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Abstract

In engineering, several physical models result in inhomogeneous partial differential equa-
tions. A prototype of such an equation is the modified Helmholtz equation or also called
Yukawa equation. It may result from fluid mechanics (false transient approach) or heat
transfer if a semi-discretisation in time with a finite difference schema is applied. Using the
Boundary Element Method for the numerical solution of such problems requires to solve a
boundary-domain integral equation. The main drawback of all boundary element methods
is the quadratic complexity, which exists as well for boundary-domain element methods.

Here, a fast approach based on the H 2-concept is proposed. The focus is on the dis-
cretisation of the domain integral. Respective cluster trees for the domain and the boundary
nodes are established. The integral kernels in admissible blocks are approximated with La-
grange interpolation. Further, a recompression is applied, which is here performed with a
fully pivoted adaptive cross approximation. The numerical results show that the memory
used to store the approximated matrices is logarithmic linear. Considering the matrix for-
mulation of the integral kernel approximation one can reduce the storing space needed in
memory to linear complexity.
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1 Introduction

Large scale numerical analysis in engineering and science is difficult and time-consuming. How-
ever, usually, the cost of numerical investigations is lower than the cost of experiments. Nu-
merical simulation plays an important role in practical engineering computation, such as solid
mechanics, fluid mechanics, acoustics, electromagnetism, etc. Practical problems are often gov-
erned by non-linear partial differential equations. In computational fluid dynamics, partial dif-
ferential equations have a diffusion, convection, and source part. For unsteady simulations also a
transient part is present. For such problems, mostly Finite Volume Methods or the Finite Element
Method are used. But, as well the Boundary Element Method (BEM) may have advantages and
is used to handle non-linear partial differential equations. Such a formulation requires to solve
besides the boundary integrals also a domain integral, why it is often denoted Boundary-Domain
Integral Method (BDIM).

The BDIM is based on Green’s second identity, where a domain integral kernel is present.
Even though the numerical method has higher computational costs than conventional BEM, the
method is employed by several authors. Mikhailov and Mohamed [1] applied the BDIM to a
Neuman boundary value problem for a scalar elliptic partial differential equation with a vari-
able coefficient. Portillo [2] employed the method on a mixed boundary value problem for the
diffusion equation with a non-homogeneous right-hand side. Verhnjak et al. [3] presented a
novel approach for two-way coupled simulations of multiphase flows within an Euler-Lagrange
framework. To reduce the computational costs for evaluating the domain integral several meth-
ods have been proposed, which are mostly based on an approximation. The dual reciprocity
method transforms the domain integral into a boundary integral operator. Partridge and Breb-
bia [4] used the dual reciprocity method to solve the Poisson equation. Cheng et al. [5] presented
global interpolation functions within the dual reciprocity BEM. They obtained a better conver-
gence behavior for their approximation of the transformation. An extension is the triple reci-
procity method. Ochiai [6] implemented the triple reciprocity method to solve the heat equation
with heat sources. Guo et al. [7] presented an improved implementation of the triple reciprocity
BEM for three-dimensional steady-state heat conduction problems. This formulation has re-
duced computation time and storage space. However, the approximation of the domain integral
is highly complex.

The heat equation contains a partial derivative with respect to time, which either requires a
time-domain BE formulation (see, e.g. [8, 9]) or a semi-discretisation in time with a finite differ-
ence schema. The latter results in a domain integral similar to the treatment of non-linear terms
and is called in the framework of fluid mechanics false transient. Malinson and Davis [10] pre-
sented this approach for the solution of a coupled elliptic equation. Stella and Guj [11] applied
the false transient to solve the lid-driven cavity test case with a finite difference scheme. Behnia
et al. [12] implemented the same procedure to simulate three-dimensional natural convection
flow. The governing equation of the false transient is the inhomogeneous modified Helmholtz
equation, which we focus on. It is also referred to as the Yukawa equation [13]. Hriberšek and
Škerget [14] employed the Yukawa equation to compute incompressible fluid flow problems.
Cui et al. [15] employed the Radial Integration Boundary Element Method for the solution of
transient heat conduction problems with heat sources and variable thermal conduction.

