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Abstract

This article presents an overview on poroelastodynamic models and some analytical so-
lutions. A brief summary of Biot’s theory and on other poroelastic dynamic governing
equations is given. There is a focus on dynamic formulations and the quasi-static case is
not considered at all. Some analytical solutions for special problems, fundamental solu-
tions, and Green’s functions are discussed. The numerical realization with two different
methodologies, namely the Finite Element Method and the Boundary Element Method, is
reviewed.
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1 Introduction

In many branches of engineering porous materials play an important role, in e.g., the petroleum
industry, chemical engineering, soil mechanics, and in recent years also in bio-mechanics. The
attempt to capture the physical behavior of a two- or more-phase material is quite old. First ideas
can be even traced back to Leonhard Euler in the 18th century [61]. The theory of continuum
mechanics for a one phase material is well established (see, e.g., Truesdell and Toupin [207]).
The extension of continuum mechanics to more than one phase results in mixture theories (see,
e.g., [103, 104, 12]). A historical treatment can be found in the review article by de Boer [62] or
in the monograph [61] of the same author including the scientific (and indeed dramatic) dispute
of von Terzaghi and Fillunger on the uplift and capillary problems. Despite this dispute, both
von Terzaghi and Fillunger may be seen as the pioneers of two branches in today’s established
porous theories.

Based on the work of von Terzaghi, a theoretical description of porous materials saturated
by a viscous fluid was presented by Biot [22] in 1941, whereas going back to Fillunger’s work
the mixture theory based theories have been developed, especially the Theory of Porous Media.
This theory is based on the axioms of continuum theories of mixtures [207, 37] extended by the
concept of volume fractions by Bowen [34, 35] and others [88, 89].

The above cited theories are first established as quasi-static theories, i.e., no inertia effects
have been taken into account. The dynamic version of a two-phase theory, which is the focus
of this article, will be called in the following poroelastodynamics. Mostly, the starting point
of poroelastodynamics is attributed to the two papers by Biot [24, 25] in 1956. However, first
works on poroelastodynamics are those of Frenkel [93] in 1944 from which a reprint [92] exists.
Further work in the Russian scientific community based on this pioneering work is reviewed
by Nikolaevskiy [158]. The connection of Frenkel’s work to Biot’s theory is presented by Pride
and Garambois [173], where it is shown that both researchers have developed the same theory.
Biot [24] has even cited Frenkel’s original work. Nowadays most publications refer to Biot’s
papers. The uniqueness of Biot’s theory is discussed by Deresiewicz and Skalak [79]. The
same author published a series of papers on boundary or interface conditions related to a porous
body [70, 71, 78, 72, 74, 75, 73, 80, 76, 77].

The extension to a nearly saturated poroelastic material has been presented by Aifantis [2]
and Wilson and Aifantis [226] for the quasi-static case. There are also several other theories for
partially saturated media or media with more phases, e.g., [157, 213, 186]. The dynamic exten-
sion of Biot’s theory to three phases has been published by Vardoulakis and Beskos [208]. Fur-
ther development of this model to describe the dynamic behavior of rocks inclusively wave prop-
agation phenomena has been provided by Beskos [18], Beskos et al. [21, 20], and Vgenopoulou
et al. [212]. In these publications, the third phase handles the fissures in the rocks which are
separately treated from the normal pores. Local heterogeneities in porous materials have been
treated by Wei and Muraleetharan [214, 215] in the framework of a two-phase mixture theory.

A state of the art overview on the theory of poroelasticity, its numerical approximation, and
applications may be found in the proceedings of the Biot conferences. Up to now, this event
took place three times, first in Louvain-la-Neuve [205], second in Grenoble [9], and third in
Norman [1]. There are also two special journal issues: One in the International Journal of
Solids and Structures (35 (34-35), 1998) edited by A.H.-D. Cheng et al. and the other in Soil
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Dynamics and Earthquake Engineering (26 (6-7), 2006) edited by M.D. Trifunac. Here, only
the poroelastodynamic work is reviewed not considering the much more extensive literature on
consolidation.

First, the different versions of dynamic theories are recalled and the basic equations are given.
These theories are compared with the help of a one-dimensional wave propagation example.
Then analytical solutions are presented with focus on fundamental solutions and Green’s func-
tions. Last, two numerical procedures – the Finite and Boundary Element Method – are re-
viewed. Certainly, it is not possible to make a complete review of the available literature and on
all techniques.

Throughout this paper, the summation convention is applied over repeated indices and Latin
indices receive the values 1,2, and 1,2,3 in two-dimensions (2-d) and three-dimensions (3-d),
respectively. Commas (),i denote spatial derivatives and dots (̇) denote the time derivative.
The Kronecker delta is denoted by δi j. Further, any index (sub- or superscript) f refers to the
interstitial fluid and s to the skeleton.

2 Biot’s theory

Based on the work of von Terzaghi, a theory of porous materials containing a viscous fluid
was presented by Biot [22]. In the following years, Biot extended his theory to anisotropic
cases [23] and also to poroviscoelasticity [26]. The dynamic extension was published in two
papers, one for the low frequency range [24] and the other for the high frequency range [25]. A
collection of Biot’s papers on porous materials has been published by Tolstoy [206]. Among the
significant findings in the theory for poroelastodynamics was the identification of three waves
for a 3-d continuum, two compressional waves and one shear wave. This extra compressional
wave, known as the slow longitudinal wave, has been experimentally confirmed by Plona [170].

In Biot’s theory a fully saturated material is considered, i.e., an elastic skeleton with a statis-
tical distribution of interconnected pores is modeled. This porosity is denoted by

φ =
V f

V
, (1)

where V f is the volume of the interconnected pores contained in a sample of bulk volume V . The
sealed pores are considered as part of the solid. Full saturation is assumed leading to V =V f +V s

with V s the volume of the solid.
As the aim of the paper is to model wave propagation phenomena, it is sufficient to for-

mulate a linear kinematic equation. To do so, first, the solid displacements us
i and the fluid

displacements u f
i are introduced. Alternatively to the fluid displacements, a relative displace-

ment wi = φ

(
u f

i −us
i

)
, the so-called seepage displacement, may be used. The relation of the

solid/fluid strain to the solid/fluid displacement is chosen linear, respectively

ε
s
i j =

1
2
(
us

i, j +us
j,i
)

ε
f
kk = u f

k,k (2)

assuming small deformation gradients. In (2), the components of the solid and fluid strain tensors
are denoted by εs

i j and ε
f
kk, respectively.
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In a two-phase material not only each constituent, the solid and the fluid, may be compressible
on a microscopic level but also the skeleton itself possesses a structural compressibility. If the
compression modulus of one constituent is much larger than the compression modulus of the
bulk material this constituent is assumed to be materially incompressible. A common example
for a materially incompressible solid constituent is soil. In this case, the individual grains are
much stiffer than the skeleton itself. Hence, beside the general model assuming all constituents
as compressible also idealised versions modeling some constituent as incompressible exist. In
the following, a brief summary of the basic equations will be given. The compressible model,
some incompressible models, and some simplified models will be presented.

2.1 Compressible model

If the constitutive equations are formulated for the elastic solid and the interstitial fluid, a partial
stress formulation is obtained [23]

σ
s
i j = 2Gε

s
i j +

(
K− 2

3
G+

Q2

R

)
ε

s
kkδi j +Qε

f
kkδi j (3a)

σ
f =−φp = Qε

s
kk +Rε

f
kk . (3b)

The respective stress tensors are denoted by σs
i j and σ f δi j. The elastic skeleton is assumed to

be isotropic and homogeneous with the two elastic material constants bulk modulus K and shear
modulus G. In the above, the sign conventions for stress and strain follow that of elasticity,
namely, tensile stress and strain is denoted positive. Therefore, in equation (3b) the pore pressure
p is the negative hydrostatic stress in the fluid σ f . The coupling between the solid and the fluid is
characterized by the two parameters Q and R. Considerations of constitutive relations at micro
mechanical level as given by Detournay and Cheng [82] shows that these parameters can be
calculated from the bulk moduli of the constituents by

R =
φ2K f Ks2

K f (Ks−K)+φKs (Ks−K f )
(4)

Q =
φ((1−φ)Ks−K)K f Ks

K f (Ks−K)+φKs (Ks−K f )
, (5)

where Ks denotes the bulk modulus of the solid grains and K f the bulk modulus of the fluid.
An alternative representation of the constitutive equation (3) is used in Biot’s earlier work [22].

