
Institute of
Applied Mechanics
Institut für Baumechanik

Preprint Series

Institute of Applied Mechanics

Graz University of Technology

Preprint No 1/2008



Convolution Quadrature Method based
symmetric Galerkin Boundary Element Method

for 3-d elastodynamics

Lars Kielhorn
&

Martin Schanz
Institute of Applied Mechanics, Graz University of Technology

Published by: International Journal for Numerical Methods in
Engineering

Latest revision: January 21, 2009

Abstract
The boundary integral equations in 3-d elastodynamics contain convolution integrals with

respect to the time. They can be performed analytically or with the convolution quadrature
method. The latter time stepping procedure’s benefit is the usage of the Laplace transformed
fundamental solution. Therefore, it is possible to apply this method also to problems where
analytical time-dependent fundamental solutions might not be known.

To obtain a symmetric formulation the second boundary integral equation has to be used
which, unfortunately, requires special care in the numerical implementation since it in-
volves hypersingular kernel functions. Therefore, a regularization for closed surfaces of the
Laplace transformed elastodynamic kernel functions is presented which transforms the bi-
linear form of the hypersingular integral operator to a weakly singular one. Supplementary,
a weakly singular formulation of the Laplace transformed elastodynamic double layer po-
tential is presented. This results in a time domain boundary element formulation involving
at least only weakly singular integral kernels.

Finally, numerical studies validate this approach with respect to different spatial and time
discretizations. Further, a comparison to the wider used collocation method is presented. It
is shown numerically that the presented formulation exhibits a good convergence rate and a
more stable behavior compared to collocation methods.
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1 INTRODUCTION

The Boundary Element Method (BEM) in time domain is known to be well suited to treat wave
propagation problems (for an overview see [3, 4]). A general mathematical background of the
underlying boundary integral equations for time dependent problems may be found in [8]. Addi-
tionally, the more particular elastodynamic case is treated in [7]. Nowadays in engineering, the
spatial discretization of those time-dependent boundary integral equations is mostly done via the
collocation method (see, e.g. [16]). But also Galerkin type approaches exist which are mostly
used for time independent problems (for an overview see [6]).

Here, the symmetric Galerkin boundary element method (SGBEM) will be applied to solve
mixed initial boundary value problems of 3-d elastodynamics. Unfortunately, the drawback
when considering mixed problems by symmetric methods is the evaluation of the second bound-
ary integral equation which, in fact, contains a non integrable hypersingularity. This kind of
singularity has to be interpreted as a finite part integral in the sense of Hadamard [23]. Those
singularities can be either treated numerically [38] or in an analytical way [18]. Here, an an-
alytical transformation of the hypersingular integral operator based on integration by parts in
3-d elastodynamics will be presented which, finally, will lead to a bilinear form containing only
weak singularities. The used approach is very similar to a regularization in elastostatics given
by Han [24] since it takes advantage of the similar structure between the elastostatic and the
elastodynamic fundamental solutions.

When dealing with singularities in dynamics it is a common practice to subtract and to add
the corresponding static fundamental solution from its elastodynamic counterpart. This is due
to the fact that the singular behavior of the static part coincides with the dynamic one (see,
e.g., [5], [25]). Hence, an existing regularization for the static case can be used to regularize also
the equivalent dynamic integral kernel. Unfortunately, the occurring residual kernel might cause
numerical instabilities due to the fact that it involves the difference between the singular dynamic
and the singular static kernel. The method presented here does not cause those instabilities since
the elastodynamic hypersingular integral operator is treated as a whole.

Regularization approaches of non integrable kernel functions based on integration by parts
have a long tradition and are well known nowadays. This technique was firstly used in 1949
by Maue [33] who applied it to the wave equation in frequency domain. A major enhancement
was then given by Nedelec [34] who introduced regularized hypersingular bilinear forms for
the Laplace equation, the Helmholtz equation as well as for the system of linear elastostatics.
Further, regularizations in the field of 3-d time-harmonic elastodynamics were presented by
Nishimura & Kobayashi [36] and Becache et al. [2]. While these both approaches rely mainly
on the previous work by Nedelec [34], the particular regularizations are nevertheless slightly
different. In the first case the hypersingular operator is used within a collocation scheme while
in the other case a Galerkin scheme is formulated. Using the latter discretization scheme is
advantageous since it features less restrictions concerning the choice of shape functions for
the displacement field. Contrary to the collocation approach, the only requirement in Galerkin
based regularizations is the continuity of the displacement field. Another regularization of the
hypersingular bilinear form in case of 3-d elastostatics was presented by Han [24] who used
some basic results from Kupradze [26]. Unlike Nedelec whose regularization is based on a
very general approach and, therefore, results in rather complicated formulae, Han restricts his
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regularization a priori to the isotropic case and discards the possibility of describing also the
anisotropic system. Hence, the resulting regularized bilinear form is simpler to deal with and
motivates the use of Han’s proof within the present work. As will be shown the extension of his
proof to the system of 3-d elastodynamics leads to a more convenient formulation with respect
to the numerical implementation than the already established regularizations [36, 2].

For the time discretization there exist in principle two approaches. Firstly, if time dependent
fundamental solutions are available, the usage of ansatz functions with respect to time yields a
time stepping procedure after an analytical time integration within each time step. This technique
has been proposed by Mansur [32] and is denoted in the following as the classical time domain
boundary element formulation. Secondly, the Convolution Quadrature Method (CQM) devel-
oped by Lubich [28], [29] can be used to establish the same time stepping procedure as obtained
by a direct time integration [39]. Contrary to the approach from Mansur for this methodology
only the Laplace domain fundamental solutions have to be used and the time integration is per-
formed numerically. Hence, this approach can easily be extended to the viscoelastic case [40]
where the fundamental solutions in closed form are only available in Laplace or Fourier domain.
Moreover, the regularization process is more advantageous since the fundamental solutions in
Laplace domain are simpler to deal with. This is due to the fact that no retarded potentials occur
like in time-dependent fundamental solutions [20].

Here, the CQM based approach will be used in conjunction with a symmetric Galerkin bound-
ary element formulation. This is motivated by the positive results of the Galerkin approach in
elastostatics [41] as well as for parabolic problems [31] and the Helmholtz equation [30].

Finally, the present formulation will be validated and it will be studied whether the stability
of the time stepping procedure is improved compared to the collocation based approach.

