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Abstract

A collocation boundary element formulation is presented which is based on a mixed ap-
proximation formulation similar to the Galerkin boundary element method presented by
Steinbach [39] for the solution of Laplace’s equation. The method is also applicable to
vector problems such as elasticity. Moreover, dynamic problems of acoustics and elasto-
dynamics are included. The resulting system matrices have an ordered structure and small
condition numbers in comparison to the standard collocation approach. Moreover, the em-
ployment of Robin boundary conditions is easily included in this formulation. Details on
the numerical integration of the occurring regular and singular integrals and on the solution
of the arising systems of equations are given. Numerical experiments have been carried out
for different reference problems. In these experiments, the presented approach is compared
to the common nodal collocation method with respect to accuracy, condition numbers, and
stability in the dynamic case.

The original publication will be available at www.springerlink.com with the Digital Object
Identifier (DOI): 10.1007/s00466-009-0369-4



Preprint No 4/2008 Institute of Applied Mechanics

1 Introduction

The most prominent boundary element method in structural engineering remains the nodal col-
location method in which the approximated boundary integral equation is evaluated on the in-
terpolation nodes. This method has been applied to numerous static and dynamic engineering
problems [5, 6, 10]. Nodal collocation methods yield system matrices of rather small size which
are dense, nonsymmetric and often ill-conditioned. In these methods, the dual variable (e.g., sur-
face fluxes or tractions) are commonly approximated with the same continuous polynomials as
the primal variable (e.g., potentials or displacements). But these data have different mathemati-
cal and physical properties [41]. In fact, the dual variable is not uniquely defined at corners and
edges of the considered geometry [26] and is thus discontinuous. See also [43] for a considera-
tion of the so-called corner problem. A common approach to handle these natural discontinuities
is the introduction of additional data points at corners and edges [26]. Although feasible, this
approach requires that either the user places these additional nodes or that the computer code is
capable to do this job automatically. Both situations are unsatisfactory and yield a significant
amount of additional work.

There are many early works on the use of discontinuous elements for circumventing the prob-
lems arising from the discontinuous nature of the dual variable. For instance, the publications of
Patterson and co-authors [27–29] propose the use of discontinuous elements for various prob-
lems in two and three spatial dimensions. See also the discussion in [26]. Partially discontinuous
elements are also proposed in [29] but no algorithm is given which can detect the locations auto-
matically where these functions shall be used and where not. Finally, it has to be stated that in all
these approaches both the primal and the dual variable are approximated with the same type of
functions. Therefore, either both are discontinuous, partially discontinuous, or continuous. But
this concept ignores the fact the primal variable is a (mathematically and physically) continuous
function and, therefore, it seems more sound to treat these fields independently.

Alternatively, the symmetric Galerkin boundary element [41] method has come up which
is based on a weighted residual concept and makes use of two boundary integral equations.
The primal and dual variables are approximated independently in the correct mathematical sub-
spaces and the corner problem does therefore not exist anymore. These Galerkin schemes yield
symmetric positive definite system matrices and show a robust performance. Nevertheless, the
second integral equation is hypersingular and, therefore, needs sophisticated regularization tech-
niques. One approach to treat hypersingular integrals is based on integration by parts. For the
case of the Laplace’s equation and the elastostatic system, such a regularization is given in [41].
The regularization of hypersingular kernels for the elastodynamic system (as presented below) is
given in [16]. Moreover, the computational cost to generate a single matrix entry is significantly
higher than in the collocation method.

In this work, an alternative collocation approach is presented which uses different approxi-
mations for primal and dual boundary unknowns. Whereas the former is still approximated by
continuous functions, the latter is taken to be discontinuous across the element edges. There-
fore, unique solutions of the dual variable are facilitated. The collocation points are placed
strictly inside the elements such that the expressions for the integral-free term become trivial.
The prescribed Dirichlet boundary condition will be fulfilled directly by the approximation and
the Neumann boundary condition is employed by means of a side condition weighted by the
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shape functions of the primal approximation. With this technique a structured system of equa-
tions is obtained which shows a good conditioning in comparison with the standard collocation
approach. A Galerkin variant of the presented collocation approach has been introduced and
mathematically analyzed in [39]. In this reference, the method is presented for a general elliptic
partial differential operator and the numerical results refer to Laplace’s equation. Note that the
stability issues in [39] also appear here and this problem is addressed at the end of section 5.
Moreover, Robin boundary conditions are easily included in this approach and do not require
column manipulations of the system matrix or additional side conditions.

The outline of the paper is to present at first the basic equations in operator notation in sec-
tion 2. By means of this abstraction, it is easier to consider scalar and vector problems with the
same notation. The equations are given for static and dynamic problems. Then the spatial and
temporal discretizations are presented in section 3, where the convolution quadrature method
is used for the dynamic problems. Afterwards in section 4, the used numerical integration is
explained for the regular and singular surface integrals. A quick description of the used di-
rect solution routine follows in section 5. Various numerical examples are given with a direct
comparison to nodal collocation results and analytical reference solutions in section 6. Finally
section 7 contains a discussion of the advantages and disadvantages of the presented method and
it closes the paper. At all crucial points, the differences to the nodal collocation approach are
emphasized.

2 Basic equations

2.1 Boundary value problems

The considered mathematical models in this work are mixed elliptic boundary value problems
and hyperbolic initial boundary value problems. On the one hand, Laplace’s equation and the
elastostatic system are the elliptic (or static) representatives, see [41], and, on the other hand,
the scalar wave equation and the elastodynamic system are the chosen examples of hyperbolic
(or dynamic) Eqs. [1]. For sake of legibility, let L denote an elliptic partial differential operator
with constant coefficients and u is a generic unknown representing, for instance, the acoustic
pressure or the displacement field of an elastic solid. For the models of this work, it holds
either Lu =−κ∆u, where κ is the conductivity or compressibility of the material and ∆ denotes
the Laplace operator, or Lu = −(λ + 2µ)∇ ·∇u + µ∇×∇× u, which is the Lamé-Navier [21]
operator of elastostatics and λ and µ are the Lamé constants. Denoting the material density by
ρ , the considered hyperbolic operators then become

(Hu)(x, t) = ρ
∂ 2u
∂ t2 (x, t)+(Lu)(x, t) . (1)

By means of the above introduced notation, the considered mixed elliptic boundary value prob-
lem is of the form

(Lu)(x) = 0 x ∈Ω

uΓ(y) = gD(y) y ∈ ΓD

q(y) = (T u)(y) = gN(y) y ∈ ΓN

q(y)+ γ(y)uΓ(y) = 0 y ∈ ΓR .