Independent which variant of the above briefly discussed BE formulations is used, the bot-
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tleneck of every BEM is the complexity with order O(n2). The latter holds in principle for the
domain integrals. To overcome this restriction fast methods have been developed. The fast mul-
tipole method (FMM) is maybe one of the first (see, e.g., [16, 17]). Within the field of the heat
equation, the formulation by Messner et al. [18] may be mentioned. As well the wavelet trans-
form [19] can be used to accelerate the BEM. Alternatively, hierarchical matrices (H -matrices)
with some data compression techniques can be applied. Hackbusch [20] introduced a recursive
hierarchical decomposition for the approximation of an asymptotic smooth function. The re-
cursive hierarchical procedure is known as the H -structure. After the H -structure is formed
an approximation method is employed. The most efficient compression method is the Singu-
lar Value Decomposition Method (SVD) [21]. However, the computational cost of the method
scales O(n3). Adaptive Cross Approximation (ACA) presented by Bebendorf [22] is an approxi-
mate alternative to the SVD and reduces the complexity to O(n logn) for most elliptic operators.
Two versions of the algorithm were presented: the partial pivoting and full pivoting ACA [23],
where only the first makes sense to accelerate BEM. A variant called Hybrid Cross Approxima-
tion (HCA) has been presented by [25]. For numerical analysis in solid mechanics, Bebendorf
and Grzibovski [22] employed the ACA to solve a linear elasticity problem with the Galerkin
BEM. Heider and Schanz [26] implemented the ACA to solve elasticity problem based on an
extension of the ACA given by Rjasanow and Weggler [27]. Grytsenko and Galybin [28] solved
multi-crack large-scale problems with the ACA and the H -matrix. Rjasanow and Weggler [29]
employed the ACA with the H -matrix formulation to solve Maxwell problems. Tamayo et
al. [30] applied the multi-level ACA for electromagnetic and radiation examples. Campos et
al. [31] presented an isogeometric BEM that was accelerated with the ACA for the analysis of
potential problems. Recently Rodopulos et al. [32] employed the ACA and BEM to solve the
chaotic protection problem on a large scale. Chaotic protection techniques are widely used to
avoid corrosion in offshore structures. For the problem class treated here, Tibaut et al. [33, 34]
employed the H -matrix and the ACA algorithm to accelerate the BDIM. Ravnik and Tibaut
[35] employed the accelerated BDIM with the modified Helmholtz equation and ACA to solve
the unsteady convection-diffusion problem with variable diffusion .

An improvement of the hierarchical matrix concept has been presented by Börm [36] and
is called H 2-matrix. The H 2-matrix form is based on nested cluster basis functions [37].
In the H 2-matrix, the integral kernel is mostly interpolated in the far-field with polynomials.
Börm and Hackbusch [38] approximated the integral kernel with Lagrangian polynomials. For
Helmholtz problems, Börm et al. [41] presented directional H 2-matrices. The authors included
in their analysis also the case of dissipative Helmholtz kernels.

The paper is split into five sections. Firstly, we present the governing equation that we used
for the numerical investigation. Next, we present the integral equation with its discretisation.
For this set of equations, we present the H 2-matrix with a special focus on the domain integral.
As well, a recompression with ACA is introduced. In section four, we discuss the results and in
the last section, we summarise the findings of this paper.
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2 Governing equations

Several physical problems result in parabolic inhomogeneous partial differential equations. An
example from fluid mechanics is incompressible, laminar flow of a Newtonian fluid, where of-
ten the so-called false transient approach results in such an equation (see, e.g., [34]). Here, we
consider a model problem, which may either be heat transfer or the false transient approach.
Certainly, the same considerations hold for the other physical problems governed by such equa-
tions.