2 BOUNDARY INTEGRAL EQUATIONS

2.1 Formulation of the problem

Let Ω⊂ R3 be a domain with boundary Γ = ∂Ω and let the final time T ∈ R+ be fixed. A dis-
placement of a point x̃ = [x̃1, x̃2, x̃3]

T ∈Ω at the time t lying in the open interval (0,T ) is denoted
by u(x̃; t) = [u1(x̃; t),u2(x̃; t),u3(x̃; t)]T. The displacement field u(x̃; t) satisfies the equation of
motion

(L(∂x̃)+ρ
∂2

∂t2 )u = b , (1)

where ρ is the mass density, L(∂x̃) is the Lamé-Navier operator

L(∂x̃) =−(λ+µ)∇x̃∇x̃ ·−µ∆ (2)

and b = b(x̃; t) is a given force per unit volume. This body force is assumed to be absent in
the following, i.e., b≡ 0 holds. In (2), λ and µ are the Lamé constants and the operator ∇x̃
denotes the Nabla operator whereas the subscript indicates that the partial derivatives are taken
with respect to the point x̃. Moreover, ∆ represents the Laplacian.

To consider a mixed initial boundary value problem, first, the boundary Γ is split into two
non-overlapping sets ΓD,i and ΓN,i with respect to the i-th direction such that Γ = ΓD,i ∪ΓN,i
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holds. By taking into account some component-wise prescribed Dirichlet data gD,i(x; t) on ΓD,i

and Neumann data gN,i(x; t) on ΓN,i, respectively, the system reads as

((L(∂x̃)+ρ
∂2

∂t2 )u)(x̃; t) = 0 ∀ (x̃; t) ∈Ω× (0,T )

ui(x; t) = gD,i(x; t) ∀ (x; t) ∈ ΓD,i× (0,T )
ti(x; t) = gN,i(x; t) ∀ (x; t) ∈ ΓN,i× (0,T ) .

(3)

In (3), ti(x; t) represents the i-th component of the traction vector t(x; t) = σ(x; t) ·n(x) defined
by the product of the Cauchy stress tensor σ(x; t) with the outward unit normal vector n(x).

Moreover, homogeneous initial conditions are assumed such that u(x̃;0+)= 0 and ∂

∂t u(x̃;0+)=
0 hold for all x̃ ∈Ω.

2.2 Space-time representation formulas and boundary integral equations

To obtain a boundary element formulation of the stated problem, first, an appropriate boundary
integral representation of the given system of partial differential equations has to be derived.
Therefore, the representation formula corresponding to (3) is introduced [13]

u(x̃; t) =
tZ

0

Z
Γ

U(y− x̃; t− τ) · (T (∂y,n(y))u)(y;τ) dsy dτ

−
tZ

0

Z
Γ

[(T (∂y,n(y))U)(y− x̃; t− τ)]T ·u(y;τ) dsy dτ ∀ x̃ ∈Ω,y ∈ Γ, t ∈ (0,T )

(4)

containing the function U(y− x̃; t− τ) which satisfies

TZ
0

Z
Ω

((L(∂y)+ρ
∂2

∂t2 )U)(y− x̃; t− τ) ·φ(y;τ) dydτ = φ(x̃; t) ∀ x̃,y ∈Ω, t,τ ∈ (0,T ) (5)

for any function φ. A function U(y− x̃; t− τ) with the property (5) is called fundamental solu-
tion. In fact, it is the main ingredient of any boundary element formulation.

As it can be seen, (4) contains only spatial integrals over the boundary Γ. Moreover, causality
implies that all integrations with respect to the time variable must be of Volterra type. The
occurring operator T (∂y,n(y)) is a trace operator related to the outward normal vector n(y). In
elastodynamics it represents the stress-strain relation based on Hooke’s law. Hence, applying
T (∂y,n(y)) to the displacement field u(y; t) yields the relation

(T (∂y,n(y))u)(y; t) = t(y; t) = σ(y; t) ·n(y) . (6)

Until now, (4) holds only for a point x̃ ∈Ω. Therefore, a limiting process Ω 3 x̃→ x ∈ Γ has to
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be performed which finally gives the first boundary integral equation

u(x; t) =
1
2

u(x; t)−
tZ

0

Z
Γ

[(T (∂y,n(y))U)(y−x; t− τ)]T ·u(y;τ) dsy dτ

+
tZ

0

Z
Γ

U(y−x; t− τ) · t(y;τ) dsy dτ

(7)

valid for almost all x,y ∈ Γ, all times t ∈ (0,T ), and a sufficiently smooth boundary Γ. In (7),
the singular behavior of the kernel functions has to be considered. Hence, the first integral in (7)
is weakly while the second one is strongly singular and has to be interpreted in the sense of a
Cauchy principal value.

The second, or traction boundary integral equation can be derived by the application of the
operator lim

Ω3x̃→x∈Γ
T (∂x̃,n(x)) to (4)

t(x; t) =
1
2

t(x; t)+
tZ

0

Z
Γ

(T (∂x,n(x))U)(y−x; t− τ) · t(y;τ) dsy dτ

−
tZ

0

lim
Ω3x̃→x∈Γ

T (∂x̃,n(x))
Z
Γ

[(T (∂y,n(y))U)(y− x̃; t− τ)]T ·u(y;τ) dsy dτ .

(8)

Note, that the limiting process to obtain (8) is the same as for the first boundary integral equation
(7). Due to the singular kernels in (7) the first integral in (8) is strongly singular while the second
one contains a hypersingularity which has to be understand in the sense of a finite part. This
hypersingular kernel will be discussed in detail in section 4.

Now, by introducing the operators

(I ∗w)Γ(x; t) =
tZ

0

Z
Γ

δ(y−x; t− τ)I ·w(y;τ) dsy dτ

(V ∗w)Γ(x; t) =
tZ

0

Z
Γ

U(y−x; t− τ) ·w(y;τ) dsy dτ

(K ′ ∗w)Γ(x; t) =
tZ

0

Z
Γ

(T (∂x,n(x))U)(y−x; t− τ) ·w(y;τ) dsy dτ

(K ∗w)Γ(x; t) =
tZ

0

Z
Γ

[(T (∂y,n(y))U)(y−x; t− τ)]T ·w(y;τ) dsy dτ

(D ∗w)Γ(x; t) =−
tZ

0

lim
Ω3x̃→x∈Γ

T (∂x̃,n(x))
Z
Γ

[(T (∂y,n(y))U)(y− x̃; t− τ)]T ·w(y;τ) dsy dτ

(9)
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for some arbitrary functions w(y;τ) the equations (7) and (8) can be written more compact[( 1
2 I −K V

D 1
2 I +K ′

)
∗
(

u
t

)]
Γ

(x; t) =
(

u(x; t)
t(x; t)

)
. (10)

In (9) and (10), the ∗ abbreviates the convolution integrals in time. Beside the identity given in
the first line of (9) the operators can sequentially be titled as single layer, adjoint double layer,
and double layer potential. The last operator is the so-called hypersingular integral operator.