(2)
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This problem is stated for the d-dimensional domain Ω (d = 2 or d = 3) with boundary Γ which
is composed of the Dirichlet, Neumann, and Robin boundaries, ΓD, ΓN , and ΓR, respectively.
The boundary trace of u is denoted by uΓ, for which the datum gD is prescribed on the Dirichlet
boundary ΓD. The operator T denotes the traction operator or co-normal derivative and maps
the unknown u onto the surface flux or tractions q which are prescribed by gN on the Neumann
boundary. Robin boundary conditions combine the boundary data uΓ and q by means of the
positive function γ(y) on the Robin boundary ΓR. For simplicity, body forces or source terms
are neglected.

In the dynamic case, the mixed initial boundary value problem looks like

(Hu)(x, t) = 0 (x, t) ∈Ω× It
uΓ(y, t) = gD(y, t) (y, t) ∈ ΓD× It
q(y, t) = gN(y, t) (y, t) ∈ ΓN× It

q(y, t)+ γ(y)uΓ(y, t) = 0 (y, t) ∈ ΓR× It ,

(3)

where It is the considered time interval, e.g., It = (0,T ) with some positive time instant T . In
addition to Eq. (3), initial conditions have to be prescribed for the starting time point. Here, a
quiescent past [1] of the material is assumed and, therefore, the initial conditions are identical
zero. Hence,

u(x,0+) = 0 and
∂u
∂ t

(x,0+) = 0 , x ∈Ω , (4)

holds, where 0+ denotes the limit t→ 0 from above. Note that for simplicity, the function γ

in the Robin boundary conditions is assumed to be independent of time in the initial boundary
value problem (3).

2.2 Boundary integral equations

It is well-known that the solution u of the mixed boundary value problem (2) at any point x̃
inside the domain Ω is given by the representation formula [41]

u(x̃) =
∫
Γ

U(x̃−y)q(y)dsy−
∫
Γ

(TyU)(x̃−y)uΓ(y)dsy (5)

once the boundary data [uΓ,q] are known for the whole boundary Γ. In this expression, U denotes
the full-space fundamental solution of the operator L and TyU is commonly referred to as flux
or traction kernel. Note that the derivatives involved in the application of Ty are with respect to
the coordinate y as indicated by the subscript. Here, the fundamental solutions for elastostatics,
the so-called Kelvin tensor [18, 21], and for Laplace’s equation [10, 41] are employed.

The boundary trace Ω3 x̃→ x∈ Γ of Eq. (5) yields the first boundary integral equation which
reads in operator form

(CuΓ)(x)+(KuΓ)(x) = (Vq)(x) . (6)

C is the integral-free term and V and K are the single and double layer operators, respectively,
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which are defined as [41]

(Vq)(x) =
∫
Γ

U(x−y)q(y)dsy

(KuΓ)(x) = lim
ε→0

∫
Γ\Bε (x)

(TyU)(x−y)uΓ(y)dsy

(CuΓ)(x) = uΓ + lim
ε→0

∫
∂Bε (x)∩Ω

(TyU)(x−y)uΓ(x)dsy .

(7)

In these definitions, Bε(x) is a ball of radius ε centered at x and ∂Bε(x) is its surface.
The mixed boundary value problem (2) can thus be solved by appropriate use of Eq. (6). A

continuous extension g̃D of the given Dirichlet datum is introduced such that

g̃D(x) = gD(x) x ∈ ΓD (8)

holds. Moreover, the unknown boundary function uΓ is now replaced by a new unknown

ũΓ = uΓ− g̃D , (9)

which is defined on the whole boundary Γ. By means of the extension (8) and the new un-
known (9), the boundary integral Eq. (6) becomes

(Vq)(x)− (CũΓ)(x)− (KũΓ)(x) = (Cg̃D)(x)+(Kg̃D)(x) (10)

for all x ∈ Γ. For simplicity, the abbreviations

K̃ = (C+K) and fD = K̃g̃D (11)

are introduced, such that Eq. (10) finally reads

(Vq)(x)− (K̃ũΓ)(x) = fD(x) . (12)

In addition, the Neumann and Robin boundary conditions have to be employed which require
q = gN on ΓN and q+γ ũΓ = 0 on ΓR. Adding these conditions to the boundary integral Eq. (12),
gives the system of operator equations(

V −K̃
I G

)(
q
ũΓ

)
=
(

fD

gN

)
(13)

with the identity operator I and the scaling operator G, which basically multiplies the function
γ with the unknown ũΓ.

In the hyperbolic case, the starting point is now the dynamic representation formula [1],

uΓ(x, t) =
t∫

0

∫
Γ

U(x−y, t− τ)q(y,τ)dsy dτ

−
t∫

0

∫
Γ

(TyU)(x−y, t− τ)uΓ(y,τ)dsy dτ , (14)
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where U is now the fundamental solution of the hyperbolic operator H as defined in Eq. (1).
Again, the boundary trace yields the first dynamic boundary integral equation

(Ct ∗uΓ)(x, t)+(Kt ∗u)(x, t) = (Vt ∗q)(x, t) . (15)

In this expression, f ∗ g denotes the temporal convolution, i.e., f ∗ g =
∫ t

0 f (t− τ)g(τ)dτ [42].
The occurring operators are now defined as

(Vt ∗q)(x, t) =
t∫

0

∫
Γ

U(x−y, t− τ)q(y,τ)dsy dτ

(Kt ∗uΓ)(x, t) =

lim
ε→0

∫
Γ\Bε (x)

t∫
0

(TyU)(x−y, t− τ)uΓ(y,τ)dsy dτ

(Ct ∗uΓ)(x, t) = (CIt ∗uΓ)(x, t) = (CuΓ)(x, t)

(16)

with the same notation as in Eq. (7). In the expression of the integral-free term, the operator
It = Iδ (t) has been used for simplicity, which is the identity for the convolution, i.e., It ∗ f = f .
Using again an extension of the prescribed Dirichlet datum gD and an auxiliary unknown ũΓ,
one arrives at the equation

(Vt ∗q)(x, t)− (K̃t ∗ ũΓ)(x, t) = fD(x, t) , (17)

where abbreviations analogously to Eq. (11) have been made, i.e., K̃t = (Ct +Kt) and fD(x, t) =
(K̃t ∗ g̃D)(x, t). The Neumann boundary conditions are again added as a side condition which is
facilitated by the identity operator

(It ∗q)(x, t) = gN(x, t) (18)

and, similarly, the Robin boundary condition is added by means of the expression

(It ∗q)(x, t)+(Gt ∗uΓ)(x, t) = 0 . (19)

Here, the operator Gt =Gδ (t) is defined in the same way as the identity It which is valid since the
function γ has been assumed to be independent of time in the initial boundary value problem (3).
The final system of operator equations then reads(

Vt −K̃t

It Gt

)
∗
(

q
ũΓ

)
=
(

fD

gN

)
. (20)

Classical approach. If the given Neumann datum gN is extended in the same way, i.e.,
g̃N(x) = gN(x) on ΓN , and a new boundary unknown q̃ is introduced by setting q̃ = q− g̃N ,
then Eq. (12) becomes

(V q̃)(x)− (K̃ũΓ)(x) = fD(x)− (V g̃N)(x) . (21)
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Comparing Eqs. (12) and (21), it becomes clear that the way, the boundary unknown q is han-
dled, is different. Whereas in Eq. (13) the Neumann boundary condition is used as a side con-
dition and, therefore, the whole datum q is treated as an unknown function, in the classical
approach (21) the known and unknown data are well separated. The main differences become
clear when the discretizations are introduced. These observations can be directly transferred to
the dynamic case.

