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Abstract

A strategy is presented which allows deriving poroelastic plate formulations of any de-
sired level of approximation. Starting point are the governing three-dimensional (3d) equa-
tions of poroelasticity in frequency domain developed by Biot. In order to reduce the di-
mension of the problem from 3d to 2d, all unknown quantities are approximated by series
expansions in thickness direction. This avoids the need for any engineering assumptions.
The reduction of the dimension can then be achieved by an integration over the thickness.
After truncating the series, a special plate formulation is retrieved. Results are presented
for a square, clamped plate which show excellent agreement with the solution of the 3d
equations and a considerable saving in computation time.
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1 Introduction

Noise mitigation is a subject of large interest in different fields of engineering, as in the building
industry, car or aeronautical industry. The main concern is basically the reduction of the sound
pressure between the source and the receptor, hence, to absorb the energy of the sound waves
using damping structures. When soundproofing the interior of a room or a car, such damping
structures may be found in poroelastic plate-like elements. A first step in the attempt to develop
a mathematical model to simulate sound insulation consists in examining the dynamic behavior
of such porous structures.

The first self-consistent theory of wave propagation in poroelastic solids has been developed
by Biot [2, 4]. He also dealt with the anisotropic case [3] and with poroviscoelasticity [5].
Although it has been shown that Biot’s theory is not fully consistent within the framework of
thermodynamics [22], it enjoys wide popularity and has proven itself in many engineering fields.
In the present work, Biot’s theory is used to model the poroelastic behavior.

Poroelastic plate formulations can already be found in the literature. A plate formulation
based on the same assumptions as for an elastic Kirchhoff plate has been presented by Taber
[20] for the quasi-static case. A Kirchhoff plate theory for the poroelastodynamic equations has
been presented by Theodorakoupolos and Beskos [21]. Applications of this formulation with
further simplifications, e.g., for incompressible constituents, can be found in [15]. Taber, as
well as Theodorakoupolos and Beskos, assumed the in-plane flux to be negligible. In contrast
to those works, Cederbaum et al. [8] investigated various poroelastic structures for which the
in-plane flux is viable, while it is negligible in the perpendicular direction.

It is well known that the Kirchhoff assumptions are only valid for thin plates. In view of
the problems of sound mitigation, the use of thin plates may be too restrictive. But even the
extension to higher order theories, e.g., Mindlin or Reissner plate theory, does not answer the
question whether the kinematical assumptions made for the displacements can be transferred to
the pore pressure as well.

The possibility of bypassing the problem of making any kind of such assumptions can be
found in the systematic way to develop plate theories based on series expansions for the degrees
of freedom (dofs) in the thickness direction. For the linear elastic case such an approach has
already been used by Mindlin [17]. Works using this kind of series expansions have also been
published by Preusser [18] or more recently by Kienzler [12, 13]. The main difference therein
is the different way in truncating the series expansions. Especially Kienzler [12] showed how to
obtain the classical plate equations by using this method.

Here, using the method of series expansions, a general framework for the development of
assumption-free poroelastic plate theories is presented, easily extendible to any needed order.
One special plate formulation is then deduced from this framework. The so obtained system is
solved numerically using the finite element method (FEM). The results are validated by compar-
ing them to the solution of the three-dimensional (3d) Biot model.

In the following, all equations are stated in the frequency domain under the assumption that
all quantities have a time-harmonic behavior (xi being the spatial, and t the time coordinate), i.e.,

χ̃(xi, t) = χ(xi)eiωt

with the imaginary unit i and the angular frequency ω (χ stands for any time-dependent quantity
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in the system). Further, index-notation is used assuming an orthonormal Cartesian basis {ei}.
Herein, a summation on repeated indices is imposed, a comma (),i denotes the spatial derivative
and, as usual, the Kronecker delta is denoted by δi j. Throughout the paper, latin indices i, j,k
take on the values 1,2,3 whereas greek indices α,β,γ take on the values 1,2.

2 Biot’s theory

Biot’s theory of poroelasticity leads to a system of seven partial differential equations in time
domain determining the solid and the fluid displacement fields ui and u f

i as well as the pore
pressure p. The system, however, can be modified such to consider only the four degrees of
freedom ui and p [1]. This latter case is only possible in Laplace domain or, as a special case, in
the frequency domain. In this work, this so called ui-p formulation is used.

A saturated poroelastic continuum is composed of a solid skeleton with volume Vs and a
system of fluid-filled interconnected pores with volume Vf . The porosity φ is defined as the
ratio of the fluid volume to the total volume, φ = Vf/V with V = VS +Vf . Sealed pores, whether
saturated or not, are taken to be part of the solid phase and, hence, do not affect the porosity φ.

Using the total stress σi j and the variation of fluid per unit volume ζ [2], the constitutive
relations have the form

σi j = 2µεi j +λεkkδi j−α pδi j (1a)

ζ = αεkk +
φ2

R
p . (1b)

In (1), εi j denotes the components of the solid strain tensor and εkk its trace. The material is
characterized by four parameters, which are the two Lamé parameters µ and λ describing the
solid skeleton and the two parameter R and α describing the coupling between the solid and the
fluid. The strain-displacement relation between εi j and ui is chosen to be linear

εi j =
1
2
(ui, j +u j,i) . (2)

The quantity ζ is defined by the continuity equation

iωζ+qi,i = 0 , (3)

with qi,i denoting the divergence of the fluid flux. The flux qi is defined as a quantity proportional
to the relative velocity between the fluid and the solid, namely

qi = φ iω(u f
i −ui) . (4)

The fluid flow is modeled using a dynamic version of Darcy’s law [19]

qi =−κ

(
p,i−ω

2 ρa−φρ f

φ
(u f

i −ui)−ω
2
ρ

f ui− f f
i

)
, (5)

where κ denotes the permeability which takes into account the fluid viscosity and ρ f and f f

denote the fluid density and its volume force, respectively. The apparent mass density ρa has
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been introduced by Biot [4] and can be written as ρa = Cφρ f . For a lower frequency range, C
can be assumed to take the value C = 0.66, whereas for higer frequency ranges, a dependency of
C on the frequency has been proposed in [6, 11]. By combining (4) and (5) qi can be expressed
as a function of (ui, p)

qi =−
β

iωρ f (−p,i +ω
2
ρ

f ui + f f
i ) . (6)

The dimensionless factor β is defined as

β :=
ω2ρ f φ2κ

iωφ2−κω2(ρa +φρ f )
.