2.3 Symmetric Galerkin formulation

To find the complete Cauchy data [u, t]T the symmetric formulation as proposed in [41, 9] is
used. Therefore, the first boundary integral equation (7) is used only on the Dirichlet part ΓD,i

while the second one (8) is used on the Neumann part ΓN,i. Note, because here a vectorial prob-
lem has to be solved at each boundary point different types of boundary data in each direction
i = 1,2,3 may be prescribed. This yields

(V ∗ t)Γi(x; t)− (K ∗u)Γi(x; t) =
1
2

gD,i(x; t) ∀ x ∈ ΓD,i

(K ′ ∗ t)Γi(x; t)+(D ∗u)Γi(x; t) =
1
2

gN,i(x; t) ∀ x ∈ ΓN,i .

(11)

Now, the displacements ui(y; t) as well as the tractions ti(y; t) are decomposed into

ui = ũi + g̃D,i with ũi = 0, g̃D,i = gD,i ∀ y ∈ ΓD,i

ti = t̃i + g̃N,i with t̃i = 0, g̃N,i = gN,i ∀ y ∈ ΓN,i
(12)

where g̃D,i and g̃N,i are arbitrary but fixed extensions of the prescribed boundary data. Note, that
the extensions ũi and g̃D,i have to be continuous due to regularity requirements [43]. After insert-
ing the decompositions (12) into the system of boundary integral equations (11) the symmetric
boundary integral formulation

(V ∗ t̃)ΓD,i(x; t)− (K ∗ ũ)ΓN,i(x; t) = ((1
2 I +K )∗ g̃D)Γi(x; t)− (V ∗ g̃N)Γi(x; t)

(K ′ ∗ t̃)ΓD,i(x; t)+(D ∗ ũ)ΓN,i(x; t) = ((1
2 I −K ′)∗ g̃N)Γi(x; t)− (D ∗ g̃D)Γi(x; t)

(13)

is obtained with the unknown Cauchy data [ũ, t̃]T. By using the inner product 〈 f ,g〉Γ =
R

Γ
f (x)g(x) dsx

a variational formulation is introduced to find [ũ, t̃]T such that

〈V ∗ t̃,w〉ΓD,i−〈K ∗ ũ,w〉ΓD,i = 〈(1
2 I +K )∗ g̃D−V ∗ g̃N ,w〉ΓD,i

〈K ′ ∗ t̃,v〉ΓN,i + 〈D ∗ ũ,v〉ΓN,i = 〈(1
2 I −K ′)∗ g̃N−D ∗ g̃D,v〉ΓN,i

(14)

holds for all test-functions w(x),v(x). Note, as the Galerkin scheme is used only for the spatial
integrations the test-functions w(x) and v(x) exhibit no time dependency.
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3 BOUNDARY ELEMENT FORMULATION

3.1 Time discretization

The CQM as proposed by Lubich [28, 29] is used to approximate the convolution integrals in
time. As already stated in section 1, this approach is advantageous due to the fact that the CQM
deals only with the Laplace transformed fundamental solutions, which makes it also attractive
for handling problems where fundamental solutions are only known in Laplace domain or are
not given in closed form in the time domain.

The goal is the computation of the convolution integral

y(t) = f ∗g =
tZ

0

f (t− τ) g(τ)dτ . (15)

If the Laplace transform of the function f (t) is known and by dividing the time into M intervals
of equal step size ∆t the integral can be approximated for the time step tm = m∆t by

ym = y(m∆t)≈
m

∑
k=0

ωm−k( f̂ ,∆t) g(k∆t) (16)

with the integration weights ωn. These integration weights are given by

ωn( f̂ ,∆t) =
R−n

2π

2πZ
0

f̂

(
γ
(
Reiϕ

)
∆t

)
e−inϕ dϕ (17)

and can be approximated by the trapezoidal rule

ωn( f̂ ,∆t) =
1
L

L−1

∑
`=0

f̂
(

γ(ζ`)
∆t

)
ζ
−n
` , with ζ` := Rei` 2π

L . (18)

From (18), it is obvious that the integration weights depend only on the Laplace transform of
the function f denoted by f̂ (s) = L { f}(s) with the complex Laplace variable s ∈ C. The
parameters R and L depend mainly on the number of time steps M and are chosen as R =
10−5/2M and L = M. Moreover, this choice allows the computation of the integration weights
via a technique similar to the Fast Fourier Transformation. Finally, the term γ(·) represents the
characteristic function of an underlying multistep method, e.g., a backward differential formula
of order 2 (BDF2) with γ(s) = 3/2−2s+ s2/2. More details about the Convolution Quadrature
Method and the choice of the used parameters can be found in [28], [29], and [39].

Now, the convolution quadrature formula (16) with the definition of the integration weights
given in (18) is applied to the variational formulation (14). For example, an entry corresponding
to the single layer potential can be computed for tm as

〈(V ∗ t̃)ΓD,i(x; tm),w(x)〉ΓD,i =
tmZ

0

Z
ΓD,i

w(x) ·
Z

ΓD,i

U(y−x; t− τ) · t̃(y;τ) dsy dsx dτ

≈
m

∑
k=0

Z
ΓD,i

w(x) ·
Z

ΓD,i

ωm−k(Û,∆t) · t̃(y;k ∆t) dsy dsx

(19)
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with the integration weights

ωm−k(Û,∆t) =
1
L

L−1

∑
`=0

Û(y−x;
γ(ζ`)

∆t
)ζ
−(m−k)
` . (20)

Finally, inserting (20) into (19) and rearranging yields

〈(V ∗ t̃)ΓD,i(x; tm),w(x)〉ΓD,i ≈
m

∑
k=0
〈V̂m−k t̃k,w〉ΓD,i (21)

with

V̂m−k t̃k :=
L−1

∑
`=0

ζ
−(m−k)
`

L

Z
ΓD,i

Û(y−x;
γ(ζ`)

∆t
) · t̃(y;k ∆t) dsy . (22)

Equation (21) indicates that the application of the CQM as a time-stepping procedure to the
time-dependent variational form (14) results in an variational form very similar to a series of
static analysis – except that the Laplace transformed fundamental solutions have to be evaluated
for several complex parameters γ(ζ`)/∆t.