There, the total stress σi j = σs
i j +σ f δi j is introduced and with Biot’s effective stress coefficient

α = 1− K
Ks = φ

(
1+

Q
R

)
(6)

the constitutive equation with the solid displacement us
i and the pore pressure p

σi j = 2Gε
s
i j +

(
K− 2

3
G
)

ε
s
kkδi j−αδi j p = σ

e f f ective
i j −αδi j p (7a)
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is obtained. The effective stress σ
e f f ective
i j is identified in (7a) in its generalized form. Additional

to the total stress σi j, the variation of fluid volume per unit reference volume ζ is introduced

ζ = αε
s
kk +

φ2

R
p . (7b)

This variation of fluid ζ is defined by the mass balance over a reference volume, i.e., by the
continuity equation

ζ̇+qi,i = 0 (8)

with the specific flux qi = φ

(
u̇ f

i − u̇s
i

)
= ẇi. Equation (8) shows that ζ describes the motion of

the fluid relative to the solid.
The next step is to state the balances of momentum. For a two-phase material the balance of

momentum can be formulated for the mixture or by separating the solid skeleton from the fluid
for each constituent.

The partial balances are used by Biot [24] resulting in a formulation with the unknowns solid
displacement us

i and fluid displacement u f
i

σ
s
i j, j +(1−φ) f s

i =(1−φ)ρsüs
i −ρa

(
ü f

i − üs
i

)
− φ2

κ

(
u̇ f

i − u̇s
i

)
(9a)

σ
f
,i +φ f f

i = φρ f ü
f
i +ρa

(
ü f

i − üs
i

)
+

φ2

κ

(
u̇ f

i − u̇s
i

)
. (9b)

The first balance equation (9a) is that for the solid grains and the second (9b) is that for the
interstitial fluid. In equation (9), the body forces in the solid skeleton f s

i and in the fluid f f
i are

introduced. Further, the respective densities are denoted by ρs and ρ f . To describe the dynamic
interaction between the fluid and the skeleton an additional density the apparent mass density ρa

has been introduced by Biot [24]. It can be written as ρa = Cφρ f where C is a factor depending
on the geometry of the pores and the frequency of excitation. At low frequency, Bonnet and
Auriault [30] measured C = 0.66 for a assembly of glass spheres. In higher frequency ranges, a
functional dependence (a combination of Kelvin functions) of C on frequency has been proposed
based on conceptual porosity structures, e.g., in [25] and [30]. Another relation to determine this
apparent mass density has been suggested by Berryman [15]

ρa = φρ f (1−a) a = 1− r
(

1− 1
φ

)
, (10)

which he found in good agreement with experiments. In (10), the parameter r is determined by
the form of the particles and vary in the range 0≤ r ≤ 1.

The factor φ2/κ in front of the damping term in (9) is usually denoted by b. Here, the sim-
plification of a frequency independent, respectively time independent, value is taken which is
only valid in low frequency range. Further, the factor φ2/κ is valid only in case of circular pores
when κ denotes the permeability. More general models with a frequency dependence of κ may
be found, e.g., in the works of Biot [25], Johnson et al. [123], or Auriault et al. [8]. For a correct
formulation of (9) the frequency dependence of this factor has to be transformed to time domain
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and a convolution in time between the respective time-dependent factor and the damping term
has to be performed.

The third above mentioned balance of momentum for the mixture is formulated in Biot’s
earlier work [22] for quasi-statics and in [24] for dynamics. This dynamic equilibrium is given
by

σi j, j +Fi = ρs (1−φ) üs
i +φρ f ü

f
i , (11)

with the bulk body force per unit volume Fi = (1−φ) f s
i +φ f f

i . It is obvious that adding the two
partial balances (9a) and (9b) results in the balance of the mixture (11).

In most papers using the total stress formulation, the constitutive assumption for the fluid
transport in the interstitial space is given by Darcy’s law. Here, it is also used, however, with
the balance of momentum in the fluid (9b) Darcy’s law is already given. Rearranging (9b) and
taking the definition of the flux qi = φ

(
u̇ f

i − u̇s
i

)
as well as σ f =−φp into account the dynamic

version of Darcy’s law

qi =−κ

(
p,i +

ρa

φ

(
ü f

i − üs
i

)
+ρ f ü

f
i − f f

i

)
(12)

is achieved.
Aiming at the equation of motion, the constitutive equations have to be combined with the

corresponding balances of momentum. The kinematic conditions (2) are first inserted in the
constitutive equations. Next, the degrees of freedom must be determined. There are several
possibilities:

i) To use the solid displacement us
i and the fluid displacement u f

i with six (four) unknowns
in 3-d (2-d) [24].

ii) Alternatively the solid displacement us
i and the seepage displacement wi with also six

(four) unknowns in 3-d (2-d) can be used [231]. Beside the seepage displacement also
sometimes the seepage velocity, i.e., the time derivative of wi is applied.

iii) A combination of the pore pressure p and the solid displacement us
i with four (three) un-

knowns in 3-d (2-d) can be established. As shown by Bonnet [29], this choice is sufficient.

In the following, the first choice will be denoted by us
i -u

f
i -formulation, the second by us

i -wi-
formulation, and the third by us

i -p-formulation.

us
i -u

f
i -formulation First, the equations of motion for a poroelastic body are presented for the

unknowns solid displacement us
i and fluid displacement u f

i . Inserting in (9) the constitutive
equations (3) written for the partial stress tensors yields a set of equations of motion in time
domain

Gus
i, j j +

(
K +

1
3

G
)

us
j,i j+Q

(
Q
R

us
j, ji +u f

j, ji

)
+(1−φ) f s

i

= (1−φ)ρsüs
i −ρa

(
ü f

i − üs
i

)
− φ2

κ

(
u̇ f

i − u̇s
i

)
(13a)

R
(

Q
R

us
j, ji +u f

j, ji

)
+φ f f

i = φρ f ü
f
i +ρa

(
ü f

i − üs
i

)
+

φ2

κ

(
u̇ f

i − u̇s
i

)
. (13b)
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us
i -wi-formulation Second, for this representation in all of the above equations u f

i is changed
to wi. With this unknown, the dynamic equilibrium for the mixture (12) reads

σi j, j +Fi = ρüs
i +ρ f ẅi , (14)

using the bulk density ρ = ρs (1−φ)+φρ f . The dynamic version of Darcy’s law (12) is then

ẇi = qi =−κ

(
p,i +ρ f üs

i +
1
φ

(
ρa

φ
+ρ f

)
ẅi− f f

i

)
. (15)

Inserting in the partial balances of momentum (9) the constitutive equations (7) reformulated
with wi and using the time integrated form of the continuity equation (8), i.e., ζ = −wi,i, the
system of governing equations

Gus
i, j j +

(
K +

1
3

G+α
2 R

φ2

)
us

j,i j +α
R
φ2 w j, ji +Fi = ρüs

i +ρ f ẅi (16a)

α
R
φ

us
j, ji +

R
φ

w j, ji +φ f f
i = φρ f üs

i +
(

ρa

φ
+ρ f

)
ẅi +

φ

κ
ẇi (16b)

is obtained.

us
i -p-formulation Third, the respective equations of motion are presented for the pore pressure

p and the solid displacement us
i as unknowns. To achieve this formulation the fluid displacement

u f
i or the relative fluid/solid displacement wi has to be eliminated. In order to do this, Darcy’s law

(15) has to be rearranged to obtain wi. Since the seepage displacement is given as second order
time derivative in (15) and the flux is related to its first order time derivative this rearrangement
is performed in Laplace domain. A transformation to Laplace domain results in