The balance of momentum of the mixture is written as

σi j, j + fi +ω
2
ρui = β

(
p,i− f f

i −ω
2
ρ

f ui

)
(7)

with ρ = (1−φ)ρs +φρ f being the bulk density and fi = (1−φ) f s
i +φ f f

i the bulk body force.
The full set of differential equations governing the dynamic behavior of a poroelastic continuum
is obtained by combining the constitutive equation (1a) with the kinematic relation (2) and the
balance equation (7) and by combining the constitutive equation (1b) with the kinematic relation
(2) and the continuity equation (3) and, further, by eliminating qi using (6). The final set reads

µui, j j +(λ+µ)u j,i j− (α+β) p,i +ω
2(ρ+βρ

f )ui =−( fi +β f f
i ) (8a)

β

iωρ f
p, j j + iω

φ2

R
p+ iω(α+β)u j, j =

β

iωρ f
f f

j, j . (8b)

If the porosity φ is assumed to be zero, the system (8) reduces to the wave equation of linear
elasticity.

Aiming on a finite element formulation, the system (8) can be written in a variational form.
Therefore, both equations in (8) are multiplied by the variations ūi and p̄, respectively, and
integrated over the whole domain Ω⊂ R3. An integration by parts yields∫

Ω

[σi j ūi, j−ζ p̄]dΩ+
∫
Ω

[
σi j, j ūi +

1
iω

qi p̄,i

]
dΩ−

∫
Γt

[
ti ūi +

1
iω

qn p̄
]

dΓt = 0 . (9)

The quantities on Γt are the surface stresses ti = σi j ni and the surface flux qn = qi ni, ni being
the components of the outward normal vector. The boundary Γt denotes the Neumann boundary,
i.e., the part of the boundary where ti and/or qn are prescribed.

3 The two-dimensional work equation

Usually, plate equations are understood as two-dimensional equations, i.e., all quantities ap-
pearing in such equations are functions of two independent space coordinates only. In order to
justify the description of a three-dimensional structure in two dimensions only, its geometry has
to be "plate-like". The thickness h of the plate in x3-direction is assumed to be much smaller
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than its extensions in the (x1,x2)-plane. The mid-surface divides the plate into a lower and an
upper part such that x3 ∈ [−h/2,+h/2] holds. Figure 1 shows the original three-dimensional plate
geometry and its two-dimensional representation depicted by the gray area A with the boundary
C. The normal and tangential vectors n and s on C only have nonzero components in x1- and
x2-direction.

{

O

x1

x2

x3

ns

A

C

A+

A−

B

Figure 1: The geometry and definitions of the plate

In 2d, the plate is described solely by its mid-surface. This means that ideally all information
contained in the thickness has to be mapped onto the mid-surface. Hence, a 2d work equation is
obtained by integrating (9) over the thickness. Obviously, an integration demands the knowledge
of the function to be integrated, especially its dependence on the variable of integration. Some
functions as the material parameters, the porosity and the body forces are assumed to be constant
throughout the whole plate domain. The main problem lies in integrating the unknown functions
ui and p. For elastic plates, the usual approach is to introduce some assumptions regarding the
distribution of ui, σi j and/or εi j over the thickness. In the present case, however, it is questionable
whether the same assumptions can be extended to the pore pressure p.

An alternative approach which gets along without such assumptions consists in replacing the
unknown functions by power series expansions in thickness direction. Following this idea, the
power series

ui(x1,x2,x3) =
∞

∑
k=0

k
ui(x1,x2)xk

3 p(x1,x2,x3) =
∞

∑
k=0

k
p(x1,x2)xk

3 (10a)

ūi(x1,x2,x3) =
∞

∑
`=0

`

ūi(x1,x2)x`3 p̄(x1,x2,x3) =
∞

∑
`=0

`

p̄(x1,x2)x`3 (10b)

are introduced for the unknown functions and their variations. Since a function is always multi-
plied by its respective variation, the series (10a) and (10b) are assigned to different summation
indices, i.e., k and `, respectively. In (10), with the power series the dependency of ui, p, ūi, and
p̄ on x3 is now given explicitly. This, in turn, introduces an infinite number of coefficients of
order k, `. Those, however, are now functions of the in-plane coordinates only and the needed
integration over the thickness of the three-dimensional work equation in (9) can be performed.
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3.1 The domain integral

Before doing so, the two domain integrals in (9) are merged and, for convenience, ζ is replaced
using the continuity equation ! (3). This yields∫
Ω

[σi j ūi, j−ζ p̄]dΩ+
∫
Ω

[
σi j, j ūi +

1
iω

qi p̄,i

]
dΩ=

∫
Ω

[
σi j ūi, j +σi j, j ūi +

1
iω

(qi,i p̄+qi p̄,i)
]

dΩ .

(11)
Furthermore, so-called resultants are introduced which, partly, can be assigned to a distinct
physical meaning. Those are defined as

`

Si j =
∫
h

[
σi j x`3

]
dx3

`

Qi =
∫
h

[
qi x`3

]
dx3 (12a)

`

T i =
∫
h

[
σi j, j x`3

]
dx3

`

P =
∫
h

[
qi,i x`3

]
dx3 . (12b)

The resultants (12a) are stress and flux resultants, respectively, whereas the resultants (12b) are
mainly introduced for convenience without a distinct physical interpretation.

It is required to separate the tensor components into the out-of-plane and the in-plane com-
ponents. It is obvious that it must be distinguished between a differentiation with respect to the
in-plane coordinates xα and the thickness coordinate x3. The gradient operator applied on (10a)
for example gives

gradui = ui, j =
∞

∑
k=0

[
k
uα,β xk

3 k
k
uα xk−1

3
k
u3,β xk

3 k
k
u3 xk−1

3

]
grad p = p,i =

∞

∑
k=0

[
k
p,α xk

3

k
k
pxk−1

3

]
.

By inserting the series expansions (10b) into (11) for the variations ūi and p̄ only, yields∫
Ω

[
σi j ūi, j +σi j, j ū j +

1
iω

(qi,i p̄+qi p̄,i)
]

dΩ =

∫
Ω

∞

∑
`=0

[
(σiα x`3)

`

ūi,α + `(σi3 x`−1
3 )

`

ūi +(σi j, j x`3)
`

ūi+

1
iω

(
(qα x`3)

`

p̄,α + `(q3 x`−1
3 )

`

p̄+(qi,i x`3)
`

p̄
)]

dΩ .

(13)

The integral over the domain Ω can be split according to
∫

Ω
dΩ =

∫
A
∫

h dx3 dA where A de-
notes the area of the mid-surface. An exchange between the integration and the summation is
only possible if the series converges uniformly. The proof of such a convergence becomes re-
dundant under the assumption that the solution is physically reasonable and, hence, bounded. In
addition, in view of the necessity of truncating the series anyway, upper values m,n ∈ N for the
index variables k, ` are introduced. Exchanging the integration and summation and splitting the
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integral as mentioned above allows to write (13) by means of the resultants (12) as∫
Ω

∞

∑
`=0

[
(σiα x`3)

`

ūi,α + `(σi3 x`−1
3 )

`

ūi +(σi j, j x`3)
`

ūi+

1
iω

(
(qα x`3)

`

p̄,α + `(q3 x`−1
3 )

`

p̄+(qi,i x`3)
`

p̄
)]

dΩ≈

n

∑
`=0

∫
A

[
`

Siα
`

ūi,α + `
`−1

Si3
`

ūi +
`

T i
`

ūi +
1
iω

(
`

Qα

`

p̄,α + `
`−1

Q3
`

p̄+
`

P
`

p̄
)]

dA .