Applying the same technique as for the single layer potential in (21) to all other involved
boundary integral operators yields the following time discretized variational formulation

m

∑
k=0

[
〈V̂m−k t̃k,w〉ΓD,i−〈K̂m−kũk,w〉ΓD,i

〈K̂ ′m−k t̃k,v〉ΓN,i + 〈D̂m−kũk,v〉ΓN,i

]
=

m

∑
k=0

[
〈(1

2 Î + K̂ )m−kg̃Dk − V̂m−kg̃Nk ,w〉ΓD,i

〈(1
2 Î − K̂ ′)m−kg̃Nk − D̂m−kg̃Dk ,v〉ΓN,i

]
. (23)

The above expression perfectly represents the well known structure of classical boundary inte-
gral equations formulated directly in time domain. This structure becomes immediately clear
when the used subscripts in (23) are considered a bit more detailed. Obviously, they form a
discrete convolution for the times tk. To point out this structure more clearly, the Laplace trans-
formed identity operator Î is discussed briefly. This operator contains the Laplace transformed
Delta distribution L {δ}(s) which is known to be 1. Therefore, the integration weights ωn can
directly be computed by using (17)

ωn =
R−n

2π

2πZ
0

e−inϕ dϕ =
{

1 for n = 0
0 for n 6= 0

. (24)

This shows that the identity operator in (23) contributes only to the first time step as in classical
time domain boundary element formulations.

In 3-d calculations, another similarity to the classical time domain formulations is the pos-
sibility of introducing a cutoff of the sum ∑

m
k=0(· · ·). This cutoff corresponds to the material’s

behavior. In contrast to a viscoelastic material an elastic material has no memory. Until the
compression wave has not arrived at the location x all operators must be zero (causality) and
they must be again zero when the shear wave has passed. Contrary to the classical time depen-
dent boundary integral formulations where the cutoff is a consequence of the analytical time
integration [32], here, one has to be content with an estimate for it [39]

ωn ≈

(
rmax
c2∆t

)n

n!
e−

3
2

rmax
c2∆t . (25)

8
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In the above equation, rmax is the maximum distance in the discretized body, i.e., the largest
distance the shear wave associated with the velocity c2 has to travel. Moreover, for this estimate
a BDF 2 as underlying multistep method is assumed. The use of other multistep methods will, of
course, lead to other estimations. Hence, an upper limit n̄ for calculating the integration weights
can be estimated so that for all n > n̄ the integration weights can be neglected in relation to the
weights n < n̄. The use of a cutoff leads to a significant optimization due to the fact that it is
dispensable to calculate and, of course, to store the system matrices for the time steps tk,k > n̄.
So, instead of obtaining a system of lower triangular Toeplitz block matrices one ends up with
a banded system just by replacing the sums in (23) by ∑

m
k=0(· · ·)→ ∑

m
k=max(0,m−n̄)(· · ·). More

information about the cutoff may be found in [39, 21].

3.2 Spatial discretization

After the variational formulation (14) has been discretized in time the remaining step is the
spatial discretization of (23). Due to the similarities between (23) and systems occurring in
static analysis this procedure follows the same rules already known for those types of variational
formulations.

First, a triangulation of the boundary Γ = ∪n
k=1τk is introduced, i.e., the boundary Γ is the

union of n boundary elements τk. Further, for each boundary element τk the unknown boundary
data belong either to ΓD,i or to ΓN,i in each direction i. With respect to this triangulation the
subspaces

Sα

h,i(ΓD,i) = span{ϕα

i,k}
νi
k=1

Sβ

h,i(ΓN,i) = span{ϕβ

i,k}
υi
k=1

(26)

are defined containing νi polynomial shape functions ϕα of order α and υi polynomials ϕβ

of order β. The subspaces’ dimensions νi and υi correspond to the number of unknowns on
ΓD,i and ΓN,i. Therefore, the unknown Dirichlet data and the unknown Neumann data can be
approximated by

t̃α

h,i(x; t) =
νi

∑
k=1

ti,k(t) ϕ
α

k (x)

ũβ

h,i(x; t) =
υi

∑
k=1

ui,k(t) ϕ
β

k (x) .

(27)

In the following, Neumann data are approximated by constant functions and Dirichlet data by
linear functions, i.e., α = 0, t̃h = t̃0

h and β = 1, ũh = ũ1
h. Further, to obtain symmetric system-

matrices the test-functions w(x),v(x) used in the variational formulation (23) are approximated
by polynomials corresponding to the approximations for the Neumann and Dirichlet data, i.e.,
w0

h,i ∈ S0
h,i and v1

h,i ∈ S1
h,i. Finally, the shape functions approximating the geometry are chosen of

the same order as the Dirichlet data, i.e., the geometry is also approximated with linear polyno-
mials.

9
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3.3 System of linear equations

For a time index m and for the total numbers of degrees of freedom ν = ∑
3
i=1 νi, υ = ∑

3
i=1 υi let

Vm ∈ Rν×ν, Km ∈ Rν×υ, Dm ∈ Rυ×υ (28)

denote the discretized single layer, double layer, and hypersingular operator, respectively. More-
over, the unknown Cauchy data for the time step m is represented by the two vectors

tm ∈ Rν, um ∈ Rυ . (29)

Then, together with the stated time and spatial discretizations a system of linear equations
is obtained which represents nicely the structure of the introduced time discretized variational
form (23). This banded system is composed by the already mentioned lower triangular Toeplitz
block matrices and, finally, reads as[

V0 −K0
KT

0 D0

]
·
[

tm

um

]
=
[

f̃D
m

f̃N
m

]
(30)

with the given right hand side[
f̃D
m

f̃N
m

]
=
[

fD
m

fN
m

]
−

m−1

∑
k=k0

[
Vm−k · tk−Km−k ·uk
KT

m−k · tk +Dm−k ·uk

]
. (31)

In (30) and (31), the usual structure of a BE time stepping technique is observed. The vector
[fD

m , fN
m ]T is given by[

fD
m

fN
m

]
=
[

K̄0 ·gD
m−V0 · g̃N

m
K̄′0 ·gN

m−D0 · g̃D
m

]
+

m−1

∑
k=k0

[
Km−k ·gD

k −Vm−k · g̃N
k

K′m−k ·gN
k −Dm−k · g̃D

k

]
. (32)

and contains the prescribed boundary data of the actual time step m whereas in the last term of
(31) all information about the Cauchy data up to the previous time step m−1 is stored.

