(7;U)(y—x,t—r)dsydr.
r

Qox—xel’

The last, so called hypersingular integral operator has to be understood as a finite part integral.
A detailed description of these integral operators and their properties can be found in [33, 37].
For the sake of readability from now on the ~ symbol which denotes the extensions of the Cauchy
data to the whole boundary is omitted.

2.3 Time discretization

For the time discretization the Convolution Quadrature Method (CQM) is adopted. This method
has initially been developed by Lubich [34, 35] and has been applied to the boundary element
method by Schanz and Antes [46]. In the following, only those parts of its theoretical framework
are recalled which are necessary for the understanding of the present work. The idea is to
approximate the convolution integrals in time

(k* f)n Z . with  f; = f(jAr). )

This is done by splitting up the time interval (0,7) into N + 1 time steps of equal length At.
Equation (9) shows the approximation of the convolution integral at a certain discrete time ¢, =
nAt. The quadrature weights OJJA-’ are defined by

R N , i YRE)

lj . — LWET —
N+lzbk(sz)g with {=e¥T and s/ At (10)

o} (k) =
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In (10), R represents the radius of a circle in the domain of analyticity of lAc(s) This is the Laplace
transform of the original time-domain kernel function k(¢) with the complex argument s. In the
following, s¢ is denoted as complex frequency, since it might be seen so. y({) is the quotient of
the characteristic polynomials of the underlying A-stable multistep method. For the comparison
of different multistep methods and a detailed derivation of the CQM see [44].

Banjai and Sauter proposed in [4] to extend the quadrature weights OJJA.t to be valid for negative
indices j < 0, utilizing the fact that they have to vanish in this case due to causality. Thus, the
sum in (9) can be extended to j = N, and after inserting (10) into (9) both sums are exchanged.

Finally, a reformulated approximation of the convolution integral

_ N
Vo™ with fo=Y RIf; Y. (11)

j=0

(k* f)n ~

is obtained. After adopting (11) for the time discretization of (7), a system of N+ 1 semi-discrete
equations with £ € (N +1)

>

Ka)(x,s¢) =fp(x,5¢) x€TIp "
Da)(x,s) =fn(x,50) x€Tly
and the load vectors

fp(x,50) = —(V &v) (x,50) + (3T +K) &) (x,5¢)

. S A (13)
v (x,50) = (32— K") &) (x,50) = (D &p) (%, 50)
is obtained. The unknown Cauchy data u(x,#,) and t(x,t,) for x € I are obtained by
—n
u(x,t,) = Zu X, 8¢) C"ﬂ and t(x,1,) Zt X, 5¢) C”Z (14)

N+1/ N+1

The now semi discrete operators V, K, K', and D are the Laplace transformed counterparts of
their time-domain version containing the Laplace transformed fundamental solution U(y —x, )
(see [33]). A more detailed description of this reformulated CQM and its application onto mixed
elastodynamic problems can be found in [45].

2.4 Spatial discretization

For the spatial discretization a standard Galerkin approach is employed. The unknown (X, s)
and t(x,s) of the semi-discrete system of equations (12) are unique solutions of the variational
formulation related to (7)

Vi, w)r, — (Ka,w)r, = (kp, w)r, (15)
<IC f > + <@ﬁ’v>FN = <fN7V>FN

for all test functions w(x) and v(x). In order to discretize (15), a triangulation of the whole
boundary I into P linear triangles Tp is made

F~TI),= Ur,, (16)
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Appropriate finite dimensional subspaces for discontinuous and continuous polynomials, respec-
tively, are defined

Si(Tpp) = span{yl}o?,  yEN
Sh(Twa) == span{gf 1}, BeN\0.