(14)

The integration over the thickness is now hidden in the resultants and can be evaluated separately.
Expression (11) has therewith been mapped onto a two-dimensional geometry consisting of the
surface A.

3.2 The boundary integral

Next, the boundary integral of (9) is examined. It is given by∫
Γt

[
tiūi +

1
iω

qn p̄
]

dΓt =

∫
A+

[
t(3)+i ū+i +

1
iω

q(3)+ p̄+
]

dA++
∫

A−

[
t(3)−i ū−i +

1
iω

q(3)− p̄−
]

dA−+
∫
B

[
t(α)i ūi +

1
iω

q(α) p̄
]

dB .

(15)

where ti = σi jn j are the components of the prescribed surface stresses and qn = qini is the nor-
mal component of the prescribed total flux on the boundary, ni denoting the components of the
outward normal vector. In (15) the boundary integral over Γt has been split into integrals over
A+, A−, and B in order to cover the whole boundary of the domain (see figure 1). On A± the
normal vector is of the form [0,0,±1]>, hence,

(σi j n j)
± = (σi3 n3)

± = t(3)±i and (qi ni)
± = (q3 n3)

± = q(3)± .

Along B, the normal vector has the form [n1,n2,0]>, hence

(σi j n j)
B = (σiα nα) = t(α)i and (qi ni)

B = (qα nα) = q(α) .

For all quantities on A+ and A− the x3-coordinate is no longer unknown and takes the values x3 =
h
2 and x3 =−h

2 , respectively. The geometry of the plate is restricted such that in an undeformed
state, the two surfaces A+ and A− are equal to each other and to the mid-surface A. Under those
assumptions the two integrals over A+ and A− on the right hand side of (15) can be merged to a
single integral over A. With fixed x3 the power series (10b) become

ū+i ≈
n

∑
`=0

`

ūi

(
h
2

)`

ū−i ≈
n

∑
`=0

`

ūi

(
−h

2

)`

p̄+ ≈
n

∑
`=0

`

p̄
(

h
2

)`

p̄− ≈
n

∑
`=0

`

p̄
(
−h

2

)`

.

(16)
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Above, the upper value n for the index variable ` has been introduced, hence, the series expan-
sions become approximations of the original functions. The two integrals over A± can thus be
written as∫

A+

[
t(3)+i ū+i +

1
iω

q(3)+ p̄+
]

dA++
∫

A−

[
t(3)−i ū−i +

1
iω

q(3)− p̄−
]

dA−≈
n

∑
`=0

∫
A

[
`

t(3)i
`

ūi +
1
iω

`
q(3)

`

p̄
]

dA

(17)
where the resultants

`

t(3)i = t(3)+i

(
h
2

)`

+ t(3)−i

(
−h

2

)`

and
`
q(3) = q(3)+

(
h
2

)`

+q(3)−
(
−h

2

)`

(18)

have been introduced. So far, expression (17) takes into account all loadings prescribable on A,
regardless of a distinction between the in-plane and the out-of-plane problem.

Contrary to the integral over A, the boundary integral over B on the right hand side of (15)
contains an integration over the thickness. The variations ūi and p̄ are replaced by the power
series expansions (10b) and the resultants (12a) are introduced, yielding∫

B

[
t(α)i ūi +

1
iω

q(α) p̄
]

dB≈
n

∑
`=0

∫
C

[
(
`

Siαnα)
`

ūi +
1
iω

(
`

Qαnα)
`

p̄
]

dC . (19)

With the surface integrals (14) and (17) (note that the former one arises from the 3d domain
integral, whereas the latter arises from both boundary integrals over A±) and the boundary inte-
gral (19), the three-dimensional work equation (9) has been mapped onto the two-dimensional
geometry. The full expression reads

n

∑
`=0

∫
A

[
`

Siα
`

ūi,α + `
`−1

Si3
`

ūi +
`

T i
`

ūi +
1
iω

(
`

Qα

`

p̄,α + `
`−1

Q3
`

p̄+
`

P
`

p̄
)]

dA =

n

∑
`=0

∫
A

[
`

t(3)i
`

ūi +
1
iω

`
q(3)

`

p̄
]

dA+
n

∑
`=0

∫
C

[
(
`

Siαnα)
`

ūi +
1
iω

(
`

Qαnα)
`

p̄
]

dC .

(20)

It should be kept in mind that equation (20) still holds for a three-dimensional continuum. Only
some geometrical restrictions and a not closer specified truncation of the series expansions have
been imposed so far.

4 The resultants

After the two-dimensional work equation has been formulated, the plate problem can be re-
trieved. As it turns out, equation (20) can actually be decoupled into an in-plane (i.e., disc)
and an out-of-plane (i.e., plate) problem. In order to accomplish this decoupling the quantities
related to the respective problems have to be identified. For distinguishing the plate and disc
quantities the sets of even and odd numbers are introduced and defined as

E= {a |a = 2a′, a′ ∈ N} O= {a |a = 2a′+1, a′ ∈ N} .

8
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It lies in the nature of the plate that its mid-surface doesn’t experience any in-plane motion,
hence, every point on the mid-surface is only allowed to move in x3-direction. This discards the
0
uα component of the series expansion (10) and with it any term of even order

k
uα, k ∈ E, since

an integration over the thickness of those terms would always result into a nonzero in-plane
displacement of the mid-surface. Integrating the terms of odd order

k
uα xk

3, k ∈O, however, leads

to a zero total in-plane displacement despite
k
uα xk

3 6= 0 for x3 6= 0. In that case, the quantities
k
uα describe rotations of the cross section. The linear term keeps the cross section undeformed,
whereas terms of higher order (k = 3,5. . . ) include warping effects.

On the other hand, the terms
k
u3, k ∈E have to be considered since they describe a pure out-of-

plane displacement, where the constant term
0
u3 is the vertical displacement of the mid-surface

and the higher terms of even order
k
u3 describe the magnitude of the respective thickening and

thinning of the two plate halves during bending.
The constant pressure term

0
p demands constant in-plane stresses over the thickness in order

to keep balance. Such stresses, however, are not allowed in a pure plate formulation. All pres-
sure terms of higher even order share this property. Hence, for plate calculations, only the odd
pressure terms

k
p, k ∈O are allowed. They describe the pressure distribution over the thickness

of linear, cubic, quintic order and so on.
The same distinction also applies to the functions of variation. The plate and disc quantities

resulting from the series expansions (10) are summarized in table 1.

k
uα ,

`

ūα

k
u3 ,

`

ū3
k
p ,

`

p̄

plate k, ` ∈O k, ` ∈ E k, ` ∈O
disc k, ` ∈ E k, ` ∈O k, ` ∈ E

Table 1: Separation of plate and disc quantities

All resultants (12) are functions of ui and p and can either be related to the plate or to the
disc problem. Since the procedure is basically identical, only the resultants related to the plate
problem will be evaluated here. Therefore, the expressions from section 2 are used to write the
resultants as functions of ui and p, which then are replaced by the series expansions (10). As
already mentioned earlier, the sum and the integral can be exchanged under the condition that
the sum converges uniformly or it is finite. Again, the latter case is sufficient. The integration
over the thickness represents no difficulty anymore. In order to consider only the plate problem,
only the respective quantities according to table 1 are used.