In (31) and (32), k0 denotes the cutoff and is defined as k0 = max(0,m− n̄). Moreover, in
(32), the diagonal terms of the discrete double layer potential K̄0 which correspond to the first
time step are given by K̄0 = 1

2 I + K0 and, analogously, by K̄′0 = 1
2 I−K′0 for the discrete adjoint

double layer potential.
From (30), it is obvious that the solution requires only the inversion of the matrix correspond-

ing to the first time step. Therefore, the matrix V0, which is symmetric as a result of the Galerkin
discretization, is decomposed via a Cholesky-factorization. Afterwards, the Schur-Complement-
System is computed by

S0 = KT
0 V−1

0 K0 +D0 . (33)

Due to the symmetry of V0 and D0 the Schur-Complement S0 is also symmetric and can be
decomposed itself by a Cholesky-factorization.

Hence, the displacement field u and the tractions t can be found by solving

S0um = f̃N
m −KT

0 V−1
0 f̃D

m (34)

and
tm = V−1

0

(
f̃D
m +K0um

)
(35)

for every time step m = 0, . . . ,M−1.

10
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4 REGULARIZATION OF THE HYPERSINGULAR BILINEAR FORM

Since the fundamental solutions are used in Laplace domain (see section 3.1), only the Laplace
transformed fundamental solutions are considered when speaking about elastodynamics from
now on. Therefore, also the (̂ ) denoting the Laplace transformed fundamental solution will be
omitted. Moreover, for sake of simplicity the functions’ argument list is skipped whenever the
meaning is clear by the functions’ name themselves.

In elastostatics there exists a regularized representation of the hypersingular bilinear form
which has been deduced by Han [24] who has used some basic results from elasticity given in
[26]. His proof leads to a bilinear form of the hypersingular operator containing at least a weakly
singular integral kernel which can be treated numerically by using some appropriate cubature
rules. Here, this technique will be transfered to elastodynamics. Contrary to the regularization
given by Becache et. al. [2] this formulation is deduced only for the isotropic case but features
the benefit of being more efficient for a numerical treatment since the resulting bilinear form
exhibits a much simpler structure.

A comment must be made concerning the topology of the body being under consideration.
According to all other mentioned regularizations [24, 34, 36, 2] the body is assumed to be ei-
ther closed or to be the unbounded complement of a closed domain. This assumption simplifies
the application of Stokes theorem, since in this case the surface’s boundary ∂Γ vanishes and
∂Γ = { /0} holds. Further, bearing in mind that the involved integral kernels fulfill Sommerfeld’s
radiation condition [42], the surface’s boundary integrals vanish also in the case of bodies with
infinite expansion, e.g., elastic halfspaces. Therefore, the present regularization holds in prin-
ciple also for these special problems. Nevertheless, problems might occur on a discrete level if
a semi-infinite geometry like an elastic halfspace is considered. There, it is a common practice
to model just a truncated part of the infinite geometry. Unfortunately, the emerging truncation’s
borderline represents the surface’s boundary such that ∂Γ 6= { /0} holds. In the typical case of
prescribed boundary data of Neumann type on ∂Γ, then, the regularization is just incomplete
and, therefore, any numerical study will fail. In opposite for prescribed homogeneous Dirichlet
data on ∂Γ, like it is common in crack analysis, the regularization will work perfectly since in
this case the boundary part ΓN on which the hypersingular operator has to be evaluated is closed.

Now, to adapt Han’s proof to elastodynamics, first, the similarities between both fundamental
solutions have to be worked out. These fundamental solutions are well known and go back to the
works of Lord Kelvin (1848) and G. Stokes (1849). For instance, the elastostatic fundamental
solution may be found in [27] whereas the elastodynamic case is treated in [11, 12].

The elastostatic fundamental solution can be written as

UES =
1
µ

[
∆χ

ESI− λ+µ
λ+2µ

∇y∇yχ
ES
]
, χ

ES =
r

8π
. (36)

The respective representation in elastodynamics is

UED =
1
µ

[
∆χ

EDI− λ+µ
λ+2µ

∇y∇yχ
ED
]
− 1

µ
κ

2
1χ

EDI, χ
ED =

1
4πr

1
κ2

1−κ2
2

(
e−κ1r− e−κ2r) .

(37)

11



Preprint No 1/2008 Institute of Applied Mechanics

For later purpose it is important to state that the scalar functions χES and χED fulfill the partial
differential equations

∆
2
χ

ES =−δ(y− x̃) (38)

(∆−κ
2
1)(∆−κ

2
2)χ

ED =−δ(y− x̃) . (39)

In (36) and (37), as well as in the following, r denotes the Euclidean distance between the points
y ∈ Γ and x̃ ∈ Ω, i.e., r = |y− x̃| holds. Further, κ1(s) = s

√
ρ/λ+2µ, and κ2(s) = s

√
ρ/µ denote

the wave numbers corresponding to the compression wave and to the shear wave, respectively.
First of all, it can be stated that both fundamental solutions are compositions of some regu-

lar scalar functions χES and χED. The elastodynamic fundamental solution’s (37) first term is
weakly singular due to the involved second order derivatives, whereas the last term in (37) is
regular. Moreover, having in mind that the hypersingular operator is achieved by applying the
traction operator twice it can be concluded that the term κ2

1/µχEDI will become weakly singular.
Hence, no special attention has to be paid to this expression during the regularization process.
Further, the terms in brackets in (36) and (37) are the identical operator applied to different func-
tions χ. This similar structure motivates a similar treatment of the regularization process. Now
in doing so, a kernel function U(χ) is thought depending on some arbitrary but differentiable
function χ(r)

U =
1
µ

[
∆χI− λ+µ

λ+2µ
∇y∇yχ

]
. (40)

Let us consider the double layer potential for some differentiable function u(y)

(K u)(x̃) :=
Z
Γ

[T (∂y,n(y))U]T ·u(y) dsy x̃ ∈Ω,y ∈ Γ . (41)

As mentioned in section 2.2 the trace operator T (∂y,n(y)) represents the stress-strain relation
based on Hooke’s law. This matrix differential operator can be defined by using the Günter
derivatives (59)

T (∂y,n(y))(·) = 2µM (∂y,n(y))(·)+(λ+2µ)n(y)∇y · (·)−µ(n(y)× curl(·)) . (42)