The unknown tractions and displacements f;,,{i;, and suitable test functions wy, v, are in these
subspaces

(17)

thowy € S1(Tpy) and  dy,vp € SP (T ). (18)

The fact that £, and (i, are unique solutions of (15) leads to N + 1 linear systems of equations of

the form R R R
Vi =Ky t\ (o
(& o) ()= (%) ()

each depending on sy and the matrices and vectors are

\7;, S CMDXMD, Rh S (CMDXMN, Dh S (CMNXMN

. 2 5 (20)
and t,,fp € (CMD, 0y, Ty € CMN,

respectively. Mp denotes the number of unknowns on I'p and My on I'y, respectively. The
entries of the matrices in (19) are given by

(Vs = [ W) [ Oy=x.5)w(y)dsyds,

Ry = [vix) [ (RO x5 gy)dsyds,

supp(¢f)

Os=— [ 0% [ (KO v—xs) ¢y)dsydss
)

21

B

supp(; supp((PE)

All integrals are evaluated within their computational domains, i.e., their support. The support
of the discontinuous polynomials WZ, is defined by a boundary element t,. The support of the
continuous polynomials (p,ﬁ,, stretches to all adjacent elements. The integrals of K and D, are of
strong singular and hypersingular type, respectively. By applying the regularization proposed by
Kielhorn and Schanz [33] they are transformed into weak singular integrals. For their numerical
integration special coordinate transformations, also known as Duffy transformations (see [43]),
are used.

3 Matrix Approximation
An approximation for a matrix A € C'**

A~S;=UVT with UeC* andV e C*¥, (22)
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with a small rank k compared to ¢ and s can be found whenever the generating kernel function
k(x,y) in the computational domain of A is asymptotically smooth. As shown in [7] and [30]
all kernel functions k(x,y) of elliptic operators with constant coefficients and x # y have this
property. Only in the case x =y they become singular and are not smooth. Beside this spatial
singularity the kernel functions of the hyperbolic operators in (7) have an additional temporal
singularity for + = t. By means of the CQM (see section 2.3) the hyperbolic operators are
transformed into elliptic ones. This fact is essential for the application of the approximation.

3.1 Hierarchical matrices

Due to the previously described kernel properties of elliptic operators the necessity to separate
the near- from the far-field becomes evident. Low rank approximations of the type (22) can be
obtained only for well separated computational domains x # y. Thus, H-matrices [30, 7] are
used. Their setup is based on the following idea: The index sets / and J of row and column
degrees of freedom are permuted in such a way that those who are far away from each other do
also obtain indices with a large offset.

First, by means of a distance based hierarchical subdivision of I and J cluster trees 7; and
Ty are created. In each step of this procedure a new level of son clusters is inserted into the
cluster trees. A son cluster is not further subdivided and is called to be a leaf if his size reaches
a prescribed minimal size b,,;,. Basically, two approaches can be distinguished. First, the subdi-
vision based on bounding boxes splits the domain into axis-parallel boxes which contain the son
clusters. Second, the subdivision based on principal component analysis splits the domain into
well balanced son clusters leading to a minimal cluster tree depth. Details for both approaches
can be found in [30]. In the present work, the latter approach is adopted. The former one would
lead to identical results for the examples presented in section 5.

Now, the H-matrix structure is defined by the block cluster tree Tj.; := Ty x T;. Its setup is
performed by means of the following admissibility criterion

min(diam(z), diam(s)) < ndist(z, s), (23)

with the clusters ¢ C 77, s C T; and the admissibility parameter O < 1 < 1. The diameter of the
clusters ¢ and s and their distance is computed as usual
diam(¢) = max |x;, —X,|,
1,2€t

diam(s) = max |y, —yj|,
J1,2€S

dist(z, s) = iglijgslxi =yl

Each cluster 7 and s is associated with its computational domain x; and y; on I'. The support of
the corresponding degrees of freedom of row i and column j are denoted by x; and y;, i.e.,

x=Jx; and y,:=[Jy;, with x;,y,€R’. (24)
ict JEs

If (23) is fulfilled, a block b =t x s is admissible. If condition (23) is not fulfilled the admis-
sibility is recursively checked for their son clusters, until either (23) holds or both clusters ¢



Preprint No 1/2010 Institute of Applied Mechanics

and s become leafs. In the latter case block b is not admissible. As can be seen in (21) all
matrices are generated by kernel functions of the type lAc(y — X, s). Admissible blocks have well
separated computational domains x, and y, and the algorithm presented in section 3.2 is used to
approximate them. Not admissible blocks must be evaluated without approximation.