ŵi =−
κρ f φ

2s2

φ2s+ s2κ(ρa +φρ f )︸ ︷︷ ︸
β

1
s2ρ f

(
p̂,i + s2

ρ f ûs
i − f̂ f

i

)
. (17)

In equation (17), the abbreviation β is defined for further usage and L { f (t)} = f̂ (s) denotes
the Laplace transform, with the complex variable s. Moreover, vanishing initial conditions for
us

i and u f
i are assumed here and in the following. Now, the final set of differential equations for

the displacement ûs
i and the pore pressure p̂ is obtained by inserting the constitutive equations

(7) into the Laplace transformed dynamic equilibrium (14) and the continuity equation (8) with
ŵi from equation (17). This leads to the final set of differential equations for the displacement
ûs

i and the pore pressure p̂

Gûs
i, j j +

(
K +

1
3

G
)

ûs
j,i j− (α−β) p̂,i− s2 (ρ−βρ f ) ûs

i = β f̂ f
i − F̂i (18a)

β

sρ f
p̂,ii−

φ2s
R

p̂− (α−β)sûs
i,i =

β

sρ f
f̂ f
i,i . (18b)
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Certainly, the same elimination process of wi can be performed in Fourier domain resulting in a
similar set of equations.

This set of equations describes the behavior of a poroelastic continuum completely as well as
the us

i -u
f
i -formulation (13) and the us

i -wi-formulation (16). Contrary to both latter formulations
an analytical representation of (18) in time domain is only possible for κ→ ∞. This represent a
negligible friction between solid and interstitial fluid.

2.2 Incompressible models

As mentioned in the beginning, several incompressible versions of Biot’s theory can be formu-
lated depending on which constituent is modelled incompressible. In total three cases exist:

i) only the solid grains are incompressible,

ii) only the fluid is incompressible, or

iii) the combination of both.

The respective conditions for such incompressibilities are [82]

K
Ks � 1 incompressible solid,

K
K f � 1 incompressible fluid . (19)

Inserting these conditions of incompressibility (19) in the material parameter R,Q, and α from
(4), (5), and (6), respectively, it becomes obvious that the first two incompressible models can
be handled as the compressible model with different material data. These material data are given
in the following:

• Incompressible solid grains K/Ks� 1

α≈ 1 R≈ K f
φ Q≈ K f (1−φ) (20)

• Incompressible fluid K/K f � 1

α unchanged R≈ φ2Ks

1−φ− K
Ks

Q≈ φ(α−φ)Ks

1−φ− K
Ks

(21)

These limiting values of the material data can be inserted in the constitutive equations (3) or (7)
and, hence, no special treatment is required. These two models are sometimes referred to as
hybrid models [63] and need no further consideration.

The third case has to be treated separately:

• Both constituents are assumed to be incompressible K/Ks� 1 and K/K f � 1

α≈ 1 R→ ∞ Q→ ∞ but
Q
R

=
1−φ

φ
(22)
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The relation R,Q→ ∞ expresses that the values of R and Q become large, however, due to
physical reasons they are in any case limited. But, the condition that R becomes large is used
to neglect in (7b) the influence of the pore pressure. This condition and α = 1 results in the
constitutive equations

σi j = 2Gε
s
i j +

(
K− 2

3
G
)

ε
s
kkδi j−δi j p (23a)

ζ = ε
s
kk (23b)

for incompressible constituents using the total stress formulation. In (23a), the effective stress
principle as formulated by von Terzaghi is recovered. The second equation (23b) shows that
this special modeling of a porous continuum relates the variation of fluid volume directly to
the volumetric solid strain. Further, there is no longer any constitutive assumption for the pore
pressure p.

For the partial stress formulation (3), a different point of view must be considered because
inserting the infinite values of Q and R in the constitutive law (3) results in an infinite stress. A
possible formulation for incompressible constituents has been published by Biot [23]

(1−φ)ε
s
kk +φε

f
kk = 0 , (24)

i.e., it is assumed that the dilatation of the bulk material vanishes. Realizing the relation

Q
R

=
1−φ

φ
⇒ Q

R
ε

s
kk + ε

f
kk = 0 (25)

also in the partial stress formulation incompressible constituents can be included resulting in the
constitutive assumptions

σ
s
i j = 2Gε

s
i j +

(
K− 2

3
G
)

ε
s
kkδi j (26a)

σ
f =−φp = R

(
Q
R

ε
s
kk + ε

f
kk

)
!= 0 . (26b)

To achieve the zero value in equation (26b), the condition that the value R becomes large but is
limited must be used. Equation (26b) makes no longer any sense and shows again that for both
constituents modeled incompressible the pore pressure p is not governed by a constitutive law.

Comparing the incompressible constitutive equations (23) and (26), it becomes obvious that
they do not coincide whereas the underlying compressible models are equal. Especially, in
(26) an uncoupling of the solid and the fluid in the constitutive assumption occurs in contrast
to (23). Keeping in mind that the starting point of both models is different, either it is the
incompressibility condition (19) or the assumption of vanishing bulk dilatation (24), the different
results are not really a contradiction.

It must be remarked that with an assumption of incompressibility different wave propagation
phenomena may be lost. Especially in the case with both constituents modeled incompressible
the fast compressional wave has an infinite velocity which is unphysical [184]. In the follow-
ing, the expression ’incompressible’ will denote the case when both constituents are modeled
incompressible.

9
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us
i -u

f
i -incompressible formulation Inserting in (13) the incompressibility condition (24) yields

the governing equations

Gus
i, j j +

(
K +

1
3

G
)

us
j,i j +(1−φ) f s

i =(1−φ)ρsüs
i −ρa

(
ü f

i − üs
i

)
− φ2

κ

(
u̇ f

i − u̇s
i

)
(27a)

φ f f
i = φρ f ü

f
i +ρa

(
ü f

i − üs
i

)
+

φ2

κ

(
u̇ f

i − u̇s
i

)
(27b)

using the solid displacement us
i and fluid displacement u f

i as unknowns. Due to the uncoupling
of the fluid and solid in the constitutive assumptions (26), in equations (27) only the coupling by
the acceleration and damping terms remain. Further, the second equation (27b) is no longer an
independent equation which is related to the fact that the pore pressure has no constitutive law.
As an additional equation the incompressibility condition (24) has to be used.

us
i -wi-incompressible formulation In the derivation of the compressible us

i -wi-formulation the
total stress is used. The incompressible form of it (23a) has still the pore pressure as variable.
However, for incompressible constituents the relation between the solid strain and the pore pres-
sure is missing. Hence, an incompressible us

i -wi-formulation can not be established. This is
also true if the second incompressible model used for the us

i -u
f
i -formulation is applied. There,

the solid displacement is related to the fluid displacement by a constant value (25) such that a
relative displacement can no longer be a variable.

us
i -p-incompressible formulation If the solid displacement and the pore pressure are used

as unknowns a sufficient set of differential equations is obtained. Inserting in (18) simply the
conditions (22), i.e., setting α = 1 and taking the limit R→∞, the equations of motion under the
assumption of incompressible constituents are achieved resulting in

Gûs
i, j j +

(
K +

1
3

G
)

ûs
j,i j− (1−β) p̂,i− s2 (ρ−βρ f ) ûs

i = β f̂ f
i − F̂i (28a)

β

sρ f
p̂,ii− (1−β)sûs

i,i =
β

sρ f
f̂ f
i,i . (28b)

The equation for the pore pressure (28b) shows that this variable is no longer a degree of free-
dom. Integrating of (28b) yields the gradient of the pore pressure which can then be eliminated
in (28a). The pore pressure is in this case only determined by the deformation of the solid
skeleton and no longer by any deformation of the fluid.