Inserting (42) into (41) and integrating by parts gives

(K u)(x̃) = 2µ
Z
Γ

U · (M (∂y,n(y))u) dsy−
Z
Γ

∆χ (M (∂y,n(y))u) dsy +
Z
Γ

∂∆χ

∂n(y)
u dsy . (43)

Equation (43) is very useful with regard to the limiting process Ω 3 x̃→ x ∈ Γ since the above
equation will lead to a weakly singular form of the double layer potential. This could be used to
avoid the computation of the Cauchy principal value integrals. If χ is substituted by χES from
(36) a weakly singular formulation of the elastostatic double layer potential (K ESu)(x) is ob-
tained which is already given in [26]. Substituting χ by χED from (37) and subtracting the term

12
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κ2
1/µ

R
Γ

[
(T (∂y,n(y))χED · I)

]T ·u dsy yields a regularized double layer potential in elastodynam-
ics

(K EDu)(x) = 2µ
Z
Γ

U(χED) · (M (∂y,n(y))u) dsy−
Z
Γ

∆χ
ED (M (∂y,n(y))u) dsy +

Z
Γ

∂∆χED

∂n(y)
u dsy

−
Z
Γ

dχED

dr

[(
κ

2
2−2κ

2
1
)

∇yr⊗n(y)+κ
2
1n(y)⊗∇yr +κ

2
1

∂r
∂n(y)

I
]
·u dsy

(44)
valid for almost all x,y ∈ Γ. Note that the last term of (44) is regular since a Taylor series
expansion of dχED

dr yields

dχED

dr
=

1
8π
− κ2

1 +κ1κ2 +κ2
2

12(κ1 +κ2)π
r +O(r2) . (45)

Now, to go ahead with the treatment of the hypersingular kernel, the next step is the application
of the operator T (∂x̃,n(x)) to the double layer potential (K u)(x̃) from (43). This results in

T (∂x̃,n(x))(K u)(x̃) =µ
Z
Γ

∂∆χ

∂n(y)∂n(x)
u dsy

+
Z
Γ

[
M (∂x̃,n(x))

(
4µ2U−3µ∆χI

)]
· (M (∂y,n(y))u) dsy

+ψ1 +ψ2

(46)

with

ψ1 := (λ+µ)n(x)
Z
Γ

[(
∇x̃

∂∆χ

∂n(y)

)
·u− (∇x̃∆χ) · (M (∂y,n(y))u)

]
dsy

ψ2 := µ
Z
Γ

[(
M (∂x̃,n(x))

∂∆χ

∂n(y)

)
·u+

∂∆χ

∂n(x)
(M (∂y,n(y))u)

]
dsy .

(47)

The above result can be obtained directly by following the proof given by Han [24]. For further
simplification of (47) the identities (62) and (63) are needed. This yields

ψ1 =−(λ+µ)n(x)
Z
Γ

n(y) ·u∆
2
χ dsy

ψ2 =−µ
Z
Γ

[M (∂x̃,n(x))∆χM (∂y,n(y))]T ·u dsy +µM (∂x̃,n(x))
Z
Γ

∆χ (M (∂y,n(y))u) dsy

−µ
Z
Γ

∆
2
χ (n(y)⊗n(x)−n(x)⊗n(y)) ·u dsy .

(48)
Now it is time to pick up the pieces. Inserting the expressions ψ1 and ψ2 from (48) into (46)

13
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and using (61) finally gives

T (∂x̃,n(x))(K u)(x̃) = µ
3

∑
k=1

∂

∂Sk(x)

Z
Γ

∆χ
∂

∂Sk(∂y,n(y))
u dsy

+M (∂x̃,n(x))
Z
Γ

(
4µ2U−2µ∆χI

)
· (M (∂y,n(y))u) dsy

−µ
Z
Γ

[M (∂x̃,n(x))∆χM (∂y,n(y))]T ·u dsy

−
Z
Γ

∆
2
χ [λ(n(y) ·u)n(x)+µ(n(x) ·u)n(y)+µ(n(y) ·n(x))u] dsy .

(49)
Remember that up to this point the above statement holds only for x̃ /∈ Γ. Therefore, the next
step will be the limiting process Ω 3 x̃→ x ∈ Γ. To do so, the partial differential equations (38)
and (39) have to be taken into account. As stated at the beginning of this section the function
χ depends on the problem which is under consideration. In the elastodynamic case ∆2χ fulfills
(39), i.e.,

∆
2
χ

ED =
(
κ

2
1 +κ

2
2
)

∆χ
ED−κ

2
1κ

2
2χ

ED (50)

due to the fact that the point x̃ lies inside the domain and, therefore, δ(r) = 0 holds. Substituting
U by UED, inserting (50) into (49), and taking the fundamental solution’s last term from (37)
into account yields the elastodynamic hypersingular operator

(DEDu)(x̃) =−

T (∂x̃,n(x))(K u)(x̃)− κ2
1

µ
T (∂x̃,n(x))

Z
Γ

[
T (∂y,n(y))χEDI

]T ·u dsy

 .

(51)
Note that also the elastostatic hypersingular operator as given by Han [24] can easily be obtained
from (49). In this case U has to be substituted with UES. Moreover, ∆2χ fulfills (38) and,
therefore, ∆2χES = 0 holds due to the same reasons as mentioned for ∆2χED.

Now, it is almost done. Equation (51) contains no more hypersingular kernel functions. Thus,
the limiting process Ω 3 x̃→ x ∈ Γ can be performed. The hypersingular bilinear form then
follows by testing (51) with a differentiable function v(x). Afterwards, Stokes theorem is applied

14
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a last time and the complete regularized bilinear form is obtained

〈DEDu,v〉=
Z
Γ

v(x) · lim
Ω3x̃→x∈Γ

(DEDu)(x̃) dsx

= µ
Z
Γ

Z
Γ

∆χ
ED

(
3

∑
k=1

∂

∂Sk(∂x,n(x))
v · ∂

∂Sk(∂y,n(y))
u

)
dsy dsx

+µ
Z
Γ

Z
Γ

(M (∂x,n(x))v)T ·
(
2∆χ

ED I−4µU(χED)
)
· (M (∂y,n(y))u) dsy dsx

+µ
Z
Γ

Z
Γ

3

∑
j,`,k=1

(
M jk(∂x,n(x))v`

)
∆χ

ED (M j`(∂y,n(y))uk
)

dsy dsx

+µ
Z
Γ

Z
Γ

n(x) ·v
(
κ

2
2−2κ

2
1
)(

3∆χ
ED−κ

2
2χ

ED) n(y) ·u dsy dsx

+µ
Z
Γ

Z
Γ

n(x) ·n(y)v ·
[
κ

2
1
(
∇x̃∇yχ

ED)+∆
2
χ

EDI
]
·u+κ

2
1

∂2χED

∂n(y)∂n(x)
u ·v dsy dsx

+µ
Z
Γ

Z
Γ

v ·
[

κ
2
1

(
∇x̃

∂χED

∂n(y)