3 Discretization

3.1 Spatial discretization

In the sense of a classical finite element discretization, the boundary Γ is now represented by the
computational surface Γh which is the union of simple geometric entities, e.g., surface triangles
or line elements in three or two spatial dimensions, respectively. With respect to this surface dis-
cretization, shape functions are defined for the spatial approximation of the unknown functions
uΓ and q, i.e.,

uΓ,h(x) =
N

∑
i=1

ϕi(x)ui and qh(x) =
M

∑
j=1

ψ j(x)q j . (22)

Note that this approximation has to be altered appropriately if uΓ and q are vector fields, because
then Eq. (22) has to be understood component-wise. Here, the functions ϕi are continuous
functions as, for instance, the piecewise linear hat functions. The corresponding coefficients
ui are then the nodal unknowns of the approximation. On the contrary, the shape functions ψ j

are discontinuous and associated with the elements. Therefore, the coefficients q j refer only to
one specific element and the result can have jumps across the element boundaries. This choice
of shape functions is fairly natural because, in case of elasticity problems, uΓ represents the
displacement field of the boundary which has to be continuous according to the assumptions of
a continuum. On the other hand, the surface tractions q will have jumps at geometry corners
and edges and, in addition, the corresponding Neumann datum gN is often applied in form
of a discontinuous function. Note that this choice is also consistent with the respective trace
spaces [39, 41] corresponding to the data uΓ and q in the boundary value problem (2).

The approximations (22) are also used for the given boundary data, g̃D and gN , and for the
auxiliary unknown ũΓ

g̃D,h(x) =
N

∑
i=1

ϕi(x)g̃D,i

gN,h(x) =
M

∑
j=1

ψ j(x)gN, j

ũΓ,h(x) =
N

∑
i=1

ϕi(x)ũi .

(23)

Inserting the approximations qh, uΓ,h, and g̃D,h into Eq. (12) yields a residual. In the sense of
collocation techniques, this residual is then forced to be zero on a certain set of nodes {x∗`}L

`=1 ⊂
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Γh, the collocation points. This gives the discretized and collocated integral equation

Vq−Ku = fD . (24)

These matrices have the following entries

V[`, j] = (Vψ j)(x∗`) q[ j] = q j

K[`, i] = (K̃ϕi)(x∗`) u[i] = ũi

fD[`] = (K̃g̃D,h)(x∗`) .
(25)

For completeness, the identities q = gN on ΓN and q+ γuΓ = 0 on ΓR have to be added which is
done in a weighted sense. This results in the matrix equation

Bq+Gu = fN (26)

with the matrix coefficients

B[k, j] = 〈ϕk,ψ j〉 fN [k] = 〈ϕk,gN,h〉
G[k, i] = 〈ϕk,γϕi〉 .

(27)

Here, 〈u,v〉 denotes the L2-product of u and v over the boundary Γ, i.e., 〈u,v〉 =
∫

Γ
uvds. The

mass matrix B is thus the discretization of the identity operator I and the matrix G is the dis-
cretization of the operator G. Note that the vector fN is filled with zeros on the Dirichlet and
Robin boundaries, ΓD and ΓR, which corresponds to a zero extension of the given datum gN .
Combining Eqs. (24) and (26), yields the system of equations(

V −K
B G

)(
q
u

)
=
(

fD
fN

)
, (28)

which is of dimension (M + N)× (L + N). Obviously, M = L is a necessary condition for the
solvability of this system which implies that there have to be as many collocation equations as
coefficients q j. The specific choice of collocation points will be discussed below.

In the dynamic case, the situation is very similar. The spatial approximation is the same as in
Eq. (22), i.e.,

uΓ,h(x, t) =
N

∑
i=1

ϕi(x)ui(t)

qh(x, t) =
M

∑
j=1

ψ j(x)q j(t) ,
(29)

with the difference that the coefficients ui and q j are still functions of time. Again, the spatial
approximation is inserted into the integral Eq. (16) and the resulting residual is collocated on the
points x∗` . This yields the semi-discrete set of convolution equations(

Vt −Kt

Bt Gt

)
∗
(

qt

ut

)
=
(

fD,t

fN,t

)
. (30)
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The matrix entries are now defined by application of the dynamic boundary integral operators to
the shape functions but still ignoring the temporal convolution. Hence, they have the same form
as in Eq. (25), but all the objects are still functions of time. Moreover, auxiliary matrix operators
Bt and Gt have been used in order to allow for the condensed notation in Eq. (30) by setting

Bt [k, j] = 〈ϕk,ψ j〉δ (t) and Gt [k, i] = 〈ϕk,ϕiγ〉δ (t) . (31)

Obviously, it remains to find a suitable temporal discretization for the system of Eqs. (30).
Note that in the above definitions of matrix entries it has been assumed, for simplicity only,

that the application of the boundary integral operators is exact. Of course, these integrals will be
solved numerically and, therefore, be subject to errors. The quadrature rules for the evaluation
of these expressions are discussed in section 4.

Collocation points. As indicated above, one has the necessity of using as many collocation
equations as coefficients q j. Therefore, it is straightforward to place on every element τe of the
discretization of Γ as many collocation points as shape functions for the unknown q are used on
that element. If q is, for instance, approximated by piecewise constant functions, the midpoint of
each element seems to be the ideal location for the collocation points. In case of a piecewise lin-
ear discontinuous approximation, the situation is more involved. Now, the logical consequence
would be to put the collocation points at the vertices of each element. Unfortunately, this makes
the collocation equations redundant. Hence, it is preferred to place them in such a manner that
they are distributed uniformly in case of a uniform discretization. This implies that the neighbors
of each collocation point are as far away as possible. It is chosen here, to use the points ξ =±1

2
from the reference interval −1 ≤ ξ ≤ 1 of linear line elements for a two-dimensional analysis.
On the reference triangle τ̂ = {0≤ ξ1 ≤ 1,0≤ ξ2 ≤ 1−ξ1} for a three-dimensional analysis,
these points are located at (1

6 , 1
6), (1

6 , 2
3), and (2

3 , 1
6). These positions are depicted in Fig. 1. Note

that due to the fact that the collocation points are strictly inside the elements the surrounding
surface is always smooth. Therefore, the integral-free term simply becomes C = 1

2I. The matrix
C which is contained in K has thus the entries

C[`, i] =
1
2

ϕi(x∗`) . (32)

Obviously, expression (32) is a lot more comfortable as the analytic expressions for the integral-
free term derived in [24] for three-dimensional elastostatics. Moreover, in the expressions of [24]
material parameters enter. If these are dependent on the Laplace parameter as in the case of the
viscoelastic analysis in [35], they have to be recomputed for every Laplace parameter.