3.2 Adaptive Cross Approximation

A remark to the notation in this section: (A);; denotes the ij-th entry, whereas (A); and (A);
are the i-th row vector and j-th column vector, respectively. The idea of the Adaptive Cross
Approximation is to split up a matrix A € C"** into A = Sy + R, where Sy denotes the rank k
approximation of A and Ry the residuum to be minimized. Starting from

So:=0 and Ry:=A, (25)

a first pivot y; = (Ro) has to be found, where i and j are the row and column indices of the
actual (O-th in this Case) approximation step. Hints for the right choice of the initial pivot y; can
be found in [7]. In each ongoing step Vv the scaled outer product of the pivot row and column is
subtracted from R, and added to Sy

Rv+1 =Ry — UV+IVJ+1 (26)

. T
Svi1 =Sy +uyr1vyy

with the i-th row vector and j-th column vector defined as

Vy+1 = Yv+1 (Rv)i and uyq = (Rv)j- (27)

The residuum Ry is minimized and the rank of the approximant Sy is increased step by step. The
pivot Yy 1 is chosen to be the largest entry in modulus of either the row (Ry); or column (Ry);.
Finally, the approximation stops if the following criterion holds

[uvt1llF IvvrillF < €l[Svillr- (28)

Note, the entire matrix A will never be generated. Therefore, special care has to be taken in
order to find the pivot such that the algorithm converges to the prescribed accuracy € [41, 7].

By using the definition of the absolute value |z| = /zZ, with z € C and the complex conjugate
Z, the Frobenius norm of the approximant ||Sy.1||r can be reformulated as

Z’ SV+1 1J|

j:

Ms

ISv+1ll7 =

Y Y [(S)ii+ ()i (), (29)

./:

I
1P

=Sl Y (07 B9 T+ v 9w ) + e [l -
(=1
Due to this recursive representation all algebraic evaluations in (26) and (28) can be performed
with O(K*(t +s5)) complexity. Usually the computational costs for generating matrix entries
dominates by far the costs needed for the ACA algorithm. Hence, the complexity and memory
requirement scale like O(k(t +s)) (see [41]).



Preprint No 1/2010 Institute of Applied Mechanics

3.3 Vector-valued problems

Before explaining how to apply the ACA to problems of a vector-valued type, the influence of
the pivot value 7y is recalled. It is responsible for the correct scaling of the outer product which
is subtracted from the reminder R, and added to the approximant S,. A necessary condition is
that its value is non-zero. It turns out that the optimal choice is to look for the largest entry in
modulus of either the previously computed row or column of Ry. Based on this entry the next
outer product is computed.

In the case of a scalar-valued problem the largest non zero entry can be found in a straight
forward manner. However, the problem arises when dealing with vector-valued problems, e.g.
3-d elasticity problems. In this case each entry is of matrix type A;; € C3*3 and the pivot might
be defined as

W= (Rv)i_jl with  [|(Ry);j]|, = max. (30)

For no norm || - ||, it is guaranteed that a proper pivot entry can be found. E.g., if (Ry);j
contains one very small entry compared to the remaining entries of (Ry); the pivot row uy is
scaled up by yy and (28) does not hold. If (Ry);; contains a zero entry the pivot Y, is not even
defined. This becomes evident, if e.g. the single layer operator in (21) is evaluated on some
plane Iy := {x,y € R?: y; —x; = 0} that lies perpendicular to the coordinate axis k. In this case
certain off diagonal entries vanish

Upg(y—x,5)=0 x,yeIy, pVg=k 31)

Uy, € C¥3 is the matrix-valued fundamental solution for elastodynamics in Laplace domain.
Due to these facts a straight forward generalization of the scalar-valued ACA to the matrix-
valued version is not possible. Hence, in this work the 3-d elasticity problem is split up into
3 x 3 scalar-valued problems. Any matrix Aj; and vector b, in (19) becomes partitioned into
sub-blocks

At A A by
Ap= A Axn Axp bry=|b2]. (32)
Az A Az bs

In each of these sub-blocks the ACA is applied as presented in section 3.2. Thus, remember,
sub-matrices containing only zero entries due to (31) do not even have to be stored.