2.3 Simplified models

The us
i -u

f
i -formulation (13) or the us

i -wi-formulation (16) leads with a usual time discretisation,
e.g., Newmark, straight forward to a FEM based time stepping procedure. Unfortunately, these
formulations have more unknowns per node than the us

i -p-formulation (18) which exists only in
Laplace or Fourier domain. Hence, under the view point of computer storage a us

i -p-formulation
in time domain is desirable.
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` = 3m

x

y

ty =−1 N
m2 H(t)

Figure 1: Geometry and boundary conditions of the poroelastic column

The reason why a us
i -p–formulation is not possible in time domain is found in the generalized

Darcy’s law (15) where an elimination of the fluid displacement u f
i or of the relative displace-

ment wi is not possible. An elimination is possible if the second time derivative of the seepage
displacement wi is neglected in the equilibrium (14) and in the dynamic version of Darcy’s law
(15). This results in the simplified dynamic equilibrium

σi j, j +Fi = ρüs
i , (29)

and the simplified dynamic version of Darcy’s law

ẇi = qi =−κ

(
p,i +ρ f üs

i − f f
i

)
. (30)

Now, the simplified balance of momentum for the fluid (30) can be used to replace wi in the
equations (7) and (8). Rearranging them yields the governing set of differential equations for the
unknowns solid displacement us

i and pore pressure p in the time domain

Gus
i, j j +

(
K +

1
3

G
)

us
j,i j−αp,i−ρüs

i =−Fi (31a)

κp,ii−
φ2

R
ṗ−αu̇s

i,i +κρ f üs
i,i = κ f f

i,i . (31b)

This simplification has been published by Zienkiewicz et al. [233]. From the same group another
even more simplified version has been published [231] where a static version of Darcy’s law is
used. There also the inertia of the solid displacement in Darcy’s law (30) is neglected.

In [233], the limitations of the different simplifications are discussed with the help of an
analytical 1-d example. The conclusion in this publication is that in soil mechanics or geome-
chanical applications with mostly low frequency acceleration the complete Biot theory does not
significantly differ from the simplified form. To demonstrate the effect of the simplifications on
wave propagation phenomena the semi-analytical solution of a poroelastic column as depicted
in Figure 1 is calculated. Due to the boundary conditions a one-dimensional problem is given
which is solved in Laplace domain using standard techniques for ordinary differential equations
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Figure 2: Comparison of Biot’s theory (denoted ’Biot’), the simplified theory (denoted ’simple
poro’), and the theory using a static Darcy’s law (denoted ’static Darcy’): Displace-
ment response of a poroelastic column due to a Heaviside stress load

(for details see [181] in case of the complete Biot model and [185] for the simplified model).
The inverse transformation is performed with the convolution quadrature method [145, 146].
The used material data are those of a soil [131] which are taken from literature and are given
in Table 1. The displacement of the midpoint at the top of the column is plotted versus time in

Table 1: Material data of a water saturated soil (taken from [131])

K[ N
m2 ] G[ N

m2 ] ρ [ kg
m3 ] ρ f [ kg

m3 ] φ R [ N
m2 ] α κ [m4

Ns ]

soil 2.1 ·108 9.8 ·107 1884 1000 0.48 1.2 ·109 0.98 3.55 ·10−9

Figure 2 for Biot’s theory, for the simplified theory (31), and for those equations with a static
Darcy law. The differences are visible but they are small. Especially, the simplified model (31)
does not deviate too much from the full solution.

The main differences in these theories concern the slow compressional wave. This highly
dispersive wave can be made visible if the permeability is increased, i.e., the viscosity of the
fluid is reduced. The pressure calculated at the bottom of the column is plotted versus time in
Figure 3. The response corresponding to the realistic permeability is shown in picture 3(a) and
for the increased permeability in picture 3(b). In both cases, the results of the three models
differ. In the realistic case only the pressure jumps at the wave arrival are not so sharp for the
simplified model compared to the full model. But, for the reduced permeability only the full
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Figure 3: Comparison of Biot’s theory (denoted ’Biot’), the simplified theory (denoted ’simple
poro’), and the theory using a static Darcy’s law (denoted ’static Darcy’): Pressure
response of a poroelastic column at the bottom for different permeabilities κ
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Biot model shows a correct behavior with visible wave fronts. Both other simplified theories
result in a completely unphysical behavior, i.e., they model the slow compressional wave wrong.

For completeness it should be remarked that Bowen and Lockett [36] have studied under
what conditions a consolidation theory, i.e., all inertia terms are neglected, can be used. It has
been found that even in the long time behavior for, e.g., harmonic loadings the inertia can not
be neglected. For a poroelastic slab under impulse loading a similar study has been presented
by Yeh and Tsay [228]. In this parametric study the FEM is used and the boundary conditions
and length to thickness ratio of the slab are varied.

3 Mixture theory and micromechanical based approaches

Biot’s theory has been developed mainly in an intuitive way. Beside this approach it is quite natu-
ral to use the basic principles of continuum mechanics and apply them to a mixture, hence to use
the axioms of continuum theories of mixtures [207, 37]. This approach goes back to Fillunger
[91] even when this pioneering work has been written before the above mentioned principles
has been established. Based on the work of Fillunger, a quite remarkable contribution in this
development has been published by Heinrich and Desoyer [112, 113]. The mixture theory ap-
proach has to be extended by the concept of volume fractions as suggested by Bowen [34, 35].
Thus this approach, known as the Theory of Porous Media (TPM), proceeds from the assump-
tion of immiscible and superimposed continua with internal interactions. A lot of contributions
to the development of this theory is found, e.g., by de Boer and Ehlers [64], de Boer [61], Ehlers
[88, 89]. However, most of these publications deal only with the quasi-static case and a dy-
namic formulation is only published for incompressible constituents by Diebels and Ehlers [83],
by de Boer et al. [65], or by Liu et al. [139].

Remarks on the equivalence of both theories, Biot’s and TPM, are found in the work of Bowen
[35]. In this paper, he showed that the Biot theory is a special case of a linearized theory of mix-
tures with constant volume fractions. Bowen called this the case of ‘frozen volume fraction’.
To achieve equivalence between both approaches the parameter Q introduced by Biot (see (3))
has to be zero, which means that the interaction between both constituents in the constitutive
equations is neglected. Further, this comparison has been made only for the quasi-static formu-
lation. For the dynamic equations in the us

i -u
f
i -formulation Ehlers and Kubik [90] compared and

discussed the linear versions of both theories claiming that they are equivalent if Biot’s apparent
mass density is assumed to be zero. In [183] again a comparison of both theories but now for
the us

i -p-formulation has been presented where the main findings confirm the other papers. Both
approaches coincide in case of incompressible constituents and if the apparent mass density is
neglected. In this case the different material data can be matched. In case of compressible
constituents the final equation of the us

i -p-formulation in TPM is [183]

Gûs
i, j j +

(
K +

1
3

G
)

ûs
j, ji−

(
nF

0 + zSnS
0−β

T ) p̂,i− s2 (
ρ−β

T
ρ f
)

ûs
i = β

T f̂ f
i − F̂i , (32a)

βT

sρ f
p̂,ii−

nF
0 s

K f
p̂−
(
nF

0 + zSnS
0−β

T )sûs
i,i =

βT

sρ f
f̂ f
i,i . (32b)

In (32), all clearly identifiable parameters are denoted as in section 2. The abbreviation βT is
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Figure 4: Comparison of TPM and Biot: Response of a poroelastic column due to a Heaviside
stress load

the same as in (17) if ρa = 0 is set. Further, the porosity is denoted by nF
0 = φ and nS

0 = 1−φ

where the subscript ()0 indicates that the porosity has to be constant. The governing differential
operator in Biot’s theory (18) and TPM (32) is the same but there is still an open question how
to relate the two material data, R and α of Biot’s theory, to some data of the TPM, especially
how to determine zS.