Comparison to nodal collocation. The main difference in the presented approach to the
classical nodal collocation is the mixed approximation of Eq. (22). In the nodal collocation, one
uses exactly the same shape functions for the unknown q as for uΓ and applies them to the integral
Eq. (21). The collocation points are then the nodal coordinates of the spatial discretization. The
system of equations is then obtained by assembling the columns of the matrices V and K to the
left and right hand sides depending on whether they correspond to an unknown or prescribed
coefficient. The application of the Robin boundary conditions is then not so straightforward and

9
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Figure 1: Location of the collocation points for a triangle with a constant shape function (aster-
isk) or linear shape functions (bullets) for the approximation of q.

requires either additional equations or manipulations of the system matrix [13]. The advantages
and disadvantages of the different approaches are outlined in section 7.

3.2 Temporal discretization

In order to convert system (30) into a series of algebraic equations, the occurring convolution in-
tegrals have to be solved. The classical way to do so, is to introduce shape functions for the time
behavior of the coefficients ui(t) and q j(t) and solve the resulting integrals analytically [23, 34].
Here, the convolution quadrature method is used, which yields a quadrature rule for convolution
type integrals based on quadrature weights which depend on the Laplace transform of one of the
operands. This method goes back to [22] and has been compared with the standard approach
in [35]. Whereas the direct approach based on the time-domain fundamental solution U of the
operator H is computationally more efficient, it suffers from severe stability restrictions. For
this reason and the possible extension to viscoelastodynamic analyses, the convolution quadra-
ture method based on the Laplace transform fundamental solution Û is preferred in this work.

Consider, for simplicity, the application of the spatially discretized single layer operator

h(t) = (Vt ∗qt)(t) =
t∫

0

Vt(t− τ)qt(τ)dτ . (33)

The value of the resulting vector h at the time instant tn = n∆t of an equidistant time grid is now
approximated by the formula

h(tn)≈
n

∑
ν=0

ωn−ν(∆t, V̂,χ)qt(ν∆t) . (34)

In this approximation, the ωn−ν are the weights generated by the convolution quadrature method
and depend on the size of the time step, the Laplace transform V̂ of the operator matrix Vt , and
the characteristic polynomial χ of a suitably chosen multistep method. Here, a BDF2 [20] is

10
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chosen which fulfills all the criteria of the convolution quadrature method [22]. Using now the
following notation for n = 0,1, . . . , and ν ≤ n

Vn−ν = ωn−ν(∆t, V̂,χ) qn = qt(n∆t)

Kn−ν = ωn−ν(∆t, K̂,χ) un = ut(n∆t)
fD,n = fD(n∆t) fN,n = fN(n∆t)

, (35)

results in the series of systems of equations(
V0 −K0
B G

)(
qn

un

)
=
(

fD,n

fN,n

)
−

n

∑
ν=1

(
Vn−ν Kn−ν

)(
qν

uν

)
. (36)

Note that the matrices B and G are identical with the static case and their coefficients are defined
in Eq. (27).

4 Numerical integration

In order to obtain the systems of Eqs. (28) and (36), the application of the respective integral
operators has to be carried out numerically. As common in boundary element methods, one has
to distinguish between the situation when the collocation point x∗` is located inside or outside the
surface element τe on which the integration is carried out. Whereas the former case of improper
integrals needs special attention, the latter case of a regular integral can be carried out by means
of Gaussian quadrature. Nevertheless, the integrand behaves almost singular if the collocation
point is close to the region of integration and, therefore, the regular integration also needs special
attention.

4.1 Regular integrals

For sake of simplicity, only the integration on triangles is considered here. Nevertheless, the
techniques are easily adapted for quadrilateral elements or for the line integrals of a two-dimensional
analysis. An exemplary integral is

I(k;x∗) =
1∫

0

1−ξ1∫
0

k(x∗,x(ξ1,ξ2))dξ2 dξ1 , (37)

which is obtained after a coordinate transformation from the global coordinates to the reference
triangle τ̂ . The generic integrand k contains the shape function, the Gram determinant of the
coordinate transformation and the fundamental solution or its derivative. The latter is assumed
to behave like |x− x∗` |−2 and, therefore, this distance is the crucial measure of the quality of
the numerical integration. In order to compute the distance between collocation and integration
point in reference coordinates, at first the coordinates ξ

∗ = (ξ ∗1 ,ξ ∗2 ,ξ ∗3 ) such that x(ξ ∗) = x∗,
have to be computed, where x(ξ ) denotes the coordinate transformation from reference to global
coordinates. The geometry approximation is assumed to be linear, i.e., x(ξ ) = x1 + t1ξ1 + t2ξ2 +
nξ3 with the triangle vertices xi (i = 1,2,3), the tangent vectors t1 = x2− x1 and t2 = x3− x1,
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and the normal vector n = t1× t2. Then, the reference coordinates of the collocation point can
be computed by solving the equation

x1 + t1ξ
∗
1 + tξ ∗2 +nξ

∗
3 = x∗ ⇒ Mξ

∗ = x∗−x1 , (38)

where the matrix M is composed of the tangent and normal vectors, M = [t1, t2,n]. In general,
the tangent vectors t1 and t2 are not mutually orthogonal. But, by definition, the normal vector
n is orthogonal to the plane spanned by the tangent vectors. Therefore, by multiplication with n,
the value of ξ ∗3 is easily computed and equation (38) reduces to a 2×2-system which is solved
easily.

In view of the final criterion for the quality of the quadrature, the minimal distance r between
the reference triangle τ̂ and the coordinates ξ

∗ has to be computed. This is easily done by
detecting the point ξ̂ ∈ τ̂ which lies closest to ξ

∗ and setting r = |ξ̂ −ξ
∗|.

Once these geometrical entities are computed, the error estimate of [19]

|Ep|< C
1
2p

1
rp+2 (39)

is used, where C is some constant and p is the maximal order of a polynomial which is integrated
exactly by the quadrature rule. For Gauß-Legendre quadrature in one dimension, one has the
well-known result p = 2ng + 1 with ng denoting the number of evaluation points the rule is
using [17]. For other quadrature rules, e.g., the triangle rules of [9], which are used here for a
three-dimensional analysis, the order p is usually a given quantity associated with the rule. Ep is
the error of that rule of order p and is a prescribed value. Taking the logarithm of expression (39),
yields a rule for the order p

p← 2
⌈

log(C)− log |Ep|− log(r2)
log(4r2)

⌉
(40)

under the assumption that log(4r2) is greater than zero. dxe denotes here the smallest integer
greater than or equal to x.