4 Fast solution procedure

By using the reformulated CQM for the temporal discretization, the hyperbolic problem (1)
is transformed into a system of decoupled Laplace domain problems. Based on the fact that
they become elliptic the known admissibility criterion (23) for the setup of H-matrices and
the ACA can be used. These problems depend on specific complex frequencies sy. Based on
their construction they always appear as complex conjugates. Due to this fact only half of the
problems has to be solved. The other half results in the conjugate complex solution.

Recalling, the solution procedure starts with the transformation of all prescribed boundary
conditions using (11). Then, the system of decoupled Laplace domain problems is solved and,
finally, the time domain solution is obtained by using (14).

10
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4.1 Solution of mixed problems
As described in section 2, N 4 1 positive definite and, thus, invertible equation systems of the

form . R .
Vi =Kp\ (T _ (fp
R;lr D h l,]h N fN

have to be solved for each complex frequency s,. For the solution of this block skew symmetric
matrix the following solution procedure (see [48]) is applied. By inserting the first equation

t, =V, (fp +Kyn) (33)
into the second, the Schur complement system
(Dh +RTV! Rh) o, = fy — KTV (34)

is obtained. The resulting Schur complement matrix is symmetric and positive definite. Instead
of performing a direct inversion of V), a nested iterative solver is applied. First, the right hand
side

9 =fv — Ky (35)
with the solution ¢;, of \7héh = ?D is computed. Then, the matrix-vector-multiplication for the
Schur complement system is defined as

ghﬁh = Dhﬁh—l—RTBh (36)

with Bh out of \7h5h = Rhﬁh. Note, both \7h and éh are complex symmetric but not hermitian
and, therefore, no conjugate gradient scheme (CG) can be used. An iterative solver capable of
solving the present system has to be taken. In this work a restarted GMRES solver is used. No
preconditioner is applied. It will be the topic of further investigations.

4.2 Solution of Neumann problems

The problem statement (1) reduces to prescribed boundary conditions for the Neumann part of
the boundary only, i.e., the complete set of boundary conditions are

t(x,7) =gn(x,2) (x,0) €eI'x(0,7). (37)

Hence, the displacements u are sought on the complete I" x (0, 7). Due to the zero initial condi-
tions u(-,7 =0) =u(-,# = 0) = 0 rigid body motions cause no problems regarding the solvability
of the reduced variational formulation

(Dxu,v)r=((Z-K')«t,v)r. (38)

The presented temporal and spatial discretization leads to N + 1 decoupled equation systems of
the type
Dpiy = fy, (39)

which can be solved by taking any iterative solver capable of solving complex symmetric but
not hermitian systems. Again, a not preconditioned restarted GMRES solver is used.

11
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5 Numerical examples

In this section, the previously presented solution procedures are tested. In order to show the va-
lidity of the results only benchmark examples, whose analytical solution is known, are treated.
Aspects regarding the efficiency of the presented methodology are pointed out. The most impor-
tant criterion is the compression rate of matrices depending on either the approximation accuracy
€ or the complex frequency (10). The compression rate is defined as the ratio between the size
of the compressed matrix and the size of the dense matrix. In other words a compression rate of
50% means that only one half of the original dense matrix is computed and stored. Due to the
fact that the cost of evaluating matrix entries outweighs the overhead of constructing 7{-matrices,
applying ACA and solving equation systems, the compression rate provides information about
memory consumption and speed up.

All computations were performed by using the HyENA C++ library for the numerical solution
of partial differential equations using the boundary element method [38]. The part of the library
that deals with H-matrix arithmetics and the ACA as well as the restarted GMRES solver stem
form the AHMED C++ library [6]. For the Fourier like transformations in (11) and (14) the
FFTW routines [23] are taken.