)
+∆

2
χ

EDn(y)
]

n(x) ·u

+2
(
κ

2
2−2κ

2
1
)

v ·
(

∇y
∂χED

∂n(x)

)
n(y) ·u dsy dsx

+µ
Z
Γ

Z
Γ

κ
2
1v ·n(y)

(
∇y

∂χED

∂n(x)

)
·u+2

(
κ

2
2−2κ

2
1
)

v ·n(x)
(

∇x̃
∂χED

∂n(y)

)
·u dsy .

(52)
Equation (52) contains only weak singularities due to the fact that all involved second order
derivatives of χED are of order O(r−1). This could be proven by using the chain rule

∇y∇xχ
ED =

(
d2

χED

dr2 −
1
r

dχED

dr

)
∇yr⊗∇xr− 1

r
dχED

dr
I =: φ1∇yr⊗∇xr−φ2I . (53)

A series expansion of φ1 and φ2 then yields

φ1 =− 1
8πr

+O(r)

φ2 =
1

8πr
− κ2

1 +κ1κ2 +κ2
2

12π(κ1 +κ2)
+O(r) .

(54)

Hence, the representation (52) of the hypersingular bilinear form is obviously suitable for the
numerical treatment. Here, all implementations are done by using cubature rules developed by
Erichsen and Sauter [15, 37].

15



Preprint No 1/2008 Institute of Applied Mechanics

5 NUMERICAL EXAMPLES

In order to validate the proposed boundary element formulation, a 3-d elastodynamic rod with
length `1 = 3m, width `2 = 1m, and height `3 = 1m is considered as depicted in Fig. 1. The

x1

x3

x2

fixed end

traction free

free end

P

Figure 1: System and loading

rod is fixed on one end and excited by a pressure jump t1 = −1H(t)N/m2 according to a unit
step function H(t) on the other free end. The remaining surfaces are traction free. The material
data represent steel with Lamé’s constants λ = 0.0 N/m2, µ = 1.05 · 1011 N/m2, and the density
ρ = 7850 kg/m3. Note that λ = 0.0 N/m2 is equivalent to an artificial Poisson’s ratio of ν = 0
instead of ν = 0.3. The choice of this artificial value is used to be able to compare the results
with a 1-d analytical solution of longitudinal waves in an elastodynamic column [17].

The Figures 2 & 3 shows a total of four regular meshes for the described model problem.
While the first two meshes represents BEM discretizations the two remaining meshes are dis-
cretizations being used with the Finite Element Method (FEM). In the following, the BEM
meshes will be referred to as BEM1 which is made up by 112 elements and 58 nodes and BEM2
which consists of 700 elements with 352 nodes. Analogously the FEM discretizations are titled
as FEM1 made up of 24 elements and 63 nodes and FEM2 being composed of 375 elements and
576 nodes. As mentioned in section 3.2, for the BEM formulation the tractions are approximated
with constant functions whereas the displacements are approximated linear. The FEM studies
are done by using the classical Newmark algorithm (β = 0.25,γ = 0.50) [35]. This time stepping
scheme is embedded in displacement-based FEM implementation using trilinear approximations
for the Dirichlet data.

In order to compare some results for different time and spatial discretizations the dimension-
less value

β =
c1 ∆t

h
(55)

is introduced which can be referred to as the Courant-Friedrichs-Lewy (CFL) number [10].
Beside the velocity c1 =

√
λ+2µ/ρ of the compression wave the value β depends on the time step

size ∆t and the characteristic mesh size h. In 3-d, the definition of the mesh size h is not unique
since the elements are 2-dimensional surfaces. Here, the triangles’ cathetus is used for h, i.e.,
h = 0.5m for mesh BEM1, and h = 0.2m for mesh BEM2, respectively. The mesh sizes as well
as the time step sizes of the FEM discretizations are in accordance to the BEM discretizations.
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(a) BEM1: 112 elements, 58
nodes

(b) BEM2: 700 elements, 352
nodes

Figure 2: Spatial discretizations (BEM) of the considered bar

(a) FEM1: 24 elements, 63
nodes

(b) FEM2: 375 elements, 576
nodes

Figure 3: Spatial discretizations (FEM) of the considered bar
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Figure 4 depicts the longitudinal displacements at the point P for mesh BEM1 and mesh
BEM2 with respect to different time step sizes. As expected, an increasing time step size leads
to a larger numerical damping for both meshes. When considering the results for the finer grid
BEM2, the largest CFL number yields almost the same results as the finest time discretization.
This observation confirms the experience with CQM based BEM formulations that a more exact
spatial discretization yields a more stable time stepping procedure.

Concerning the choice of the CFL number, several numerical studies have shown the existence
of a lower bound for this number. As depicted in Fig. 4, for the present boundary element
formulation the time stepping scheme gets unstable for a CFL number of β ≈ 0.04. For clarity
of the pictures, the results for this unstable time step size is shown only in Fig. 4(b). In contrast
to that lower bound, there exist no upper bound for β. Even if β is chosen to be larger than one
the results are still stable but the numerical damping increases such that the dynamic solution
approaches the static solution.

(a) BEM1 (b) BEM2

Figure 4: Longitudinal displacements at the free end versus time: Different ∆t

The traction solutions confirm the already stated observations: This solution is given for a
point at the fixed end opposite to the point P and is shown for both meshes in Fig. 5. For mesh
BEM1 as well as for mesh BEM2 a CFL number of β = 0.2 leads to the best results.

Two FEM results as depicted in Fig. 6 are given for completeness. Using the same mesh
sizes for both, the BEM and the FEM meshes, it can be stated that the results of the BEM
solution are very smooth while the FEM solutions are a bit more rough. Especially for the
coarse grid solution depicted in Fig. 6(b) this roughness is very conspicuous. Another difference
between both numerical methods occurs due to the different time stepping procedures. While
both time stepping schemes are very stable, there is some overtone in the Newmark algorithm.
This overtone is characteristic for the chosen Newmark algorithm and would become even more
visible if a longer time period would be under consideration. In contrast, the CQM scheme
exhibits minor damping.