If the order p computed according to the rule (40) is greater than some value pmax of the
highest quadrature rule available or the condition log(4r2) > 0 is violated, the triangle τ̂ is
subdivided into four sub-triangles. The numerical integration is then carried out on each of these
sub-triangles with an order pmax unless a further subdivision is necessary. Hence, a recursive
scheme is started in which on each sub-triangle the rule (40) is recomputed with a new value
of the minimal distance r, now with respect to the considered sub-triangle, and a new tolerance
which is reduced according to the area of the sub-triangle. This recursion takes place until
p≤ pmax or a maximal level of recursion is reached.

Note that Eq. (39) is not understood as a sharp error estimate but rather an expression which
grasps the asymptotic behavior of the integrand. It only refers to the monomial of r with the
highest order and, moreover, it neglects the influence of the shape function and the Gram deter-
minant on the integrand.

4.2 Singular integration

Here, the collocation point is located inside the element of integration, i.e., x∗` ∈ τe. Therefore,
the integral kernels of the single and double layer operators, V and K (or Vt and Kt for the
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dynamics case), tend to infinity as |y−x∗|→ 0. Whereas the integral kernels of the scalar models
(Laplace’s equation and scalar wave equation) and the single layer operators of the vector models
(elastostatics and elastodynamics) are weakly singular, the double layer operator of the vector
models is only defined in the sense of a Cauchy principal value integration [17]. The treatment
of such integral is described in the following subsection 4.3. For the time being, only weakly
singular integrals are considered.

A common approach to handle singular integrals in the context of boundary element methods,
is to subtract the leading singularity which can then be treated by analytical techniques or special
quadrature rules. The difference term, i.e., integral kernel minus leading singularity, is thus
a regular function. Nevertheless, this regularity only refers to the term itself but not to any
higher order derivative. But these derivatives determine the quadrature error [17]. Consider, for
instance, the Bessel function K0(x) which occurs in the fundamental solutions of the Laplace
transformed scalar wave equation or elastodynamics. This function has a leading singularity
of − log(x). The standard approach would be to use a logarithmic quadrature rule [31] for the
logarithmic singularity and then a standard Gaussian quadrature for the term K0(x) + log(x).
But the derivatives of this difference term are again singular and, therefore, the quadrature error
cannot be controlled. Due to this observation, it is desirable to have a quadrature rule which is
applicable to the integral kernel as a whole.

In the three-dimensional analysis, the weakly singular integrals over surface triangles are
carried out by the rules developed in [19]. This approach is also known as Duffy coordinates [8]
in the mathematical community. The only difference here is that the point of singularity is
not located on a vertex but inside the element. Therefore, by drawing lines to the vertices and
dropping perpendiculars on the sides, the triangle is subdivided into six triangular regions of
integration where each one has the singularity on a vertex. Alternatively, one could also use
polar coordinates. Confer [10] for a comparison and [37] for an in-depth mathematical analysis
of these two approaches.

For the weakly singular line integrals in two-dimensional analyses the semi-sigmoidal trans-
formations due to [15] are used. These transformations work in the same black-box fashion as
Duffy coordinates by mapping the region of integration onto itself with a non-linear coordinate
transformation which yields a Jacobian alleviating the singularity.

4.3 Regularization

The double layer operator of the elastostatic and elastodynamic equations is only defined in the
sense of a Cauchy principal value. Therefore, suitable quadrature rules which can be used in
the desired black-box fashion are not easily constructed. For this reason, it is here preferred to
apply an analytical technique which yields a weakly singular representation. Such techniques
are commonly referred to as regularization.

A regularized expression of the elastostatic double layer operator is given by [18] and has the

13



Preprint No 4/2008 Institute of Applied Mechanics

form (see also [25, 41])

(KEuΓ)(x) =− 1
2(d−1)π

∫
Γ

uΓ(y)
(y−x) ·n(y)
|y−x|d

dsy

− 1
2(d−1)π

∫
Γ

E(x−y)(MyuΓ)(y)dsy

+2µ(VE(MyuΓ))(x) .

(41)

Recall that d = 2,3 is the dimension of the problem and n the unit outward normal vector. The
function E(x) is either E(x) =− log |x| or E(x) = 1/|x| for the cases d = 2 or d = 3, respectively.
The operator My appearing in Eq. (41) is referred to as Günther derivative [18] and has the
components

My[i, j] = n j(y)
∂

∂yi
−ni(y)

∂

∂y j
, (42)

where yi is the i-th component direction of the position vector y and ni is the i-th component
of the normal vector n(y) located at the boundary point y. A derivation and alternative repre-
sentations of Eq. (42) are given in [41]. Expression (41) is composed of three parts, the double
layer operator of Laplace’s equation and the single layer operators of Laplace’s equation and
Elastostatics. The latter two are not applied to the function uΓ itself but to special derivatives of
it with the operation due to Eq. (42). All three integral operators are now weakly singular and
the application ofMy is well defined because the test functions used for the approximation of
uΓ, see Eq. (22), are continuous.

In the remaining case of elastodynamics, an expression similar to Eq. (41) can be derived and
is given in [16] for the three-dimensional case. The transfer to two dimensions is straightforward
and not repeated here. Note that in the derivation of these regularizations, the boundary Γ is
assumed to be a closed surface such that ∂Γ = /0 holds, i.e., the surface itself has no boundary.
For some applications, e.g., the discretization of an elastic halfspace by a surface patch, this
assumption is violated.

5 Solution of the systems

Due to the spatial and temporal discretizations as presented in subsections 3.1 and 3.2, the sys-
tems of Eqs. (28) and (36) are obtained. The block matrix of both systems has exactly the same
structure. But in the dynamic case, system (36) has to be solved repeatedly for different right
hand sides. Therefore, a direct solver can be still advantageous and is considered here. For
simplicity, only system (28) is considered in the following.

A static condensation of the system of Eqs. (28) gives the reduced system of equations

Su = g , (43)

where S = G+BV−1K and g = fN−BV−1fD. Using LU-factorizations [11] instead of computing
the inverse of V, yields the following steps

LV UV = V LV UK = K

LBUV = B S = G+LBUK ,
(44)
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which are one LU-factorization, two forward-backward substitutions, and one matrix-matrix
multiplication. The right hand side g is computed by similar operations. The solution of sys-
tem (43) is then another LU-solve. Once the coefficients u are known, the vector q is easily
computed. The solution steps (44) can be carried out by any linear algebra package, e.g., [2]. It
has to be noted that the use of pivotization might be necessary and, therefore, these steps need
additional column and row interchanges which are not outlined here.

Stability problem. Assume now that G = 0, i.e., that no Robin boundary conditions are pre-
scribed because this situation corresponds to the worst case scenario. As outlined in [39], the
type of approximation used in Eq. (22) is crucial for the stable solution of system (28). The basic
conditions for the invertibility of the considered system are the existence of the inverses V−1 and
S−1 [4]. Whereas the existence of V−1 is assumed based on the theoretical knowledge that V is
an elliptic operator and the experience that collocation methods in combination with conform-
ing discretizations work. The existence of S−1 is rather tricky and two necessary conditions are
considered.