The bulk modulus of the fluid is introduced in (32b) instead of the universal gas constant
and the absolute temperature compared to the original work [183]. This follows a suggestion
by Gurevich [105] and is in accordance with the model given by Coussy [56]. The displacement
response of the same poroelastic column as in the previous section (see Figure 1) has been
computed. It is plotted in Figure 4 versus time. The results of both theories show the same
behavior but have different amplitudes. Not only from Figure 4, it can be concluded that the
question remains how the compressible TPM can be formulated such that it coincides with Biot’s
theory, i.e., how α and R can be related to any parameter (or combination of parameters) in TPM.
Further, Gurevich [105] has shown that the low frequency limit of the TPM does not result in
a Gassmann type wave velocity. As a consequence of these works on the equivalence of both
theories, it may be stated that even though both approaches are similar the theories differ strongly
how they model the solid-fluid interaction.

Wilmanski [224] has proposed a Simple Mixture Model which is a linearized form of a poroe-
lastodynamic theory based on the mixture theory. Different to the TPM this theory takes all
dynamic effects, except the apparent mass density, into account [225]. The linearized version
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can be formulated with the porosity n as

∂ρ f

∂t
+ρ

f
0 u̇ f

i,i = 0

∣∣∣∣∣ρ f −ρ
f
0

ρ
f
0

∣∣∣∣∣� 1

ρ
f
0 ü f

i +κ
K gradρ

f +β
K (n−nE),i +π

(
u̇ f

i − u̇s
i

)
= 0

ρ
s
0üs

i −λ
su j,i j +µs (us

i, j j +us
j,i j
)
+β

K (n−nE),i−π

(
u̇ f

i − u̇s
i

)
= 0

∂(n−nE)
∂t

+Φ

(
u̇ f

i,i− u̇s
i,i

)
e+

n−nE

τn
= 0 , nE = n0

(
1+δ us

i,i
)
,

∣∣∣∣n−n0

n0

∣∣∣∣� 1 .

(33)

In (33), the subscript ()0 denotes the constant reference values of the respective data and κK ,λs,µs,βK ,π,τn,δ,Φ
are constant material parameters. These equations coincide with Biot’s if Q = 0 and ρa = 0 is
assumed in Biot’s theory and if the parameter βK is set to zero in (33) which governs the change
of porosity. The latter can safely be done in a linear formulation [218]. As seen above, the same
restrictions have been found by Bowen [35] in his comparison with Biot’s theory. Hence, (33)
can be interpreted as an extension of Bowen [35]. Wilmanski [223] demonstrated that the dif-
ferent values of Q, i.e., the different description of fluid-structure coupling in the models, have a
remarkable effect on the attenuation of the compressional waves.

Also by Wilmanski [221] it has been shown that in Biot’s theory the relative acceleration terms
connected with the apparent mass density violate the principle of material objectivity [217]
and the coupling in the constitutive assumptions by the parameter Q violates the second law
of thermodynamics [219]. However, it is possible to construct a non-linear model [220, 222]
which satisfies these two principles of continuum mechanics and whose linearization leads to
Biot’s model. Hence, the Biot theory can be considered as a thermodynamically sound way of
a linear description of the dynamics of saturated porous media [223]. Nevertheless, Wilmanski
uses the Simple Mixture Model to study wave properties in porous media because he stated that
the Simple Mixture Model incorporates all essential features from more complex theories. The
differences are, as stated above, only the amount of attenuation.

In (33), the change of porosity n is modeled as given in the last equation of (33). This ad-
ditional and expectable degree of freedom is not visible in Biot’s model. Further, in the TPM
due to the linearization only a constant porosity is found. But, Wilmanski [223] state that this
change of porosity is inherently in Biot’s theory (see also [3]). In a different approach based on
a variational principle Lopatnikov and Cheng [140] show that this change of porosity, which is
also modeled in the non-linear TPM, results in a semi-linear set of governing equations. Semi-
linear expresses that the equations are achieved by a linearization, however, the non-linearity
concerning the porosity has been kept. In a complete linear theory this effect can not explicitly
be modeled. The dynamic extension of this poroelastic model is found in [141]. According to
the authors, a complete linearization of their model results in Biot’s theory. An advantage of
this model is the clear relation of the macroscopic material data to micromechanical data. This
relation is presented also with experimental data by Cheng and Abousleiman [51].

The above listed theories are in principle macroscopic theories even if in some of them a
microscopic motivation is used to model some effects. There exist also micro-mechanical ap-
proaches where homogenization techniques are used to find the macroscopic governing equa-
tions. Burridge and Keller [38] derived governing equations for porous continua based on a
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two scale homogenization. These equations coincide with Biot’s equations if the viscosity of
the interstitial fluid is assumed to be of small order. If the dimensionless viscosity is of order
one a viscoelastic model is achieved. Later Auriault [7] has also presented such a two scale
homogenization for a porous body. This results in governing equations of Biot type [8].

Based on the mixture theory a boundary layer theory has been proposed by Mei and Foda
[154]. For sufficient high frequencies which are pertinent to ocean waves or seismic waves, a
boundary layer of Stoke’s type has been shown to exist near the surface of the solid. Outside this
layer, the fluid and the solid skeleton move together according to the laws of a single phase elastic
medium with changed material data. Hence, this approximate theory simplifies any calculation
to an elastodynamic problem and a diffusion problem for the pore fluid pressure in the boundary
layer.

4 Analytical solutions

In the following, analytical or semi-analytical solutions of the above mentioned poroelastody-
namic theories are listed. It is remarked that the paper only presents dynamic poroelasticity and
does not include the widespreaded quasi-static consolidation theory. The interested reader may
consider, e.g., for quasi-static fundamental solutions the paper by Cheng and Detournay [53] or
for a literature review on poroelastic Green’s functions the introduction in [162, 161]. Further,
much more analytical solutions for porous media, especially in the viewpoint of geomechanics
may be found in the review article by Selvadurai [187].

The following nomenclature is used: A fundamental solution is the solution due to an impulse
in an unbounded full space and a Green’s function takes additionally some boundary conditions
into account, e.g., the solution of a stress free half space.

4.1 Fundamental solutions

A mandatory requirement for every Boundary Element (BE) Formulation is the knowledge of
fundamental solutions. These solutions solve the underlying differential equation with the in-
homogeneity of a Dirac distribution. Physically spoken, the response of a system due to a unit
impulse is wanted. These solutions exist for a lot of linear problems.

A first approach to develop fundamental solutions for poroelastodynamics has been published
by Burridge and Vargas [39] for the us

i -wi-formulation. As inhomogeneity they chose only one
point force in the solid which is not sufficient for the usage as fundamental solution in a BE
formulation. Further, the asymptotic solution for large times has been presented. Later, Norris
[159] derived time harmonic fundamental solutions for the same formulation using a point force
in the solid as well as a point force in the fluid. He also obtained explicit asymptotic approxi-
mations for the far-field displacements, as well as those for low and high frequency responses.
Philippacopoulos [169] published also fundamental solutions for the us

i -wi-formulation in fre-
quency domain in a cylindrical coordinate system but using as Burridge and Vargas only a point
force in the solid skeleton. Also for the us

i -wi-formulation Manolis and Beskos [150] published
fundamental solutions in Laplace domain. Note, there is a correction of this paper published
in [151]. There, the authors essentially changed the unknown relative fluid to solid displace-
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ment to the absolute fluid displacement, i.e., fundamental solutions for the us
i -u

f
i -formulation

are provided. Additionally to the derivation of these solutions the analogy between poroelas-
ticity and thermoelasticity is highlighted. As shown there, this analogy is only possible for the
us

i -p-formulation. This was confirmed by Bonnet [29] when he presented the fundamental so-
lution for the us

i -p-formulation in frequency domain. Bonnet converted the three-dimensional
thermoelastic solutions of Kupradze [132] to poroelasticity and, additionally, he provided the
two-dimensional solutions. In the us

i -p-formulation the inhomogeneity is the force Fi and a
source term. This source term must be added to the continuity equation (8) and appears, finally,
in the pressure equation (18b) as right hand side. Further, Bonnet concluded that the us

i -p-
formulation is sufficient and the us

i -u
f
i -formulation is overdetermined. It should be mentioned,

however, that in Bonnet’s paper [29] there is some inconsistency regarding the sign of the time
variation assumed for the harmonic variables which in the poroelastic equations is different to
that of the thermoelastic ones. This is corrected by Domínguez [84, 85].