5.1 Longitudinal waves in a rod

A 3-drod of size /; =3.0m and ¢, = {3 = 1.0m, as depicted in Figure 1, is considered. It is fixed
on one end and the other end is excited by a pressure jump #; = —1.0H(¢)N/m?. H(t) denotes
the unit step function. The material parameters of steel (p = 7850.0ke/m?, = 1.055 x 10" N/m2,
A = 0.0N/m?) are taken. Poisson ratio is chosen to be zero, such that the results can be compared
with the analytical solution of longitudinal waves in a 1-d elastodynamic rod (see [25]). The

ay

X2
X

3m
= 71.0H(I)N/m2
Figure 1: System and boundary conditions
rod shown in Figure 1 is discretised into 3660 triangular boundary elements of uniform mesh

size h = 0.08 m. The displacements and tractions are approximated by piecewise constant and
continuous linear polynomials, respectively

t, € S%(FD’;,) and u, € S}]Z(FN,h)-

12
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In order to compare different time discretizations the dimensionless value

- c1At
P= h

is introduced. It can be referred to also as the Courant-Friedrichs-Lewy (CFL) number. This
value depends on the velocity of the compression wave
c1 = \/(A+2u)/p, the time step size Ar and the average mesh size h. The overall analyzed

time is 7' = 0.005s. Therefore, for B = 0.3 about 1000, for § = 0.5 about 600 and for § = 0.7
about 430 time steps are necessary.

(40)

0
— analytical
---- =03
-5e-12 - B=05
=07
e -lell
31—!
2]
;
E -1.5e-11
z
©
-2e-11
-2.5e-11
| | | |
-3e-11
< 0 0.001 0.002 0.003 0.004 0.005
timet [g]

Figure 2: Longitudinal displacements u; at the center of the free end

Figure 2 shows the longitudinal displacements at the center of the free end and Figure 3 the
normal tractions at the center of the fixed end. As reference the analytical 1-d solution is given
as well. Obviously, for displacements better results can be achieved rather than for tractions.
As expected, larger B values lead to more numerical damping. This becomes apparent towards
the end of the plots. For both, displacements and tractions 3 = 0.3 leads to the best results.
All numerical results shown in Figure 2 and 3 were computed with an approximation accuracy
€ =1.0 x 1079 of the ACA (see (28)).

Before showing compression rates a representative part of the partitioned matrix (32) has
to be chosen. From now on this will be f)ll. In the present case it is of size 1680 x 1680
entries. Differences, regarding the compression rates, when comparing 511 to other matrices

13
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> — analytica :

- 1L ---- B=03 _
g -~ B=05

g B=07 i

\ \ \ \ i
0 0.001 0.002 0.003 0.004
timet [g]

Figure 3: Normal tractions #; at the center of the fixed end

Dia, 513, Dy, and D33 are negligible. In Figure 4a, its compression ratios are plotted against
the normalized complex frequencies sy. In Figure 4b, the respective complex frequencies are
plotted in the complex plane. The bad compression ratio for frequencies with small index ¢
is the most apparent behavior. It is caused by the fact that the imaginary part of s,, which is
responsible for the oscillating behavior of the kernel function k, increases very fast and the real
part, i.e., the damping factor, is still very small. Thus, the more the real part increases the better
the compression becomes and, finally, a constant ratio is obtained. Moreover, Figure 4 shows
the larger  becomes the smaller the imaginary part of the frequencies is and, hence, better
compression ratios can be achieved.

Next, results for two different approximation accuracies of the ACA € = 1.0 x 1079 and
€ = 1.0 x 107% are compared in Figure 5. Only tractions results are presented since they are
much more sensitive, i.e., the displacement results are equal for both precisions. Even when
looking at the traction results plotted in Figure 5a no evident difference is apparent. However,
Figure Sb shows that for € = 1.0 x 1079 and high frequencies the compression increases as
expected, whereas it converges to the same ratio in both cases for large real parts of s,.