With the evaluated resultants (34)−(41) (see appendix A) the left hand side of (20), finally,
reduces to the aimed two-dimensional form. The dependency on x3 has been completely elimi-
nated.

As noted above, the evaluated resultants only cover the plate problem. Hence, the right hand
side of (20) must be evaluated accordingly. At this point it is essential to realize which quantities
can be prescribed in order to model a pure plate problem and which quantities would introduce
effects related to the disc problem. In a first instance, the surface integral (17) is investigated.

9
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More explicitly, it is written
n

∑
`=0

∫
A

[
`

t(3)i
`

ūi +
1
iω

`
q(3)

`

p̄
]

dA =
n

∑
`=0

∫
A

[
`

tα

`

ūα +
`

t3
`

ū3 +
1
iω

`
q

`

p̄
]

dA . (21)

On the right hand side of (21) and in the following, the superscript (3) denoting the direction of
the normal vector is neglected since no danger of confusion is given. According to the definition
(18), the resultants in (21) can be written as

`

χ =

(
h
2

)`
0
χ for ` ∈ E with

0
χ = χ

++χ
−

`

χ =

(
h
2

)`
1
χ for ` ∈O with

1
χ =

h
2
(
χ
+−χ

−) (22)

where χ stands for either tα, t3, or q and χ± stands for the respective prescribed quantity on A±.
Considering the orders of the variations which the resultants are multiplied with, reveals that the
plate related quantities are

`

t3 =

(
h
2

)`
0
t3 for ` ∈ E

`

tα =

(
h
2

)`
1
tα and

`
q =

(
h
2

)`
1
q for ` ∈O

(23)

whereas the disc quantities are

`

t3 =

(
h
2

)`
1
t3 for ` ∈O

`

tα =

(
h
2

)`
0
tα and

`
q =

(
h
2

)`
0
q for ` ∈ E .

(24)

Apparently, prescribing only stresses in x3-direction does not guarantee a pure plate problem.
On the other hand, in-plane stresses may be prescribed on the surfaces. The surface flux can
activate the disc problem, too. In order to formulate a pure plate problem it has to be assured
that the prescribed surface stresses and fluxes fulfill

t+3 = t−3 t+α =−t−α q+ =−q− . (25)

With (22) it can be easily verified that those conditions force the disc resultants (24) to be equal
to zero. If one of the conditions (25) are not fulfilled, the plate calculation is still valid, but in
order to reconstruct the real state of stress in the structure, the disc problem has to be additionally
considered.

The boundary integral over C in (20) takes care of the prescribed quantities along the boundary
B. This boundary curve lives in the (x1,x2)-plane, hence, the component n3 of its normal vector
n is zero everywhere. This yields

n

∑
`=0

∫
C

[
(
`

Siαnα)
`

ūi +
1
iω

(
`

Qαnα)
`

p̄
]

dC =
n

∑
`=0

∫
B

[
(
`

Sαβnβ)
`

ūα +(
`

S3βnβ)
`

ū3 +
1
iω

(
`

Qαnα)
`

p̄
]

dB .

(26)
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Expression (26) still covers all boundary conditions related to both the plate and the disc. Again,
the order of the variation tells which quantity is related to which problem. The plate quantities
turn out to be

`

Sαβnβ =
`

Sα1n1 +
`

Sα2n2 =
`

Mα for ` ∈O
`

S3βnβ =
`

S31n1 +
`

S32n2 =
`

V for ` ∈ E
`

Qαnα =
`

Q1n1 +
`

Q2n2 =
`

Q for ` ∈O

(27)

with
1

Mα being the moments around the xα-axes,
0

V being the shear force and
1

Q being some kind
of "flux moment". This "flux moment", together with all higher order quantities have no coun-
terpart in classical theories. Instead of prescribing M1 and M2 on an arbitrary boundary curve it
is more natural to prescribe the bending moment Mn (i.e., the moment around the tangential vec-
tor) and the twisting moment Ms (i.e., the moment around the normal vector) and to transform
them back by [

M1
M2

]
=

[
n1 −n2
n2 n1

][
Mn

Ms

]
.

For the plate problem, the general form of the two-dimensional work equation (20) is thus re-
duced to

n

∑
`=0
`∈E

∫
A

[
`

S3α

`

ū3,α + `
`−1

S33
`

ū3 +
`

T 3
`

ū3

]
dA+

n

∑
`=1
`∈O

∫
A

[
`

Sαβ

`

ūα,β + `
`−1

Sα3
`

ūα +
`

T α

`

ūα +
1
iω

(
`

Qα

`

p̄,α + `
`−1

Q3
`

p̄+
`

P
`

p̄
)]

dA =

n

∑
`=0
`∈E

∫
A

`

t3
`

ū3 dA+
n

∑
`=1
`∈O

∫
A

[
`

tα

`

ūα +
1
iω

`
q3

`

p̄
]

dA+
n

∑
`=0
`∈E

∫
C

`

V 3
`

ū3 dC+
n

∑
`=1
`∈O

∫
C

[
`

Mα

`

ūα +
1
iω

`

Q3
`

p̄
]

dC .

(28)
The work equation for the disc can be obtained in the same way.

One important point not discussed so far remains the question about the truncation of the
series. As mentioned in the introduction, Kienzler [12, 13] shows how to obtain the classical
elastostatic plate equations by using series expansions in thickness direction. Therefore, he
evaluates all resultants similarly as shown in appendix A and considers only those terms which
are multiplied by up to a specific order of the plate parameter c2 = h2/12. By neglecting all terms
multiplied by c4 and higher the first order approximation is obtained which can be reduced to
the classical Kirchhoff plate equation. Neglecting all terms multiplied by c6 and higher leads to
a larger system, i.e., the second order approximation, which again can be reduced to one single
equation describing shear-deformable plates. Hence, it would seem natural to use the same
technique for the poroelastodynamic system presented here. The critical point, however, lies in
reducing the system of partial differential equations to one single equation since the factor c2

influences crucially the meaning of the expressions in the system. As an example, the equation

w,α +ψα = 0

11
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shall be mentioned, where
0
u3 := w and

1
uα := ψα. This equation states that the gradient of the

vertical displacement w is equal to the rotations ψα of the cross section, hence, it expresses the
Kirchhoff normal hypothesis. Independent of the level of approximation, this equation can be
found in every system. In the case of the first and second order approximations it takes the form

c2(w,α +ψα)+O(c4) = 0 and c4(w,α +ψα)+O(c6) = 0 ,

respectively. Clearly, the second equation above cannot be interpreted as the Kirchhoff normal
hypothesis since it belongs to a system describing shear-deformable plates. Additionally, neither
of the two equations can be explicitly resolved for one or the other function, since this would
demand dividing by c2 (or c4) which would cause the terms of higher order to be not negligible
anymore.