Kaynia and Banerjee [128] published also fundamental solutions for the us
i -u

f
i -formulation

in Laplace domain which are derived in a different way compared to Norris [159] and Manolis
and Beskos [150]. There the limits of a high- and low-permeable media are presented even
in time domain using an analytical inverse transformation. The technique of Norris [159] to
find fundamental solutions is used by Zimmerman and Stern [238] for a potential formulation
corresponding to the us

i -p-formulation. Recently, a so-called 2.5-d fundamental solution for the
us

i -p-formulation has been presented by Lu et al. [143]. Such a 2.5-d solution can be used if a
3-d load is applied to an infinitely long structure with a uniform cross-section, i.e., the structure
is essentially 2-d. For this technique the reader may consider, e.g., [147, 230].

Boutin et al. [33] published fundamental solutions for the micromechanical based theory
of Auriault et al. [8] which is equal to Biot’s. The motivation for this remake of the former
work [29] was to have a clearer insight in the necessary loads for deriving fundamental solu-
tions. For this purpose, the governing equations have been rewritten to get a symmetric operator.

In all of the above cited papers fundamental solutions are given in transformed domains.
Contrary, a time domain fundamental solution was presented by Wiebe and Antes [216] for the
us

i -u
f
i -formulation. However, in these solutions the viscous coupling of the solid and fluid is

neglected. Without this restriction Chen presented in two papers fundamental solutions for the
us

i -p-formulation, i.e., for a 2-d continuum in [46] and a for 3-d continuum in [45]. These solu-
tions are achieved from the corrected Laplace domain solutions of Bonnet [29] by an analytical
inverse transformation resulting partly in an integral which must be solved numerically.

The above discussed fundamental solutions have been developed for the general case of the
complete Biot theory. Fundamental solutions have also been derived for either the simplified
theory (31) and for the incompressible models (27a) or (28a). In the Laplace domain for the
simplified model (31) fundamental solutions are presented by Schanz and Struckmeier [185]
and for the incompressible case for both representations (27) and (28) by Schanz and Pryl [184].
Solutions for hybrid models, i.e., only one of both constituent is incompressible, can be achieved
by inserting the respective parameters in the compressible fundamental solutions. The respective
time dependent fundamental solutions for the simplified version of Biot’s theory using only the
static version of Darcy’s law has been derived by Gatmiri and Kamalian [95]. An even more
simpler approach where additionally to the static Darcy’s law also incompressible constituents
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are modeled is presented in 2-d by Gatmiri and Nguyen [96] and in 3-d by Kamalian et al. [124].
All these time domain solutions are found by an analytical inverse Laplace transform of the
Laplace domain solutions.

In the above, fundamental solutions are discussed for the case of an isotropic poroelastic
material. Clearly, also anisotropy can be taken into account for the elastic skeleton as well
as for the pores, i.e., the permeability may be a tensor function (see, e.g., [23, 27, 50]). A
fundamental solution in the dynamic case for a transversely isotropic poroelastic material is
published by Kazi-Aoual et al. [129]. The final solution can be given in form of a semi-infinite
integral over a highly complicated function. Norris [160] published a very abstract derivation
of fundamental solutions for general anisotropic poroelasticity (as well for piezoelectric and
thermoelastic solids). However, no explicit final formulas are given. Based on this work, Hanyga
[108] developed asymptotic time-domain fundamental solutions in a neighborhood of the wave
fronts.

4.2 Half-space solutions

Paul [164, 165] may be the first who investigated a two-dimensional problem involving the
disturbance of a poroelastic half-space loaded by an impulsive line load [164] or a circular uni-
form surface load [165]. However, surface tractions and displacement response were considered
only for the solid constituent. The solutions have been achieved by Laplace- and/or Fourier-
transform where the inverse transformation is performed with the technique of Cagniard. The
results consist of highly complicated integrals even for the long time limit. Gazetas and Petrakis
[97] computed the compliance of a poroelastic half-space for rocking motions of an infinitely
long rigid strip that permitted complete drainage at the contact surface. The solution has been
found in the frequency domain. In the extension of these works, Halpern and Christiano [106]
published the steady state half-space solution which considers both solid and fluid tractions to be
applied on the surface. The required inverse transformation was performed numerically contrary
to Paul [164]. In a companion paper, Halpern and Christiano [107] gave the half-space solution
with a rigid plate resting on the surface. A series of papers for different loadings of the same
problem of a rigid plate on the half-space were published by Jin and Liu [121, 118, 119]. Zeng
and Rajapakse [229] developed a solution for a buried rigid disk. However, the final solution
consists of several integral equations which are solved numerically. The surface displacements
and stresses of a half-space loaded by an incident compression or shear wave has been stud-
ied in [138] under the simplifying assumption of an inviscid fluid, i.e., the waves are no longer
dispersive in this study.

Lamb’s problem for poroelastic materials has been solved by Philippacopoulos [166] in the
frequency-wavenumber domain. In a comment to this solution, Sharma [192] mentioned that the
boundary conditions have to be chosen different, i.e., not only the total stress vector has to be
prescribed but also the pore pressure. Clearly, with these different loading conditions different
results are achieved. Philippacopoulos [166] got displacements smaller than the dry (elastic)
solution whereas Sharma [192] got for some dissipation values larger amplitudes. The solution
for a layered half-space with a loading applied on a rigid disk is given in frequency domain in
cylindrical coordinates by Philippacopoulos [167].

Contrary, to the above listed solutions where the load has been applied on the surface, Senjun-
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tichai and Rajapakse [189] published the solution for a 2-d poroelastic half-space with a buried
load, i.e., a Green’s function is given which is in principle useable in BE formulations. This
solution is found by Fourier transform with respect to the horizontal coordinate and time. The
vertical coordinate is not transformed. The inverse transformation is performed numerically.
With the same technique the solution for a plane multi-layered poroelastic medium loaded by a
buried time-harmonic load or fluid source has been found by Rajapakse and Senjuntichai [175].
A discussion on the solution technique used in this paper has been published by Kausel [127].
Bougacha et al. [32] have been presented a similar but only semi-analytical solution of the same
problem with applications given in [31]. Contrary to the solution of Rajapakse and Senjuntichai
[175], in the deduction of this solution a Finite Element approach is used for the approximation
in the horizontal coordinate. Hence, only the solutions of Senjuntichai and Rajapakse [189]
and Rajapakse and Senjuntichai [175] can be used as a Green’s function modeling the semi-
infinite extension of a half-space exactly. A solution in 3-d for a half-space loaded by a buried
load is given in cylindrical coordinates for the us

i -p-formulation by Jin and Liu [120] and for
the us

i -wi-formulation by Philippacopoulos [168]. Both solutions are found in frequency domain
by superposition with the full-space fundamental solution. The wave propagation in a layered
half-space is treated by an exact stiffness formulation in the wavenumber-frequency domain
by Degrande et al. [69]. This technique is in the same publication also applied to unsaturated
soils.

4.3 Solutions for special problems

Some analytical solutions for dynamic one-dimensional problems have been found. For exam-
ple, Grag et al. [102] examined the response of an infinitely long fluid saturated soil column sub-
jected to a Heaviside step function velocity boundary condition at one end. There, a closed form
solution was obtained for the limiting cases of zero and infinite fluid drag. Grag’s solution in
Laplace domain with a subsequent numerical inversion led to a solution of Biot’s equations [115]
and was compared to a 1-d Finite Element solution in [114]. A solution in frequency domain of
a finite 1-d column loaded at the top by total stress and pore pressure was presented by Cheng
et al. [54] for comparison with a Boundary Element solution. Based on the Theory of Porous
Media an analytical 1-d solution for an infinitely long column was deduced for incompressible
constituents [65]. Finally, for a more general material case of a partially saturated dual-porosity
medium, a 1-d solution in Laplace domain is available from Vgenopoulou and Beskos [209].