Finally, a comparison between the CQM based collocation method as proposed in [39] and the
actual presented symmetric Galerkin method reflects clearly the advantage of the latter method.
In Figs. 7 and 8 long time solutions are depicted with respect to the coarse mesh BEM1. More-
over, for both simulations a CFL number of β = 0.2 is chosen. At first, the displacement solution
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(b) BEM2

Figure 5: Normal traction at the fixed end versus time: Different ∆t

(a) BEM2 vs. FEM2 (b) BEM1 vs. FEM1: Long time displ. solution

Figure 6: Comparison of BEM and FEM displacement solutions
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in Fig. 7 exhibits much more numerical damping effects in the collocation case than it does for
the symmetric Galerkin method. The collocation result has also a phase shift for large times
which is not visible for the Galerkin formulation.

-3e-11
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0

di
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la
ce

m
en
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 ]

0 0.01 0.02 0.03 0.04
time t [ s ]

analytical
Collocation
SGBEM

Figure 7: SGBEM vs. Collocation: Long time displacement solution for mesh BEM1

Besides the increasing damping for the displacement solution the collocation method reveals
numerical instabilities with regard to the traction solution (see Fig. 8). This traction solution
becomes completely instable and is therefore only depicted up to the time t = 0.034s. In contrast
to this instability the Galerkin method is still stable during the whole observation time, although
the numerical solution’s quality decreases with increasing time.

6 CONCLUSIONS

A boundary element method for elastodynamics based on a Galerkin discretization in space and
on the Convolution Quadrature Method in time was presented. To obtain a symmetric, or to
be more precise, a skew-symmetric formulation, also the usage of the second boundary inte-
gral equation is required. Since the usage of the second boundary integral equation demands
the computation of hypersingular kernel functions, a regularization of the elastodynamic hyper-
singular integral operator was presented which leads to a weakly singular bilinear form. The
regularization is based mainly on integrations by parts and transfers a proof given for elasto-
statics to elastodynamics. This is based on the similar structure of the elastostatic fundamental
solution compared to the Laplace transformed elastodynamic fundamental solution. Moreover,
during the whole regularization process the use of the elastostatic fundamental solutions was
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Figure 8: SGBEM vs. Collocation: Long time traction solution for mesh BEM1

not necessary like in other regularization strategies in dynamics. Hence, no difference terms
between the static and the dynamic fundamental solutions have to be computed which avoids
possible numerical problems.

The presented numerical examples show that this approach has obviously better numerical
stability properties than the wider used collocation methods. Therefore, the positive results
already obtained in statics with the symmetric Galerkin methods continues also in time domain
analysis. Nevertheless, it has to be mentioned that due to the variational form the computation
of the matrix entries is more costly. Hence, at the moment the overall computation is more
time consuming than for the standard collocation method. In future, these computational costs
should be reduced by, e.g, the application of some adaptive integration rules or the application
of fast-methods like adaptive cross approximation (ACA) [1] or H -matrices [22].

Moreover, one of the biggest advantages of boundary element methods in time domain,
namely the relative easy feasibility of modelling wave propagation phenomena within semi-
infinite domains, e.g., half-spaces, was lost since the whole regularization process assumes ei-
ther a closed surface or vanishing integrals over the surface’s boundary. Although this is true for
non discretized systems it may not hold for the respective discretized problem. To overcome this
drawback special techniques have to be worked out which will be presented in a forthcoming
paper.

21



Preprint No 1/2008 Institute of Applied Mechanics

A TANGENTIAL SURFACE DERIVATIVES

A.1 Definitions and properties

The whole regularization process presented in section 4 is based on applications of some variants
of Stokes theorem which should be recalled briefly. Let Γ be a surface with the outward unit
normal vector n(y). Further, let ∂Γ denote the surface’s boundary and let p(y) be the unit tangent
to ∂Γ. Then, the classical Stokes theorem for some differentiable vector field v(y) reads asZ

Γ

(∇y×v) ·n(y) dsy =
Z
∂Γ

v ·p(y) dσy . (56)

By introducing the surface curl

∂

∂S(∂y,n(y))
= n(y)×∇y (57)

and assuming a closed surface Γ in the following, i.e., ∂Γ = { /0}, Stokes theorem (56) can be
written as Z

Γ

∂

∂S(∂y,n(y))
·v dsy = 0 . (58)

The introduced surface curl (57) is a so-called tangential differential operator since ∂

∂S(∂y,n(y)) ·
n(y) = 0 holds. The operator’s definition is taken from [26]. An analysis of the presented tan-
gential differential operators may be also found in [14]. Here, a short review of their properties
is given from a more engineering point of view. The used notation follows directly [24, 26].
Sometimes the surface curl (57) is also denoted by curlΓ [34].

Moreover, the Günter derivatives M (∂y,n(y)) are used during the regularization process.
These derivatives form an antisymmetric matrix operator [26, 19] and are defined as

Mi j(∂y,n(y)) = n j(y)
∂

∂yi
−ni(y)

∂

∂y j
=

3

∑
k=1

εk ji
∂

∂Sk(∂y,n(y))
. (59)

Following Stokes theorem it is easy to verify that for a closed surface Γ the Günter derivatives
fulfill the following equationZ

Γ

u · (M (∂y,n(y))v) dsy =
Z
Γ

v · (M (∂y,n(y))u) dsy, u(y) ∈ R3,v(y) ∈ R3 . (60)

Again, (60) holds only for a closed surface ∂Γ.

A.2 Useful equalities

In section 4, the expressions given in (46) and (47) are simplified by making use of the following
identities. These identities are a more generalized version of identities already given in [24] and
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can be obtained by some basic calculations

∂2∆χ

∂n(y)∂n(x)
=− ∂

∂S(∂y,n(y))
· ∂

∂S(∂x̃,n(x))
∆χ

−n(y) ·n(x)∆
2
χ

(61)

∇x̃

(
∂∆χ

∂n(y)

)
= M (∂y,n(y))(∇x̃∆χ)−n(y)∆

2
χ (62)

M (∂x̃,n(x))
(

∂∆χ

∂n(y)

)
−M (∂y,n(y))

(
∂∆χ

∂n(x)

)
=−(n(y)⊗ n(x)−n(x)⊗n(y))∆2

χ

+[M (∂y,n(y))M (∂x̃,n(x))−M (∂x̃,n(x))M (∂y,n(y))]∆χ .

(63)
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