Within the framework presented by Kienzler, this somehow strange behavior makes perfect
sense and the systems can be reduced by following a certain approach. This may, however,
become a cumbersome procedure for systems of higher order, even in elastostatics. Solving the
full system right away without reducing it also requires special routines in order to handle those
difficulties. Moreover, in contrast to the elastostatic case, the insights deducible from the zeroth
order approximation become less obvious in the poroelastic case.

Adopting appropriate measures should almost undoubtedly allow a numerical solution of the
system proposed by Kienzler. Within this work, however, such measures have not been investi-
gated thoroughly. Instead, another way of truncating the series has been applied which avoids
the main difficulties encountered above. Therefore, the series are truncated with respect to some
arbitrary value m = n for the unknown quantities. Although the systems obtained in this way do
not yield the classical plate equations, the results presented in section 6 justify this approach.

5 Finite element formulation

Equation (28) represents the weak form of the problem to be solved, with the functions of vari-
ation being the usual test-functions. Hence, the system can be treated by the finite element
method.

After having discussed how to truncate the series at the end of the previous chapter, now
the question arises where to truncate it, i.e., which value m = n should be chosen. The more
unknown functions are considered, the better the three-dimensional equations are approximated
but, clearly, the computational effort increases.

The goal is to obtain good results and to keep the computational effort as low as possible.
This means that a convenient order m = n for the series expansions has to be chosen. The
resultants then are evaluated considering all quantities up to that specific order. A first guess for
the minimal needed order is obtained by considering the strong form of the problem. It can be
easily obtained by integrating the weak form by parts, such that the derivatives in the variations
are shifted to the resultants and extracting the partial differential equations. The so obtained
system of PDEs may be reduced to one single equation or to a set of equations containing only
the functions of interest (e.g., the vertical deflection and the pore pressure). The advantage is
that the so obtained equations can easily be compared to classical plate equations and, hence,
their validity can be estimated.

12



Preprint No 2/2009 Institute of Applied Mechanics

In the elastodynamic case the strong form of the linear ansatz, i.e., only
0
u3 and

1
uα are consid-

ered, corresponds to the classical C0 approach for plates (see e.g., [10]), however, with slightly
different parameters. Hence, the equation which is obtained after eliminating the rotations shows
a different plate stiffness compared to the one known from the Kirchhoff or Mindlin plate equa-
tions. Expanding to the quadratic ansatz, i.e., by adding

2
u3 to the system, eliminates this mis-

match and the "correct" stiffness is obtained. At the same time, however, additional terms are
introduced so that this system represents some sort of extended version of the classical C0 ap-
proach. Independent of the level m of approximation only first derivatives appear in the weak
formulation so that C0-continuity is always sufficient.

Eliminating some unknowns, e.g., the rotations as above, obviously reduces the number of
equations in the system. However, it is still more convenient to solve the full system because
the elimination increases the order of the resulting PDEs and their solution becomes very cum-
bersome. In the poroelastic case even the linear ansatz leads to a combination of a forth and
a second order PDE for

0
u3 and

1
p or, alternatively, to a sixth order PDE for

0
u3, which requires

C1-continuity for the former, or even C2-continuity for the latter case.
As a limiting case, the poroelastic formulation must be able to model the elastic problem cor-

rectly. Hence, taking into account the insights gained above, it can be stated that for the general
case at least the quadratic terms of the series are needed to obtain results not contradicting the
classical theories.

The Bubnov-Galerkin formulation of the problem is obtained by replacing the unknown func-
tions of the weak form by finite dimensional approximations

k
u3→

k
uh

3 = ∑
i∈η

k
u3i ϕi

k
ū3→

k
ūh

3 = ∑
i∈η

k
ū3i ϕi

k
uα→

k
uh

α = ∑
i∈η

k
uα i φα i

k
ūα→

k
ūh

α = ∑
i∈η

k
ūα i φα i

k
p→ k

ph = ∑
i∈η

k
pi ϑi

k
p̄→

k
p̄h = ∑

i∈η

k
p̄i ϑi

(29)

where η denotes the set of degrees of freedom for the respective function. Since only C0-
continuity is required, Lagrangian shape functions on quadrilateral elements are used. For the
3d poroelastic system it is usual to approximate the displacement field ui by biquadratic shape
functions, whereas the pore pressure field p is approximated bilinearly [16]. The same approx-
imations are applied here which means that all displacement quantities are approximated by
biquadratic shape functions and all pressure quantities by bilinear shape functions. Numerical
tests show that using only bilinear shape functions results into an extremely slow convergence
rate even for low frequencies. Using biquadratic shape functions for

k
u3 and keeping bilinear

functions for the other unknowns approximates the low-frequency-solution well even for coarse
meshes. In this case, however, a very fine mesh to determine higher eigenfrequencies is neces-
sary. The use of biquadratic shape functions for

k
u3 as well as for

k
uα alleviates this problem.

In the present work the quadratic ansatz is treated enriched by the cubic term for the pore
pressure. This means that the unknown functions considered are

0
u3,

2
u3,

1
uα,

1
p, and

3
p. By trun-

cating the weak form (28) accordingly and inserting the approximations (29), a linear system of

13
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equations is obtained. In the following, the unknown coefficients in (29) are written as

uuu3 :=

[
0
uuu3
2
uuu3

]
:=


[

0
u3i

]
i∈η[

2
u3i

]
i∈η

 uuuα :=
1
uuuα :=

[
1
uα i

]
i∈η

ppp :=

[
1
ppp
3
ppp

]
:=


[

1
pi

]
i∈η[

3
pi

]
i∈η

 . (30)

The system of equations can then be written in the compact formA Bα C
B>α Dαβ Eα

C> E>α F


uuu3

uuuα

ppp

=

 fff

gggα

hhh

 . (31)

The submatrices on the left hand side are the discrete versions of the continuous differential
operators encountered in the weak formulation. The right hand side contains all prescribed
quantities on the surface A and along the boundary curve C. Its solution delivers the nodal
values uuu3,uuuα, and ppp in the discretized domain.

All higher order terms can easily be incorporated into the system (31) by simply adding the
additional unknowns into the respective vector of (30).