2.1 Governing equations

Let Ω⊂ R3 be a bounded Lipschitz domain and Γ := ∂Ω its boundary with the outward normal
~n. The governing equation for the scalar field u(~x, t), e.g., the temperature field, is given with

∂u(~x, t)
∂ t

= ∇
2
xu(~x, t)+b∗(~x, t) ∀ (~x, t) ∈Ω× (0,T ) (1)

where t presents the time with the final time T and b∗(~x, t) is a source term. Any material
data are set to unity for simplicity. As usual, ∇x denotes the Nabla-operator with respect to the
spatial coordinate~x. To complete the physical setting initial and boundary conditions have to be
described. Here, as model a Dirichlet problem with vanishing initial condition is used

u(~x, t = 0) = 0 ∀~x ∈Ω t = 0 (2a)

u(~x, t) = ū(~x, t) ∀~x ∈ Γ× (0,T ) , (2b)

with the prescribed boundary data ū(~x, t). Let the time be discretised in steps t0 = 0, t1, . . . , tN = T
with constant time steps ∆t. A time discrete form of Eq.(1) is obtained by approximating the
time derivative ∂u(~x,t)

∂ t by a first order finite difference scheme. This results for n = 1, . . . ,N in

u(~x, tn)−u(~x, tn−1)

∆t
= ∇

2
xu(~x, tn)+b∗(~x, tn) , (3)

where u(~x, tn−1) denotes the value of the scalar field at the previous time step. Rearrangement
and the abbreviations µ2 = 1

∆t , b(~x, tn) = 1
∆t u(~x, tn−1)+b∗(~x, tn) results in the Yukawa equation(

∇
2
x−µ

2)u(~x, tn)+b(~x, tn) = 0 . (4)

This equation is also called modified Helmholtz equation. In case of large time steps ∆t → ∞,
the parameter µ2 tends to zero, i.e., µ2→ 0. Thus in the limit, the Poisson equation is obtained.

In order to find the integral form of the Yukawa equation (4), we will employ Green’s second
identity. As a preliminary step the fundamental solutions are formulated. For a given point ~ξ
and the Dirac distribution as source term, i.e., b(~x, tn) = δ (~ξ −~x) the fundamental solution of
the Yukawa equation (4) is given

u∗(~ξ ,~x) =
e−µr

4πr
, (5)
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with r = |~ξ −~x|. The flux fundamental solution is as well needed and can be obtained by the
normal derivative

q∗(~ξ ,~x) =~n(~x) ·~∇xu∗(~ξ ,~x) =
~n(~x) · (~ξ −~x)

4πr3 (1+µr)e−µr . (6)

As discussed above, in case of large time steps the parameter µ2 → 0 and the fundamental
solution in (6) tends to the fundamental solution of the Laplace equation. In Fig. 1, u∗(~ξ ,~x)
is plotted versus the argument of the exponential function rµ for different values of µ . It can

Figure 1: Fundamental solution u∗ for different values of the µ

be observed that for small values of µ the fundamental solution behaves as that of the Laplace
equation denoted with µ = 0. The more interesting observation is the strong decay of the solution
for large µ , i.e., for small time step sizes. This property will be used subsequently.

Either starting from Green’s second identity or via a weighted residual statement the usual
steps with partial integration and a suitable limit of the load point to the boundary results in the
well known integral equation

c(~ξ )u(~ξ , tn)+
∫
Γ

[
u(~x, tn)q∗(~ξ ,~x)−u∗(~ξ ,~x)q(~x, tn)

]
dΓ =

∫
Ω

u∗(~ξ ,~x)b(~x, tn)dΩ ∀~ξ ∈ Γ , (7)

where q(~x, tn) = ~n(~x) ·~∇u(~x, tn) is the flux of the scalar field u(~x, tn). The boundary integral
has kernels with a weak singularity and the integral free term c(~ξ ) has the usual form (see,
e.g., [23]). Note, the integral equation has to be evaluated at each time step tn and the influence
of the last time step is hidden in b(~x, tn) = 1

∆t u(~x, tn−1)+b∗(~x, tn). Including as well the boundary
condition, we arrive at the integral equation to be solved∫