At first M > N is postulated, i.e., there have to be more coefficients q j than ui. The other con-
dition is that the matrices K and B have full rank, i.e., rank(K) = rank(B) = N. Both conditions
can be fulfilled by either choosing a finer mesh for the approximation of q or by using equal
order approximations [39]. The latter option is considered here and implies that, for instance,
piecewise linear continuous trial functions are used for uΓ,h and piecewise linear discontinuous
functions for qh. Unfortunately, the rank condition rules out the use of piecewise constant shape
functions for qh which would be a natural choice with less degrees of freedom.

6 Numerical results

6.1 Bar problem

Consider the one-dimensional problem depicted in Fig. 2, where a bar of length ` is fixed at
its left end and loaded at its right end. In terms of an elastic model, the displacement field is
prescribed with zero at x1 = 0 and the surface traction is given as q = F at x1 = `. In dynamics,
the applied force term F is assumed to behave like F(t) = F0H(t) in time with H(t) denoting
the Heaviside or unit step function.

uΓ = 0 q = F

Ω = (0, `)

Figure 2: Bar subject to axial force.

The physical interpretations of this problem are either a column of an acoustic fluid subject
to a specific surface flux or the already mentioned elastic bar with an applied traction. In the
former case, the material parameters are assumed as κ = 1.42 ·105 N/m2 and ρ = 1.2 kg/m3 for the
compressibility modulus and the mass density of the acoustic fluid, respectively. The elastic solid
has the Lamé parameters λ = 0 and µ = 1.06 ·1011 N/m2 and a mass density of ρ = 7850 kg/m3.
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A three-dimensional cuboid of dimension 3× 1× 1m is used for the representation of this
problem which is discretized by surface triangles of three different sizes. The shorter side lengths
of these triangles are taken as h = 0.5m, 0.25m, and 0.2m which yields 112, 448, and 700
triangles, respectively. The different meshes are depicted in Fig. 3.

(a) h = 0.5m (b) h = 0.25m (c) h = 0.2m

Figure 3: Different spatial discretizations.

The temporal discretization is carried out as described in subsection 3.2. The size of the time
steps ∆t are then chosen such that the CFL-number [7]

β =
c1∆t

h
(45)

has specific values, where c1 denotes the velocity of the compression wave. For the acoustic
fluid it becomes c2

1 = κ/ρ and c2
1 = (λ +2µ)/ρ for the elastic solid.

Condition numbers. In the following, the condition numbers of the system matrices for the
proposed method are compared with the condition numbers of the nodal collocation. The con-
dition number cond(A) is measured in the one-norm, i.e., cond(A) = ‖A‖1‖A−1‖1. In fact, the
condition number estimate of LAPACK [2] is used which is based on the algorithm of [14]. Let
A be the system matrix obtained by nodal collocation. V denotes the upper left block matrix
of system (28) or (36) for the static or the dynamics case, respectively. Furthermore, S is the
Schur complement obtained by static condensation as given in Eq. (43). The dimensions of these
matrices are given in Tab. 1 for the three different meshes and the two considered materials.

In Tab. 2, the respective condition numbers for the Laplace equation (fluid) and elastostatics
(solid) are given for the three different meshes. It has to be noted that the matrix A is assembled
after a variable transformation in which the geometry and the material parameters are scaled to
achieve a better condition number (see [36] for details on this scaling). Without this variable
transformation, the number cond(A) would be totally out of bound. Comparing the numbers of
Tab. 2, it becomes clear that the condition numbers of A, V, and S are of comparable magnitudes
for Laplace equation. But in the case of elastostatics, V is still well-conditioned, whereas the
matrices A and S have condition numbers about on order of magnitude greater with cond(A) <
cond(S).
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mesh dim(A) dim(V) dim(S)

fluid
a 58 336 49
b 226 1 344 201
c 352 2 100 316

solid
a 174 1 008 147
b 678 4 032 603
c 1 056 6 300 948

Table 1: Dimensions of the system matrices for different meshes.

mesh cond(A) cond(V) cond(S)

fluid
a 215 137 132
b 352 277 240
c 716 344 343

solid
a 4 100 207 5 761
b 7 740 420 11 695
c 8 048 550 16 180

Table 2: Condition numbers for the static computations.
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(a) fluid

mesh a a a b b b c c c

β 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8

cond(A) 75.1 51.1 46.4 153 101 86.0 625 413 351
cond(V) 7.49 14.7 28.3 7.71 13.1 25.9 4.33 7.98 16.7
cond(S) 8.43 7.06 5.89 8.74 7.23 5.46 9.08 8.90 8.25

(b) solid

mesh a a a b b b c c c

β 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8

cond(A) 267 187 181 540 353 311 705 463 417
cond(V) 9.32 15.2 30.9 9.19 16.1 28.4 5.66 9.50 16.8
cond(S) 13.1 14.8 17.4 12.0 14.3 15.9 13.8 15.4 23.6

Table 3: Condition numbers for the dynamic computations.

In Tab. 3, the condition number for the dynamic cases are given, where the three meshes with
three different time step sizes are compared. The time steps are such that the CFL-number has
the values β = 0.2, β = 0.4, and β = 0.8. The results for the scalar wave equation are shown in
Tab. 2(a) and the Tab. 2(b) gives the values for the elastodynamics system.

In the dynamic case, the condition numbers cond(A) are significantly larger than cond(V)
and cond(S). Moreover, the asymptotic behavior of these condition numbers differs for the
compared methods. The number cond(A) gets large with more degrees of freedom and smaller
for increasing time steps. On the contrary, the condition number of the single layer matrix
cond(V) becomes smaller for finer meshes and larger for bigger time steps. The behavior of
cond(S), the condition number of the Schur complement, is not so easily described. In most
cases, it becomes slightly bigger with an increase of degrees of freedom. But if the time step is
increased, it gets smaller in the fluid case and larger in the solid case.

Accuracy and stability. The considered one-dimensional problem has an analytical solution
which is derived in [12], see also [34]. In order to compare the quality of the numerical results,
this analytical solution is used as a reference. The outcome of an elastodynamic solution of the
considered problem is shown in Fig. 4, where the longitudinal displacement component u1 is
considered at the right end x1 = ` in Fig. 4(a) and the surface traction q1 at the left end x1 = 0 in
Fig. 4(b). The computation has been carried out for the coarsest mesh with h = 0.5m only and
a time step size such that β = 0.2. In the figures, old refers to nodal collocation and new to the
here proposed method without being judgemental.