6 Numerical results

6.1 System specification

In order to validate the presented plate formulation a clamped quadratic plate of 4.0× 4.0×
0.2 [m] is considered. Clamped means that all displacement quantities of any order are assumed
to be zero on the boundary C. The origin of the underlying coordinate system is placed such that
the plate domain occupies the region x1 ∈ [−2,2], x2 ∈ [−2,2] and x3 ∈ [−0.1,0.1]. The plate
is excited by a uniformly distributed load on A with t+3 = t−3 = 0.5 kN/m2. The load is constant
in frequency-domain which corresponds to a harmonic excitation in time. Figure 2 shows the
respective discretizations.

(a)

x1
x2 x3

(b)

x1
x2 x3

Figure 2: Spatial discretization of the considered plate. (a) 2d - Quad9, 16× 16 and (b) 3d -
Hex20, 16×16×3
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The plate is, firstly, compared to the three-dimensional solution and, secondly, to two elastic
calculations representing lower and upper bounds for the poroelastic solution. Finally, the dis-
tribution of the four degrees of freedom over the thickness are discussed and compared to the 3d
solution.

poroelastic elastic drained elastic undrained
Young’s modulus E[kN/m2] 1.44×107 1.44×107 1.60×107

Poisson’s ratio ν[-] 0.2 0.2 0.335
density ρ[kg/m3] 2.458 2.458 2.458
porosity φ[-] 0.19 - -
fluid density ρ f [kg/m3] 1.000 - -
solid bulk modulus Ks[kN/m2] 3.60×107 - -
fluid bulk modulus K f [kN/m2] 3.30×106 - -
permeability κ[m4/kNs] 1.90×10−7 - -

Table 2: Material data for Berea sandstone and corresponding drained and undrained elastic
cases

6.2 Plate versus 3d

The first validation is done by comparing the numerical solution of the plate to the numerical so-
lution of the three-dimensional poroelastic system (8). For the 3d calculation Hex20 elements are
used. The displacement field is approximated by quadratic Lagrangian shape functions whereas
the pore pressure is approximated by linear Lagrangian shape functions. For the plate, Quad9 el-
ements are used. All displacement quantities are approximated by biquadratic Lagrangian shape
functions, whereas for all pore pressure quantities bilinear Lagrangian shape functions are used.

For the 3d calculation it is essential to apply the load in the "right" way. The load has been
specified as t+3 = t−3 = 0.5 kN/m2 although for the plate calculation the distinction between t+3
and t−3 is not relevant since both quantities act on the same surface A. In contrast to that, such a
distinction becomes important in the 3d case since now the two surfaces A+ and A− are separated
in space. As pointed out in section 4, a vertical load which is not applied symmetrically to the
mid-surface would activate the disc problem and, hence, introduce unwanted stresses in the
structure.

The comparison of the two solutions is depicted in figure 3. The vertical deflection of the
middle-point of the plate at x1 = x2 = 0 and the middle-point of the 3d structure at x1 = x2 =
x3 = 0 are plotted versus the angular frequency.

The 3d solution shows the same behavior as the plate. It can be observed that the vertical
deflection is prevented from reaching infinity when approaching the eigenfrequency. This il-
lustrates the damping behavior of the poroelastic system (the inverse peaks are just due to the
use of absolute values and the different amplitudes at those peaks are just accidental due to the
finite discretization over the frequency.) Up to a frequency of approximately 1000[rad/s] the two
solutions match perfectly. For larger frequencies the plate reveals to be slightly stiffer. This may
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Figure 3: Comparison of the plate and the 3d solution

be explained by the fact that the original degrees of freedom ui and p are only approximated and,
hence, additional constraints are introduced compared to the 3d formulation.

6.3 Poroelastic plate versus elastic drained/undrained plate

Next, the so-called elastic drained and undrained cases are introduced. As already mentioned
they represent theoretical upper and lower bounds for the poroelastic solution. The drained
case assumes that the interstitial fluid has enough time to equilibrate its pore pressure with the
pressure imposed at the boundary. This behavior is expected for a slowly applied load, hence,
for the quasi-static case and lower frequencies. On the other hand, the undrained case assumes
that the interstitial fluid has no time to move at all which represents the systems response after an
instantaneously applied load and, hence, represents the behavior expected for higher frequencies.
It is obvious that the undrained plate is stiffer than the drained one. The poroelastic solution
should lie somewhere in between. For the calculation, Berea Sandstone is chosen. The material
data are given in table 2 (see [9] for details regarding the drained and undrained cases and their
material properties).

Figure 4 shows the vertical deflection
0
u3 of the plates middle-point located at x1 = x2 = 0 in

dependence of the angular frequency. Note that the four depicted eigenfrequencies are not the
first four eigenfrequencies of the system but only the first four appearing.

Again, contrary to both elastic cases, in the poroelastic solution the vertical deflection is pre-
vented from reaching infinity when approaching the eigenfrequency. In a quasi-static neigh-
borhood up to a frequency of, say, 200[rad/s], the difference between the poroelastic and the
elastic-drained solution is negligible (see the zoom in figure 4). The larger the frequency, the
more the poroelastic solution is shifted towards the elastic-undrained one. This is in accordance
to the expected behavior described above.
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Figure 4: Comparison of the poroelastic and both drained and undrained solutions

6.4 Distribution over the thickness

Figure 3 only compares the vertical deflections
0
u3(0,0) of the plate and u3(0,0,0) of the 3d

structure. Since the plate formulation has been developed to approximate a 3d model, all other
plate quantities are expected to coincide well. The four degrees of freedom consist of the three
displacement fields ui(x1,x2,x3) and the pore pressure p(x1,x2,x3). The 3d model is directly
solved for all of these four dofs. The proposed plate formulation, however, does not provide a
solution for any of these dofs right away since the dependency on the thickness coordinate x3 is
not considered. The dofs ui and p have to be reconstructed by substituting the solutions of the
single plate quantities back into the series expansions.

In order to get a better comparison, the discretization in x3-direction of the 3d structure has
been increased from 3 to 5 elements over the thickness for this calculation.

The present formulation has taken into account the quantities
0
u3,

2
u3,

1
u1,

1
u2,

1
p,

3
p. The calcu-

lated values are summarized in the tables 3 and 4 at (x1,x2) = (−0.5,−1.0).

x3 u1[m] u2[m] u3[m] p[kN/m2]

0.10 8.07998 ·10−7 2.10318 ·10−6 −1.82117 ·10−5 7.23695 ·10−5

0.06 4.82737 ·10−7 1.25270 ·10−6 −1.82317 ·10−5 5.86240 ·10−5

0.02 1.60618 ·10−7 4.16251 ·10−7 −1.82417 ·10−5 2.23166 ·10−5

−0.02 −1.60618 ·10−7 −4.16251 ·10−7 −1.82417 ·10−5 −2.23166 ·10−5

−0.06 −4.82737 ·10−7 −1.25270 ·10−6 −1.82317 ·10−5 −5.86240 ·10−5

−0.10 −8.07998 ·10−7 −2.10318 ·10−6 −1.82117 ·10−5 −7.23695 ·10−5

Table 3: 3d calculation: Values at the nodes along the thickness fiber at (x1,x2) = (−0.5,−1.0)

When substituted back into the series expansions the following expressions for ui and p are
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`
u3

`
uα

`
p

0
u3 =−1.811 ·10−5 1

u1 = 8.043 ·10−6 1
p = 1.179 ·10−3

2
u3 = 3.138 ·10−6 1

u2 = 2.094 ·10−5 3
p =−3.969 ·10−2

Table 4: Plate calculation: Values for the unknown quantities at (x1,x2) = (−0.5,−1.0)

obtained

u1(xi) =
1
u1(xα)x3

u2(xi) =
1
u2(xα)x3

u3(xi) =
0
u3(xα)+

2
u3(xα)x2

3

p(xi) =
1
p(xα)x3 +

3
p(xα)x3

3 .