Γ

u∗(~ξ ,~x)q(~x, tn)dΓ = c(~ξ )ū(~ξ , tn)+
∫
Γ

ū(~x, tn)q∗(~ξ ,~x)dΓ−
∫
Ω

u∗(~ξ ,~x)b(~x, tn)dΩ ∀~ξ ∈ Γ . (8)

In the following, the argument tn, indicating the actual time step, is skipped for the sake brevity.
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2.2 Spatial discretization of the integral formulation

For the spatial discretisation of the integral equation (8), first, the boundary is divided into N
boundary elements and the domain Ω is divided into M domain cells

Γ =
N⋃

i=1

Γi, Ω =
M⋃

j=1

Ω j . (9)

Second, the boundary data are approximated with a continuous quadratic (9 nodes) interpolation
for the primary field and a discontinuous linear ansatz (4 nodes) for the flux. The right hand side
is approximated with a quadratic (27 nodes) interpolation, however, in this case a volume cell
must be used, i.e., hexahedrons are assumed. The respective shape functions are

u(~x)≈
9

∑
a=1

uaϕa(~x), q(~x, t)≈
4

∑
b=1

qbψb(~x), b(~x)≈
27

∑
c=1

bcΦc(~x) , (10)

which are defined locally on each element. The locations of the nodes in these shape functions
are sketched in Fig. 2. The distance of the nodes of the discontinuous shape functions to the

ϕ1 ϕ2 ϕ3

ϕ4 ϕ5 ϕ6

ϕ7 ϕ8 ϕ9
Φ1

Φ2
Φ3

Φ4
Φ5

Φ6

Φ7
Φ8 Φ9

Φ10
Φ11

Φ12

Φ13
Φ14

Φ15

Φ16
Φ17

Φ18

Φ19
Φ20

Φ21

Φ22
Φ23

Φ24

Φ25
Φ26 Φ27

ψ1 ψ2

ψ3 ψ4

2

Figure 2: Locations of the nodes in the boundary elements and volume cells. These nodes are
used in the shape functions in (10).

boundary is 0.25. The usage of discontinuous shape functions avoids any discussions on defining
the normal vector. Further, it fits into the function spaces required for this elliptic problem.
Inserting these shape functions and the panelisation of the geometry in (8) results in the discrete
integral equation

n

∑
i=1

qi

∫
supp(ψi)

ψi(~x)u∗(~ξ ,~x)dΓi =
n∗

∑
i=1

c(~ξ )uiϕi(~ξ )+ui

∫
supp(ϕi)

ϕi(~x)q∗(~ξ ,~x)dΓi

−
m

∑
j=1

b j

∫
supp(Φ j)

Φ j(~x)u∗(~ξ ,~x)dΩ j ,

(11)

where index i restricts the shape functions ϕi and ψi to the boundary element Γi and j restricts
the shape function Φ j to the domain cell Ω j. The upper limit of the second sum n∗ indicates that
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this is not the number of elements but the number of nodes. Further, n = 4N as discontinuous
shape functions are used. In the last sum, m is the number of domain nodes. Hence, the sums
over shape functions and nodes are collected to one sum and the respective integration domain
is marked with the support of the shape functions.

The integral equation will be solved with a collocation approach. For the selected Dirichlet
problem, the collocation points are at the nodes of the shape functions of the flux (ψi in Fig. 2)
and are denoted with ~ξk. Hence, the total number of collocation points is n = 4N. Writing this
in a matrix form the discrete equation system is

[G]{q}= [H]{u}− [B]{b} , (12)

with the matrix elements

hki = c(~ξk)ϕi(~ξk)+
∫

supp(ϕi)

ϕi(~x)q∗(~ξk,~x)dΓi

gki =
∫

supp(ψi)

ψi(~x)u∗(~ξk,~x)dΓi

bk j =
∫

supp(Φ j)

Φ j(~x)u∗(~ξk,~x)dΩ j .

(13)

Hence, the matrices are of size [G] = [n×n], [H] = [n×n∗], and [B] = [n×m].

3 H -structure

To obtain a fast BE formulation one option is to use hierarchical matrices. Here, the H 2 ap-
proach will be applied, where the focus is on the domain integral, i.e., the approximation of
matrix [B] with the size n×m. We form two different cluster trees, one for the domain and
the other for the boundary. Note that we have in the domain hexahedrons and on the boundary
quadrilaterals.