It is of interest to observe that none of the above cited theoretical one-dimensional wave
propagation investigations seems to have examined the problem of impact or step loading and
produced the dynamic wave behavior. For a step loading such a solution has been published
by Schanz and Cheng [181]. This solution is deduced in Laplace domain and the time response
is achieved by applying the Convolution Quadrature Method as proposed by Lubich [145, 146].
Due to the usage of this technique every time history for the load can be considered. In a
strong sense this solution should be called semi-analytical. The extension of this semi-analytical
solution to a poroviscoelastic material based on Biot’s theory can be found in [182].

With this 1-d solution the passage of both compressional waves can be observed. Of the other
impact or step loading solutions reported in the literature from [209, 65], only monotonic decay
was observed. This could be caused by the use of a extremely dissipative material or, as in case
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of the solution from de Boer et al. [65], because an incompressible model is used.
A common analytical solution for the validation of numerical procedures is the quasi-static

behavior of a borehole. This solution is found, e.g., in [81, 82]. The dynamic version is unfortu-
nately much more complicated. Under plain strain conditions a solution in Laplace domain with
a numerical inverse transformation is given by Senjuntichai and Rajapakse [188]. An exten-
sion to a viscoelastic solid skeleton and with partial sealed boundary conditions may be found
in [227]. A solution in 3-d in cylindrical coordinates is given in the frequency-wavenumber do-
main by Lu and Jeng [142]. The authors perform also a numerical inverse transformation, hence
this and the before mentioned solutions may be denoted semi-analytical. The semi-analytical
borehole solution of fissured rocks is given in Laplace domain with a subsequent inverse trans-
formation by Vgenopoulou and Beskos [210, 211]. The microseismicity caused by the injection
of the borehole fluids into the surrounding porous reservoir is studied analytically in [87].

The first work on scattering in a porous media has been presented by Berryman [16]. The
same problem is treated by Mei et al. [155] but using the simplified poroelastic model of the
first author. The scattering within a borehole, is treated by Hasheminejad and Hosseini [110].
The first author has presented several papers on nearly analytical solutions for scattering where
either a porous scatterer or cylinders are involved (see, e.g., [111, 109]). The scattering and the
diffraction of plane shear waves by a shallow circular-arc canyon has been solved by Liang et al.
[136]. The scattering of waves by a circular crack in a porous media is studied by Galvin and
Gurevich [94]. The dynamic stress intensity factor for a mode I loading of a penny-shaped crack
in an infinite poroelastic solid is calculated in [122].

Another application is the steady state response of a half-space due to a moving load. Theodor-
akopoulos [197] presented an analytical solution in Fourier domain for plain strain conditions
and an incompressible solid constituent. For the same problem but using the more simpler poro-
elastic model of Mei and Foda [154] a solution has been published by Theodorakopoulos et al.
[202] and [156]. In 3-d and for a rectangular moving load a solution is given in Fourier domain
with a numerical inverse transformation by Cai et al. [41]. A flexible plate on a saturated soil
layer is treated in cylindrical coordinates by Chen et al. [48]. A similar problem, the vertical vi-
bration of an elastic strip resting on a half-space with variable distance to a bedrock, is calculated
with an infinite series solution by Cai et al. [42].

With similar techniques as the aforementioned solutions the pressure on a rigid cantilever wall
connected to a poroelastic soil is calculated by Theodorakopoulos et al. [200] for Biot’s theory.
The same problem modeled with the simplified model of Mei and Foda [154] is as well treated
by Theodorakopoulos et al. [201]. Both solutions are determined in Fourier domain assuming
plain strain conditions, a spatial constant acceleration as excitation, and an incompressible solid.
Two extensions of this problem have been published. The same problem as sketched above but
with a flexible wall is treated by Lanzoni et al. [133]. The extension to a pair of rigid walls has
been published in [198] and with an additional rotational degree of freedom at the footing of the
wall in [199].

In structural engineering special solutions for structural elements are often used as there are
beams or plates. Such structural elements based on a poroelastic constitutive equation have been
developed on the basis of Biot’s theory. In the monograph by Cederbaum et al. [43] the vi-
brations, large deflections, and the stability of poroelastic beams are discussed. A plate theory
based on the Kirchhoff assumptions and using Biot’s theory has been published by Theodor-
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akopoulos and Beskos [203, 204]. In the book by Cederbaum et al. [43] as well a plate theory
is given based on Kirchhoff’s hypotheses but the diffusion in the plate is restricted to the in-
plane direction. Based on the Mindlin hypotheses a poroelastic plate theory has been developed
in [40].

5 Numerical methods

Beside analytical solutions for poroelastodynamic problems there are numerically solutions
available. Those methodologies are based on several different numerical techniques which are
also used for other classes of problems. Hence, the most popular method in solid mechanics
the Finite Element Method (FEM) has also been extended to poroelastodynamics. Further, the
Boundary Element Method (BEM) has also been applied due to its ability to treat semi-infinite
domains correctly. Clearly, also Finite Differences or Finite Volume Methods exist for poroelas-
todynamics. Here, the review is restricted to the first two mentioned methodologies.

5.1 Finite Element Method

The standard book on FE formulations for poroelasticity has been presented by Lewis and Schre-
fler [134] but it is mainly restricted to consolidation. The most complete presentation for poroe-
lastodynamics but with a strong focus on geomechanics has been published by Zienkiewicz et al.
[237]. In principle, this monograph summarizes all the effort this group has been published on
this subject. In the following, it will become obvious that there is a second large field of appli-
cation beside geomechanics – sound absorbing materials, i.e., the acoustical behavior of porous
materials. For this field of application there exists only a monograph on the basic modeling
approaches [4] but no monograph on the numerical development.

5.1.1 Formulations based on Biot’s theory

Ghaboussi and Wilson [100] seem to be the first who have formulated a FEM for dynamical
processes in poroelastic media. They used the us

i -wi-formulation and showed as well the corre-
sponding variational formulation. There is even a small example for a 1-d model of a poroelastic
half-space. Twelve years later Zienkiewicz and Shiomi [231] published FE formulations for the
us

i -u
f
i -formulation as well as for the cheaper us

i -p-formulation. Cheap means in this context
less storage due to less degrees of freedom per node. As discussed earlier in this paper, the
us

i -p-formulation in time domain can only be obtained if some terms corresponding to the fluid
acceleration can be neglected. Zienkiewicz and Shiomi [231] used the simplified model (31). As
mentioned before, this approach is a good approximation, e.g., for applications in earthquake en-
gineering [233]. Further, Zienkiewicz et al. [236] give an overview of the different formulations
with their respective simplifications and present the accompanying FE formulations.

The applicability of the different FE formulations based on different sets of unknowns is also
studied by Simon et al. [194]. The same group discussed the usage of different polynomial shape
functions in the formulations in [193]. Both studies were performed with a comparison on the
basis of a one-dimensional model.
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The above cited formulations always solve the complete system of coupled equations in one
step. There is also an approach for a staggered solution presented in [234]. Some discussions on
the stability of this numerical scheme may be found in [235] and the application of a time step
control based on an error estimator for dynamic problems is presented in [232].

5.1.2 Formulations based on the mixture theory

The above cited FE formulations are based on Biot’s theory. Certainly, as the governing differen-
tial operator is the same also for the mixture theory, the above methodologies can be transformed
to these representations of a poroelastodynamic model. The mixture theory for a porous mate-
rial as proposed by Bowen [35] is used in a FE formulation by Prevost [171, 172]. A hybrid
model with an incompressible solid constituent is applied as well as a formulation with both
constituents modeled incompressible is presented. Both formulations are based on the velocities
of the solid and fluid as unknowns. Contrary to this approach Diebels and Ehlers [83] presented
a formulation based on the Theory of Porous Media, using the three fields of unknowns solid
displacements, fluid displacements, and pore pressure. In this formulation incompressible con-
stituents are assumed. A totally different approach in the time discretisation is made by Chen
et al. [49] where a time discontinuous Galerkin procedure is proposed instead of a Newmark
scheme. The presented formulation is based on the Theory of Porous Media and an incompress-
ible solid skeleton is assumed, i.e., a hybrid model is chosen.