(32)

The quantities in (32) can now be compared to those obtained from the 3d solution. Figure 5
shows the distribution over the thickness of the four dofs at (x1,x2) = (−0.5,−1.0) for a low
frequency. Obviously, the functions in (32) are continuous in x3 whereas the 3d model delivers
the solution on discrete points over the thickness.
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-1. ´ 10-6
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1. ´ 10-6

x3[m]

u1[m]

(a) displacement u1 in x1-direction
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x3[m]

u2[m]

(b) displacement u2 in x2-direction
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(c) vertical deflection w in x3-direction
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-0.0001
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0.0001

x3[m]

p[kN/m2]

(d) pore pressure p

Figure 5: Plate solution versus 3d solution - distribution over the thickness

The two figures 5a and 5b show the two in-plane displacements u1 and u2. According to
equation (32), the plate solution gives a linear function in x3. The discrete 3d solution shows the
exact same linear distribution. This result also confirms the assumption not to consider the cubic
terms in the series expansions for both in-plane displacements. The linear term is absolutely
sufficient.
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The out-of-plane displacement u3 is depicted in figure 5c and shows an excellent agreement
with the 3d solution. Its quadratic distribution is made visible in figure 6. The apparent dis-
crepancy is only due to the small data range used for this plot compared to 5c. In fact, both
solutions only differ by a constant value amounting to 0.7% and the quadratic distribution over
the thickness is matched perfectly.

-0.10 -0.05 0.00 0.05 0.10

-0.0000182

-0.00001815

-0.0000181

-0.00001805

x3[m]

u3[m]

Figure 6: Vertical deflection u3 - zoom on data range

Figure 5d shows the pore pressure p. Again, very good results for its distribution are ob-
tained. In contrast to both the in-plane displacements, this figure clearly shows the importance
of incorporating the cubic term for the pore pressure.

Calculations performed on larger frequencies show a similar agreement with the 3d model. In
order to get matchable results, however, the slight frequency shift noticeable in figure 3 has to
be taken into consideration. Also, the in-plane displacements reveal their cubic distribution over
the thickness, although still negligible within the considered frequency range.

The plate and the 3d formulation have been implemented using the open source finite element
library libmesh [14]. On the same machine, the plate calculation could be performed around ten
times faster than the 3d calculation.

7 Conclusions

In this work, Biot’s three-dimensional system of equations in frequency domain is mapped onto
a two-dimensional geometry by approximating the degrees of freedom, in this case the displace-
ment field ui and the pore pressure field p, by power series expansions in thickness direction
which then allows an integration over the thickness and, hence, reduces the spatial dimension
of the problem. The in-plane and the out-of-plane problems decouple naturally. After working
through the algebra, different level of approximations can be extracted. At least a quadratic or-
der in the series expansions is needed to obtain the classical plate stiffness. However, as shown
in the results, not one specific approximation order m has to be chosen, but rather all dofs may
be approximated differently. This allows truncating the u3-series after the quadratic term, both
uα-series after the linear term and the p-series after the cubic term.

The comparison with the full 3d model shows very good agreement in every sense. The loca-
tion of the eigenfrequencies are matched as well as the damping behavior. Also the distribution
of the dofs over the thickness are approximated very well. Incorporating additional quantities
from the series expansions is straightforward. Still, a general truncation strategy cannot be given
easily, since this may vary from problem to problem. Of course, the thickness of the plate is
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the main property influencing the need of higher order terms. Moreover, it can be stated that
the terms of higher order are especially required for matching a realistic behavior in the neigh-
borhood of edges and clamps. It should also be mentioned that the presented formulation is not
restricted to plate problems. The in-plane problem can be treated in the same manner.

A specific value for the speedup in computation time compared to the 3d system can not easily
be given since too many factors play a role in it. A higher resolution of the discretization over
the thickness slows down the 3d calculation extremely, whereas the same discretization over
the plane may not be needed at all to obtain similar results. In addition, both implementations
are far from being optimized. However, to give an idea, on a single local machine, the plate
computation for figure 3 was done during a short coffee-brake, whereas solving the 3d system
took up most of the night.

Since the main goal of the present work is to show the fundamental functionality of the pro-
posed system, it is renounced on a more sophisticated and optimized finite element formulation.
The use of mixed methods and non-conforming finite element spaces is common practice when
it comes to the numerical solution of the classical plate equations [7]. The use of such practices
and their effects on the plate formulation given here has still to be elaborated.

A common effect observed in conjunction with the finite element solution of shear-deformable
plates is the so-called shear-locking. It mainly arises when using conforming elements of low
polynom order on thin structures, i.e., if h→ 0. Its impact on the presented formulation has not
yet been investigated.

Obviously, it should always be kept in mind that a plate represents just an approximation
of the full 3d system which, sooner or later, necessarily leads to some sort of mismatch. The
reasons could be the use of inappropriate geometrical configurations as well as many possible
issues arising from the numerical solution. All in all, in view of all calculations performed
within the preparation of this article, the proposed formulation seems to represent an efficient
alternative to the full 3d model and, hence, encourages to incorporate it into the elaboration of
sound mitigation problems using poroelastic plate structures.
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A Evaluated resultants

The procedure of evaluating the resultants is illustrated below on the example of the resultant
Sαβ where S11,S22 are the bending moments and S12,S21 are the twisting moments around the
axes spanning the plane. Due to the symmetry of σαβ, the resultants Sαβ are symmetric as well.
This time, the order of the quantities resulting from the series expansions is denoted by the letter
k in order to distinguish between the series used for the functions ui and p and the series used
for ūi and p̄.

`

Sαβ =
∫
h

σαβ x`3 dx3 =
∫
h

[
µ(uα,β +uβ,α)+(λuk,k−α p)δαβ

]
x`3 dx3

≈
m

∑
k=0

∫
h

[
µ(

k
uα,β +

k
uβ,α)+(λ

k
uγ,γ−α

k
p)δαβ

]
x(k+`)

3 dx3 +
n

∑
k=0

∫
h

[
kλ

k
u3

]
xk+`−1

3 dx3

=
m

∑
k=0

(
h
2

)k+`
[

δ
e
kl

h
k+ `+1

[
µ(

k
uα,β +

k
uβ,α)+(λ

k
uγ,γ−α

k
p)δαβ

]
+δ

o
kl

2k
k+ `

[
λ

k
u3

]]
(33)

with

δ
e
kl =

1+(−1)k+`

2
=

{
1 if k+ ` even
0 if k+ ` odd

δ
o
kl =

1− (−1)k+`

2
=

{
0 if k+ ` even
1 if k+ ` odd

.