3.1 The Cluster tree

To form uniform cluster trees we use a bottom-up approach based on equal sized bounding
boxes [33]. The bottom-up approach combines the neighboring cells and forms new clusters on
a new level. For each level higher, cluster pairs form a new cluster. The procedure is repeated
until one cluster that presents the whole domain is on the top level. We will denote the cluster
tree built from the boundary elements as TJ and the domain cluster tree as TI . The cluster tree
TJ has pb levels and TI has pd levels. The domain tree has more levels (pb < pd) because the
number of domain cells is larger than the number of boundary elements (see the example in
Fig. 4). In Fig.3, we illustrate clusters that form the boundary element cluster tree TJ with their
index sets J(k)i . In the following, we will denote the clusters by their index sets. Moving from
top to bottom level each cluster is split into son clusters. The bottom level is called leaf level.
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Figure 3: Illustration of the cluster size on each level of the cluster tree TJ . From top to the
bottom of the cluster tree the size of clusters decreases.

3.2 Block cluster tree

The block cluster tree TJ×I is a combination of clusters in the cluster tree TI and TJ . The block
clusters in TJ×I form rectangular blocks [B̂]n̂×m̂ with size n̂× m̂, where n̂ < m̂ holds for suffi-
ciently large meshes. However, square blocks would be preferable. If the clusters are combined
at different levels of both cluster trees it is possible to get nearly square blocks. Hence, cluster
I(k)i is combined either with a cluster in Tj one level higher J(k−1)

j , or on the same level J(k)j , or

one level lower J(k+1)
j . In Fig.4, the three yellow arrows indicate these choices exemplarily. In

the following, the indication of the level of the index sets are skipped for the sake of brevity.
Clusters at the leaf level of the cluster tree TI are combined to block clusters with the clusters

I
(0)
1

I
(3)
1

J
(0)
1

TI TJ

I
(1)
1 I

(1)
2 J

(1)
1 J

(1)
2

I
(2)
1 I

(2)
2 I

(2)
2 I

(2)
4 J

(2)
1 J

(2)
2 J
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3 J

(2)
4

I
(3)
2 I

(3)
3 I

(3)
4 I

(3)
5 I

(3)
6 I

(3)
7 I

(3)
8

2

Figure 4: Domain block cluster tree TJ×I of the clusters TI and TJ . Yellow arrows indicate the
different choices to form nearly square blocks.

at the leaf level of TJ . Similar to the above sketched procedure for the domain block cluster
tree TJ×I the block cluster tree for the boundary TJ×J is build. Two identical TJ cluster trees are
combined to form blocks Ji× J j. Different to the above, the block clusters are only build within
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Figure 5: Number of bock cluster J× I that form the H -structure depending on the admissibil-
ity condition (15) (MIN) and (14) (MAX).

one level.
The cluster pairs constructed as described above form nearly a square block (n̂≈ m̂) and are

tested on admissibility. Following the literature [42], for H 2-matrices the criterion

max{dim(Ii),dim(J j)} ≤ η dist(Ii,J j) (14)

is used, where dim(Ii) and dim(J j) are the cluster sizes determined by the largest diagonal of the
cluster. dist(Ii,J j) is the minimal distance between the clusters and parameter η is defined by
the user. Each block cluster fulfilling (14) is called admissible. Inadmissible blocks are split into
smaller block clusters, i.e., one goes one level down. Block clusters on the lowest level of the
block cluster tree that do not fulfill the admissibility condition are considered inadmissible and
constitute the near field. For H -matrices usually a different condition based on the minimum
of both clusters is applied

min{dim(Ii),dim(J j)} ≤ η dist(Ii,J j) . (15)

The criterium (15) creates larger admissible blocks compared to (14), which is exemplarily
shown in Fig.5. There, the number of block clusters J× I is presented for matrix [B] for a unit
cube. Four mesh densities were chosen. It can be observed that the admissibility condition
(15) forms less block clusters than (14). Hence, condition (14) formed smaller block cluster
than condition (15). However it must be remarked that the minimum based condition (15) has
no mathematical basis if the kernel is interpolated as subsequently done. Nevertheless, both
versions will be compared in the following.