Comparing the displacement results of the different collocation approaches in Fig. 4(a), one
can see that the proposed method has less damping of the amplitudes. Moreover, the initial
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Figure 4: Elastodynamic solution of the bar problem.
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elongation is already slightly closer to the analytical curve. In view of the traction results in
Fig. 4(b), the outcome of the new approach gets closer to the jumps of the piecewise constant
analytical solution. This in turn justifies the larger overshoots after these jumps.

Finally, the behavior of the two compared approaches is considered for a smaller time step
such that β = 0.1. The results are shown together with the analytical solution in Fig. 5. In order
to emphasize the different stability behaviors, the time range 0.2s < t < 0.8s is not plotted. Only
the beginning and the end of the computed time period are displayed. Clearly, the displacement
solution given in Fig. 5(a) gets out of bound after only a short time period for the nodal colloca-
tion, whereas the outcome of the proposed approach remains stable and close to the analytical
curve for a significantly larger simulation time. The same phenomenon can be observed for the
traction solution of Fig. 5(b), where the nodal collocation fails almost immediately but the new
approach yields a curve which slowly builds up.

6.2 Elastic halfspace

Consider now the halfspace Ω+ with its boundary Γ+ defined by

Ω
+ = {x ∈ R3 : x3 > 0}

Γ
+ = {x ∈ R3 : x3 = 0} ,

(46)

which is occupied by an elastic medium with the properties ρ = 1884 kg/m3 and λ = µ = 1.363 ·
108 N/m2. Analytical solutions are available for a point load on the surface in x3-direction. In
the static case, the solution is the halfspace fundamental solution due to Boussinesq, see [21].
A dynamic solution is given by [30] for the surface displacements for a point load varying as a
step function in time, i.e., F(t) = F0H(t).

The surface Γ+ defined in Eq. (46) is obviously unbounded. The boundary element discretiza-
tions used here are thus surface patches Γ

+
h ( Γ+ which cover only the area around the applied

point load. The load itself is represented by a constant traction on some triangles.

Static case. The discretization used for the static case is shown in Fig. 6 and consists of 3200
linear triangles covering an area of 5× 5m. Each triangle has legs of length 0.125 m. Four
triangles in the middle of the discretization are subject to a constant vertical traction field gN

such that F =
∫

Γ
+
h

gN dx = 1N. The loaded area is dark shaded in Fig. 6.
The outcome of the boundary element simulations is shown in Fig. 7 together with the Boussi-

nesq solution [21]. In Fig. 7(a), the horizontal displacements are plotted along a horizontal coor-
dinate line through the point of the applied load. Fig. 7(b) shows the vertical displacements along
the same line. Since the point load is represented by an area load, the singularity of the analyt-
ical solution cannot be reproduced exactly. Nevertheless, the outcome of the new approach has
higher peaks and is therefore closer to the analytical curve. In the range of 0.5m < |x1|< 2m, the
results of both collocation methods are fairly close to the reference solution. On the other hand,
close to the edges at 2m < |x1|< 2.5m the results of the nodal collocation deviate significantly
from the reference curves, especially for the horizontal displacements u1.
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Figure 5: Stability behavior of the elastodynamic solution of the bar problem.

21



Preprint No 4/2008 Institute of Applied Mechanics

5 m

5 m

Figure 6: Surface discretization for the elastostatic halfspace.

Dynamic case. Now, the applied point force varies as a unit step function in time and the
halfspace reacts dynamically. Fig. 8 shows the used discretization which consists of 396 linear
triangles covering an area of dimension 33×6m. Two triangles (dark shaded in the figure) are
subject to a vertical constant traction field gN such that the net force is F0 = 1kN. The simu-
lations are using a time step size of ∆t = 7 · 10−4 s such that the CFL-number is approximately
β = 0.32 if the length of the legs of the triangles of 1 m is used. At a distance of 15 m from the
applied load, the observation point is located for which the computed and analytical solutions
are considered.

In Fig. 9, the numerical outcome of the dynamic halfspace problem is shown together with
the analytical solution due to [30]. Again, horizontal and vertical displacements are considered
in Figs. 9(a) and 9(b), respectively. From the analytical curve, one can clearly see the arrival of
the compression wave and the very prominent Rayleigh surface wave, whereas the shear wave is
not very distinct. The final asymptote corresponds to the static solution discussed in the previ-
ous paragraph. Both numerical solutions show the compression wave and somehow mimic the
Rayleigh wave. The peak of the Rayleigh wave is higher for the new approach then in case of the
nodal collocation. In turn, this peak produces a higher overshoot for the vertical displacements.
In both simulations, the long-time behavior deviates significantly from the static solution. In
addition, the outcome of the new approach is polluted by artificial wave reflections. These re-
flections also occur in the compared nodal collocation but less severely. It can be assumed that
these strong reflections are caused by the regularization of the double layer operator, given in
Eq. (41). This expression is based on the assumption that the boundary Γ is a closed surface
which is violated in the considered case of the halfspace. Nevertheless, the computed solution
remains stable and the magnitudes of these wave reflections diminish.
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Figure 7: Analytical and computed solution of the elastostatic halfspace.
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Figure 8: Surface discretization for the elastodynamic halfspace.

6.3 Beam on elastic foundation

At last, a finite beam subject to a point force and continuously bedded on an elastic foundation
is considered. The problem is depicted in Fig. 10, where a beam with bending stiffness EI of
length ` is located on a foundation with bedding modulus k and subject to a vertical point load
in its middle.

Using Bernoulli beam theory, the analytical solution of the homogeneous problem is of the
form

w(x) = exp(−x̃)(C1 cos(x̃)+C2 sin(x̃))
+ exp(x̃)(C3 cos(x̃)+C4 sin(x̃)) with x̃ = x/λ .

(47)

Considering, for instance, only the right half of the problem with the coordinate 0≤ x≤ /̀2, the
constants Ci can be easily obtained by using the boundary conditions w′(0) = 0, w′′′(0) =−F/2EI,
w′′( /̀2) = 0, and w′′′( /̀2) = 0. These conditions represent in order the horizontal tangent in the
axis of symmetry, half of the applied point force, no shear force and no bending moment at the
free end.

A three-dimensional boundary element analysis is carried out where a cuboid of dimension
10×1×1m is used as a representation of the beam. Hence, the moment of inertia is I = 1/12 m4.
The applied load has the magnitude F = 104 N and the Young’s modulus is taken as E = 106 N/m2.
The function γ of the boundary value problem (2) has the constant value γ = 105 N/m3. Therefore,
the bedding modulus of the beam is k = γb = 105 N/m2, where b = 1m denotes the width of the
beam.