There are not much approaches available to take large deformations into account in a dynamic
poroelastic formulation. The first one seems to be presented by Manzari [153] based on an
extension of the simplified Biot theory (31). In this formulation an incompressible solid skeleton
is assumed and only the principle of virtual work is given. A FE formulation is presented by Li
et al. [135] where the elastic skeleton is treated by a Neo-Hooke material. They use a solid
velocity - pore pressure formulation based on the simplified Biot theory (31).

5.1.3 Formulations for acoustics

To model the acoustical behavior of porous structures, e.g., absorbers, often the so-called equiv-
alent fluid approach is used [4]. In this approach, the shear wave is neglected as well as the slow
compressional wave. Hence, a Helmholtz equation has to be solved where the influence of the
porous material is modeled as a complex valued compression modulus and a complex valued
density (see, e.g., [44]).

A porous formulation has been published for a rigid skeleton by Craggs [58]. Later, more
detailed poroelastic approaches based on the complete Biot theory have been presented by Kang
and Bolton [125], Coyette and Wynendaele [57], and Panneton and Atalla [163]. In these publi-
cations the degrees of freedom are the displacements of the solid skeleton and the displacements
of the fluid, i.e., a us

i -u
f
i -formulation is used. A us

i -p-formulation in time domain for acoustics
has been presented by Göransson [101] where a symmetric FE formulation has been established
by using additionally to the pore pressure a fluid potential [101]. To formulate this approach in
time domain the fluid acceleration has been neglected, i.e., the simplified model (31) has been
used.

However, this is not necessary because in acoustics usually not the time response but the
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frequency response is required. Hence, a formulation in frequency domain is necessary where
also the fluid inertia can easily be taken into account. Such a formulation has been published
by Atalla et al. [5]. In this publication, also the coupling of the poroelastic FEM with a FEM for
the surrounding air modelled by the Helmholtz equation is presented. The field of application is
the determination of the acoustic behavior of layered porous materials as sound absorbers (see
also, e.g., [28]). In [5], the formulation is based on the partial stresses in the weak form of the
governing equations. The problem with formulating the boundary conditions in such a formula-
tion is discussed in [66]. The same formulation but based on the total stress is presented in [6].
There, the boundary conditions appear naturally in a physical form. However, the coupling
conditions to the surrounding air become more complicated. A comparison of these different
approaches to model the sound radiation of porous materials in a cavity is found in [11].

To improve the numerical behavior of these FE formulations, especially to model thin struc-
tures as plate like absorbers, Hörlin et al. [117] use hierarchical finite elements. Later, this has
been extended to a hp-version in [116]. These formulations work in the frequency domain. Be-
side these two publications another paper on the same topic has been published by Rigobert et al.
[177].

Contrary to all above mentioned FE approaches Bermúdez et al. [13, 14] presented a formula-
tion based on Raviart-Thomas-elements. In [13] a porous media with a rigid skeleton is treated,
whereas in [14] the skeleton can be elastic but the used model is non-dissipative. The latter
model is derived by a homogenization approach.

5.1.4 Semi-infinite domains

In the above, it can be seen that the poroelastic model is often used in semi-infinite domains
where one essential physical feature is the Sommerfeld radiation condition. Hence, the numer-
ical methods should be able to model the artificial boundary of the mesh such that no wave
reflection occurs as well that the amplitudes of the waves decrease with traveling distance. De-
grande and De Roeck [67] have published absorbing boundary condition to model parts of this
physical condition. The corresponding FE formulation is given in [68]. Khalili et al. [130]
presented a coupling of the frequency domain FE formulation (us

i -u
f
i -formulation) with a 1-d

analytical solution to model the infinite space. The frequency responses shown confirm that
simply by setting either a zero displacement boundary condition or a free boundary deteriorate
the solution if not a very large mesh (discretised domain) is used. However, the presented infinite
element works only in one direction and is, therefore, only a good model for wave guides, e.g.,
a half space on a bedrock. A more sophisticated version of infinite elements has been presented
by Shao and Lan [191]. There, a truncated series of waves is used where the corresponding
wave velocity is found by minimizing the reflection coefficient. Another approach is the so-
called double asymptotic approximation which has been extended from elastodynamics [98, 99]
to poroelastodynamics by Qi and Geers [174]. This formulation may be regarded as a kind of
Boundary Element approach.
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5.2 Boundary Element Method

A more natural treatment of semi-infinite domains is the Boundary Element Method. The ef-
ficiency of BEM in dealing with such domains has long been recognized by researchers and
engineers. There is a large number of applications (see, e.g., Beskos [17, 19]). A survey on the
history of BEM itself is given by Cheng and Cheng [52]. The modeling of poroelastic domains
with BEM is reviewed by Chopra [55].

For modeling transient behavior, two approaches exist in pure boundary based formulations:
the solution in the time domain by time-stepping [152] and the solution in the integral transform
domain via Laplace or Fourier transform with subsequent inverse transformation [59]. The time
stepping approach is sometimes impossible due to the lack of a time dependent fundamental
solution which is often only available in the transformed domain. Therefore, first poroelastody-
namic BE formulations based on Biot’s theory have been published in Laplace domain by Mano-
lis and Beskos [150] for the us

i -u
f
i -formulation (see the correction of this paper in [151]). For

of the us
i -p-formulation BE formulations in frequency domain have been published by Cheng

et al. [54] and Domínguez [85]. A non-singular formulation in frequency domain has been re-
ported by Zimmerman and Stern [238] for modeling wave scattering. The non-singular integral
equation is achieved by subtracting the elastostatic integral equation of the interior of the scat-
terer from the poroelastic one. Based on the same regularization technique a so-called 2.5-d BE
formulation has recently been published by Lu et al. [144].

However, it is more natural to work in the time domain and observe the phenomenon as
it evolves. Such a time domain formulation was developed by Wiebe and Antes [216] with
the restriction of vanishing damping between the solid skeleton and the fluid. Another time
dependent formulation was proposed by Chen and Dargush [47] based on the analytical inverse
transformation of the Laplace domain fundamental solutions. But, as the authors admit, this
formulation is highly CPU-time demanding. Alternatively, Schanz [178, 179, 180] utilizes the
Convolution Quadrature Method proposed by Lubich [145, 146] to establish a time stepping BE
formulation for poroelastodynamics based on the Laplace transformed fundamental solutions.

Besides the above cited BE formulations where fundamental solutions are used which fulfill
the governing differential equation other approaches sometimes called Domain Boundary Ele-
ment Method can be found. There, mostly the fundamental solutions of elastostatics (Kelvin
solution) are used and that part of the differential operator which is not satisfied is tackled as
right hand side. This results in a domain integral (see, e.g., [196]). For poroelastodynamics
taking even plasticity effects into account such a formulation has been published by Soares et al.
[195]. However, only the simplified model sketched in section 2.3 using a static Darcy’s law is
used.

Applications of poroelastic BE formulation in the frequency domain can be found, among oth-
ers, in the analysis of dam-reservoir systems. First two-dimensional calculations are presented
by Maeso and Domínguez [148] and Domínguez and Maeso [86]. Recently, the same approach
is used in 3-d calculations by Aznárez et al. [10]. The response of axisymmetric foundations
in poroelastic media in frequency domain by BEM has been presented by Dargush and Chopra
[60]. Another application with a poroelastodynamic BE formulation is given by Maeso et al.
[149] for a pile group in soil. In tunneling, there is a publication by Kattis et al. [126] using
instead of Biot’s theory the simplification of Mei and Foda [154].
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All the above mentioned BE formulations are so-called direct methods. An indirect method
is also possible in poroelastodynamics and has been developed by Rajapakse and Senjuntichai
[176]. An application to an embedded rigid foundation in a poroelastic half-space is presented
in [190]. The scattering of shear waves by a canyon is treated in [137] also by an indirect
poroelastic BE formulation.
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