Expression (33) is exemplary evaluated up to the order of 4, hence all terms of order O(5) and
higher are neglected. Only the plate quantities are considered. The so-called plate parameter

c2 = h2

12 is introduced. All even orders of
`

Sαβ turn out to be equal to zero, whereas the odd orders
yield

1

Sαβ = µh

[
c2
[

1
uα,β +

1
uβ,α +

(
λ

µ
1
uγ,γ−

α

µ
1
p+2

λ

µ
2
u3

)
δαβ

]

+
9
5

c4
[

3
uα,β +

3
uβ,α +

(
λ

µ
3
uγ,γ−

α

µ
3
p+4

λ

µ
4
u3

)
δαβ

]
+O(5)

]
3

Sαβ = µh

[
9
5

c4
[

1
uα,β +

1
uβ,α +

(
λ

µ
1
uγ,γ−

α

µ
1
p+2

λ

µ
2
u3

)
δαβ

]

+
27
7

c6
[

3
uα,β +

3
uβ,α +

(
λ

µ
3
uγ,γ−

α

µ
3
p+4

λ

µ
4
u3

)
δαβ

]
+O(5)

]
5

Sαβ =O(5)

(34)

The same procedure has to be applied on all resultants. The final expressions are given below.
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Shear forces
`

Sα3 =
`

S3α with ` ∈ E

0

S3α = µh

[
0
u3,α +

1
uα + c2

(
2
u3,α +3

3
uα

)
+

9
5

c4 4
u3,α +O(5)

]
2

S3α = µh

[
c2
(

0
u3,α +

1
uα

)
+

9
5

c4
(

2
u3,α +3

3
uα

)
+

27
7

c6 4
u3,α +O(5)

]
4

S3α = µh

[
9
5

c4
(

0
u3,α +

1
uα

)
+

27
7

c6
(

2
u3,α +3

3
uα

)
+9c8 4

u3,α +O(5)

]
6

S3α =O(5)

(35)

Resultant
`

S33 with ` ∈O

1

S33 = µh

[
c2
[

λ

µ
1
uγ,γ−

α

µ
1
p+2

2µ+λ

µ
2
u3

]
+

9
5

c4
[

λ

µ
3
uγ,γ−

α

µ
3
p+4

2µ+λ

µ
4
u3

]
+O(5)

]
3

S33 = µh
[

9
5

c4
[

λ

µ
1
uγ,γ−

α

µ
1
p+2

2µ+λ

µ
2
u3

]
+

27
7

c6
[

λ

µ
3
uγ,γ−

α

µ
3
p+4

(2µ+λ)

µ
4
u3

]
+O(5)

]
5

S33 =O(5)
(36)

Resultant
`

Qα with ` ∈O

1

Qα = µh iω
β

µ

[
c2
[
− 1

ω2ρ f

1
p,α +

1
uα

]
+

9
5

c4
[
− 1

ω2ρ f

3
p,α +

3
uα

]
+O(5)

]
3

Qα = µh iω
β

µ

[
9
5

c4
[
− 1

ω2ρ f

1
p,α +

1
uα

]
+

27
7

c6
[
− 1

ω2ρ f

3
p,α +

3
uα

]
+O(5)

]
5

Qα =O(5)

(37)

Total out−of−plane flux
`

Q3 with ` ∈ E

0

Q3 = µh iω
β

µ

[[
1

ω2ρ f

(
− 1

p+ f f
3

)
+

0
u3

]
+ c2

[
−3

1
ω2ρ f

3
p+

2
u3

]
+

9
5

c4 4
u3 +O(5)

]
2

Q3 = µh iω
β

µ

[
c2
[

1
ω2ρ f

(
− 1

p+ f f
3

)
+

0
u3

]
+

9
5

c4
[
−3

1
ω2ρ f

3
p+

2
u3

]
+

27
7

c6 4
u3 +O(5)

]
4

Q3 = µh iω
β

µ

[
9
5

c4
[

1
ω2ρ f

(
− 1

p+ f f
3

)
+

0
u3

]
+

27
7

c6
[
−3

1
ω2ρ f

3
p+

2
u3

]
+9c8 4

u3 +O(5)

]
6

Q3 =O(5)

(38)
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Resultant
`

T α with ` ∈O

1

T α = h

[
c2
[
−ω

2(ρ+βρ
f )

1
uα +β

1
p,α
]
+

9
5

c4
[
−ω

2(ρ+βρ
f )

3
uα +β

3
p,α
]
+O(5)

]
3

T α = h

[
9
5

c4
[
−ω

2(ρ+βρ
f )

1
uα +β

1
p,α
]
+

27
7

c6
[
−ω

2(ρ+βρ
f )

3
uα +β

3
p,α
]
+O(5)

]
5

T α =O(5)

(39)

Resultant
`

T 3 with ` ∈ E

0

T 3 = h

[[
−ω

2(ρ+βρ
f )

0
u3−β f f

3 − f3 +β
1
p
]
+ c2

[
−ω

2(ρ+βρ
f )

2
u3 +3β

3
p
]

+
9
5

c4
[
−ω

2(ρ+βρ
f )

4
u3

]
+O(5)

]
2

T 3 = h

[
c2
[
−ω

2(ρ+βρ
f )

0
u3−β f f

3 − f3 +β
1
p
]
+

9
5

c4
[
−ω

2(ρ+βρ
f )

2
u3 +3β

3
p
]

+
27
7

c6
[
−ω

2(ρ+βρ
f )

4
u3

]
+O(5)

]
4

T 3 = h

[
9
5

c4
[
−ω

2(ρ+βρ
f )

0
u3−β f f

3 − f3 +β
1
p
]
+

27
7

c6
[
−ω

2(ρ+βρ
f )

2
u3 +3β

3
p
]

+9c8
[
−ω

2(ρ+βρ
f )

4
u3

]
+O(5)

]
6

T 3 =O(5)

(40)

Resultant
`

P with ` ∈O

1

P =−h iω

[
c2
[

α
1
uγ,γ +

φ2

R
1
p+2α

2
u3

]
+

9
5

c4
[

α
3
uγ,γ +

φ2

R
3
p+4α

4
u3

]
+O(5)

]
3

P =−h iω

[
9
5

c4
[

α
1
uγ,γ +

φ2

R
1
p+2α

2
u3

]
+

27
7

c6
[

α
3
uγ,γ +

φ2

R
3
p+4α

4
u3

]
+O(5)

]
5

P =O(5)

(41)
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