In Figure 6, the CPU-time with and without ACA for the entire frequency range is compared.
As expected, the results for the matrix assembly (see Figure 6a) reflect the compression ratios
plotted Figure 5b, i.e., in the second half the compression is roughly 50 % and, hence, the
computing time is roughly halved. Figure 6b shows the results for the iterative solution of the

14
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Figure 4: Compression ratios and used complex frequencies sy for different B values
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linear systems. Here, the correlation to the compression ratio is not such pronounced. However,
it becomes apparent that condition numbers depend closely on the frequencies. The step-like

structure in Figure 6b reflects the parallelized frequency intervals. In this case 32 CPU’s were
used.

5.2 Waves in the half-space

In this section, numerical results for half-space problems are compared with their analytical
counterparts derived by Pekeris [40]. A plane half-space of the dimensions 80m x 80 m is excited

1le-10
5e-11 —
— analytical
i ---- b=03 |
-- b=05
b=0.7
— 0 |
E
3{")
2 L ,
% :
g -sellf- —
iy
S | ‘ ‘.\ . |
1e10 |- iy .
-1.5e-10 |- L _
\ \ \
0 0.02 0.04 0.06 0.08
timet[g]
Figure 7: Vertical displacements u3 at the observation point H
at the center by a vertical pressure jump t3 = —1.0H () N/m?, i.e., the two elements at the center

are excited. The material parameters of soil (p = 1884.0kg/m*, u = A = 1.3627 x 108 N/m?) are
taken. The present half-space is discretised into 14646 triangular boundary elements of uniform
mesh size 7 = 1.0m. Again, displacements and tractions are approximated by continuous linear
and piecewise constant polynomials, respectively.

In Figure 7, numerically obtained results are compared to the analytical solution. The plot
shows the vertical displacement at the observations point H, which is located at a distance of
10.97m from the excitation. The results for three different time discretizations are presented.
For the entire observation period of 7 = 0.08s and for B = 0.3 about 140, for § = 0.5 about
90 and for B = 0.7 about 60 time steps are necessary. All three B values lead to results which
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reflect the Rayleigh wave quite well. However, only § = 0.3 allows to identify the arrival time
(t = 0.02355s) of the compressional wave.

Results in Figure 7 are computed with an approximation accuracy of € = 1.0 x 107%. The
representative matrix Dy, for this example is of size 7484 x 7484 entries. Figure 8a shows the
compression ratio for all three  values depending on the complex frequencies sy. It has the
same behavior as in Figure 4a. Furthermore, the present half-space problem is solved also for
€ = 1.0 x 107%. The obtained displacements match perfectly with those presented in Figure 7.
The respective compression ratios are compared in Figure 8b.

6 Conclusion

An accelerated time-domain boundary element formulation for elastodynamics is presented. The
Galerkin discretization is adopted in space and a reformulated Convolution Quadrature Method
in time. Due to this latter mentioned methodology it is possible to rewrite the hyperbolic problem
into decoupled elliptic problems. This allows the usage of known fast techniques. By means of
the H-matrix format the far-field is separated from the near-field. Next, the Adaptive Cross
Approximation is used to approximate far-field regions. The near-field is treated in the standard
manner. Different to other applications of the ACA, here, vector-valued problems are dealt with.
It is pointed out that a straight forward generalization of the algorithm to vector-valued problems
is not possible. Hence, a repartitioning of the arising system matrices has been introduced. With
this approach a kernel independent technique has been presented. E.g. the extension to visco- or
poroelasticity is straight forward due to its black-box-like property.

The presented numerical examples approve that this approach leads to results which match
well with the analytical solutions. For both examples, the elastic rod and the half-space, § = 0.3
leads to the best results even tough the compression rates gets worse due to high frequencies.
However, when talking about the quality of the results with respect to computational effort,
B = 0.5 is reccommended. Moreover, for both presented examples even the worse approximation
accuracy € = 1.0 x 1073 leads to acceptable results.

An aspect which needs further investigations is the decreasing compression of matrices de-
pending on frequencies having a large imaginary and a rather small real part. Investigations
thereon are done in the work of Banjai and Hackbusch [3]. They improve the compression by
splitting up the matrix into a sum of an H and #H>-matrix. However, this fact unplugs from the
kernel independent approach followed in the present work.
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