The three-dimensional domain is discretized uniformly by linear surface triangles. Two dif-
ferent discretizations are considered with mesh widths h = 1/2 m and h = 1/4 m which correspond
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Figure 9: Analytical and computed solutions of the elastodynamic halfspace at the observation
point.
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Figure 10: Continuously bedded beam.

to 336 and 1344 elements. An area of 1m2 on the top side and in the middle of the cuboid has
been loaded constantly such that the net force is F = 104 N. The outcome of the analysis is
shown in terms of the line of deflection in Fig. 11 where the terms coarse and fine refer to the
larger and small mesh width, respectively. The line of deflection of the numerical analysis is
the coordinate line at the bottom surface of the beam. The results of Fig. 11 indicate a good
agreement with the reference solution for both the coarse and the fine mesh. Clearly, there are
small deviations close to the applied surface load where the compared theories of the Bernoulli
beam and the elastic continuum have to differ.
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Figure 11: Numerical solution of the beam on elastic foundation with reference solution.
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7 Discussion of the method

In this work, a collocation formulation is presented which is based on a mixed approxima-
tion (22) similar to the Galerkin scheme of [39]. This approach is applicable to scalar and vector
problems of static and dynamic kind. In the following, some remarks on the respective advan-
tages and disadvantages are given.

Due to the mixed approximation orders, the quantities uΓ (e.g., the surface displacements)
and q (tractions) are approximated according to the mathematical spaces they are defined in
(cf., e.g., [41] for details). Whereas uΓ is a continuous quantity and is thus approximated by
globally continuous functions, the datum q is defined with respect to the local normal vector.
Therefore, q is naturally discontinuous because the computational geometry can have corners
and edges. For the same reason, this quantity cannot be unique at these points. These properties
are represented by a discontinuous approximation. The use of discontinuous shape functions is
discussed in [26], where the loss of uniqueness at corners is used in order to justify these shape
functions. Unfortunately, the approach in [26] uses an isoparametric approach such that uΓ and
q are approximated by discontinuous shape functions.

This new collocation scheme is tailored to yield a square matrix V as the discretization of the
single layer operator V . Since V is generally known to be elliptic [41], its discretization with
Galerkin schemes results in symmetric positive definite system matrices. The presented colloca-
tion destroys this symmetry but numerical experiments affirm that V is still positive definite. In
view of iterative solution algorithms this property might be useful. Nevertheless, it guarantees
that V is invertible. Moreover, the condition numbers of this matrix are very small and seem to be
of orderO(h−1) as it can be deduced from the analysis in subsection 6.1. The collocation points
are always placed strictly inside the elements such that the surrounding surface is smooth. This
has the advantage that the integral-free term C reduces to C = 1

2I which is significantly easier to
compute than in the nodal collocation (see [24] for the expressions of C for three-dimensional
elastostatics).

The final system of Eqs. (28) (or (36) for dynamic problems) is obtained by introducing the
Neumann boundary conditions in a weighted sense by using the mass matrix B. Moreover, Robin
boundary conditions are easily implemented by using another mass matrix G. This system is
well structured in contrast to the nodal collocation approach where the system matrix is usually
a mixture of columns of V and K. This mixture is often ill-conditioned and needs dimension-
less variables to obtain reasonably small condition numbers. The condition numbers cond(A)
given in subsection 6.1 are based on such variable transformations. Nevertheless, the condition
numbers due to the proposed method are (with the exception of elastostatics) smaller than in the
nodal collocation despite their larger sizes. This is especially the case in the dynamic analyses.

The Schur complement of systems (28) and (36) resembles a Dirichlet-to-Neumann map [38].
It has mapping properties similar to a finite element stiffness matrix and, therefore, is well-suited
for the coupling of boundary with finite element methods. Such a coupling scheme, which is
independent of the discretization method on the subdomain level, has been proposed in [33]
based on the presented collocation method.

The new approach is based on the globally discontinuous approximation of q in Eq. (22) and
treats every coefficient q j of the approximation as an unknown quantity. For this reason the
system matrices are significantly larger than in the nodal collocation. Consider for instance, the
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case of three-dimensional elasticity with a piecewise linear discontinuous approximation of the
tractions. In that case, every surface element τe has nine unknown traction coefficients and the
dimension of the system matrix V is thus (9Ne)2, where Ne denotes the number of elements.
The presented formulation allows for the use of a piecewise constant traction approximation
but, unfortunately, the combination of linear and constant shape functions spoils the solvability
of the final system of equations [39]. Possibly, stabilization techniques known from mixed finite
element methods [4] could be adapted to the system of this collocation approach such that the
use of constant shape functions for the approximation of the dual variable q becomes feasible.

In any case, it can be assumed that matrix approximation techniques such as the adaptive
cross approximation [3] (see also [32]) would yield good approximation rates if applied to the
matrix V. Moreover, the use of iterative solution methods tailored to systems of the type (28)
could significantly speed up the solution procedure because of the good condition numbers of
the block matrices V and S. Such preconditioned iterative solvers are so far only available for
the symmetric Galerkin method [40].

Another drawback of the proposed approach is the placement of the collocation points which
is so far heuristic. It would be desirable to have a criterion at hand which is based on mathemat-
ical analysis.

8 Conclusion

A novel collocation approach has been presented with valuable properties. It combines the
natural approximation spaces with a structured and well conditioned system matrix. Moreover,
the inclusion of Robin boundary conditions is straightforward. But these features come with a
high numerical cost such that the method in its current state can only be applied to rather small-
sized problems. Nevertheless, this problem could be reduced. The use of iterative solvers with
matrix compression techniques would significantly speed up the solution process and reduce the
storage requirements.
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[33] T. Rüberg. Non-conforming FEM/BEM Coupling in Time Domain, volume 3 of Computa-
tion in Engineering and Science. Verlag der Technischen Universität Graz, 2008.

[34] M. Schanz. Wave propagation in Viscoelastic and Poroelastic Continua - A boundary
element approach. Springer, 2001.

[35] M. Schanz and H. Antes. A new visco- and elastodynamic time domain boundary element
formulation. Computational Mechanics, 20:452–459, 1997.

[36] M. Schanz and L. Kielhorn. Dimensionless Variables in a Poroe lastodynamic Time Do-
main Bounday Element Formulation. Building Research Journal, 53(2–3):175–189, 2005.

[37] C. Schwab and W.L. Wendland. On numerical cubature of singular surface integrals in
boundary element methods. Numerische Mathematik, 62:343–369, 1992.

30



Preprint No 4/2008 Institute of Applied Mechanics

[38] O. Steinbach. Stability Estimates for Hybrid Domain Decomposition Methods. Springer,
2003.

[39] O. Steinbach. Mixed approximations for boundary elements. SIAM journal on Numerical
Analysis, 38:401–413, 2000.

[40] O. Steinbach. Fast solution techniques for the symmetric boundary element method in
linear elasticity. Computer Methods in Applied Mechanics and Engineering, 157:185–191,
1998.

[41] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems.
Springer, 2008.

[42] L.T. Wheeler and E. Sternberg. Some theorems in classical elastodynamics. Archive for
Rational Mechanics and Analysis, 31:51–90, 1968.

[43] G. Yan and F.-B. Lin. Treatment of corner node problems and its singularity. Engineering
Analysis with Boundary Elements, 13:75–81, 1994.

31