In case of small block clusters, it may happen that a kernel interpolation produces a larger
matrix block as it would be without interpolation, i.e., to store the dense matrix block needs less
storage than the interpolated matrix block. The reason is that the interpolation degree is to the
power of three. To avoid such situations an additional criterion is introduced. If an admissible
block cluster is smaller than a predefined value, i.e.,

dist(Ii,J j)≤ distm, (16)

9
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Frame 001  15 Jan 2020  No Data Set

1

Frame 001  15 Jan 2020  No Data Set

1

Figure 6: Sketch of two matrices for η = 5,distm = 0.25 and µ = 20 (top), µ = 50 (bottom).
The inadmissible blocks are black, admissible blocks from condition (17) are yellow,
admissible blocks from condition (16) are green and white admissible blocks are to be
approximated. Admissibility condition (15) was employed.

holds, no kernel interpolation will be applied but the fundamental solution itself is used. Hence,
a dense matrix block would be stored, however ACA is used to reduce storage. For this study
we set a constant value distm = 0.25. Condition (16) is only checked after the admissibility
condition holds to ensure that a low rank representation with ACA is possible.

Additionally to the above given clustering some block clusters have elements with very small
values. This is caused by the fundamental solution (5) for larger values of µ . In Fig. 1, the
values of the fundamental solution have been plotted with respect to the distance and µ . It can be
observed that the matrix entries decrease by several decades if the distance r is increased, hence
become negligible compared to the other entries. Further, such small values may even cause
trouble in a kernel expansion as, essentially, a zero is approximated. To avoid such problems
and to save storage, blocks which fulfil

||[B̂]m̂×n̂|| ≤ 10−15 (17)

are set to zero. The condition is realized in the code by checking the fundamental solution for
the smallest distance of this cluster to the boundary.

The above conditions are checked in a hierarchy, first (17) then (15) or (14) and lastly (16).
In Fig.6, we present two examples of H 2-matrices constructed in this way. For the top matrix,
the parameter µ = 20 is set and below the value is µ = 50. Inadmissible matrix blocks are
coloured in black. Matrix blocks fulfilling (17) are marked yellow and are not stored. Those
blocks fulfilling (16) are green and are compressed with ACA. For the remaining white matrix
blocks a kernel interpolation is applied with recompression (see below). Obviously, the amount
of yellow blocks increases with a larger µ .

10
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3.3 Approximation of the integral kernel

A low-rank representation of the kernel is obtained by interpolation in admissible blocks, which
do not fulfill (17) or (16). Such blocks exist for all three matrices [G], [H], or [B] of (12), which
are detailed in (13). The blocks in [H] and [G] stem from block clusters Ji× J j and those in [B]
stem from block clusters J j× Ii. Within such blocks we approximate the fundamental solution

u∗
(
~ξ ,~x
)

with the Lagrange interpolation function [38]

u∗
(
~ξ ,~x
)
≈

α3

∑
ι=1

β 3

∑
κ=1

Lι

(
~ξ
)

u∗
(
~ξι ,~xκ

)
Lκ (~x) , (18)

where α3 is the number of interpolation points in the cluster J j, β 3 is the number of interpola-
tion points in the cluster Ii. Note, the interpolation is for all three coordinate directions, which
gives overall α3 interpolation points, when each coordinate axis has α interpolation points. The
Lagrange interpolation function is defined as usual

Lι(~ξ ) = ∏
ι1 6=`

ξ 1−ξ 1
`

ξ 1
ι1
−ξ 1

`

×∏
ι2 6=`

ξ 2−ξ 2
`

ξ 2
ι2
−ξ 2

`

×∏
ι3 6=`

ξ 3−ξ 3
`

ξ 3
ι3−ξ 3

`

, ι1, ι2, ι3,`= 1, . . . ,α3 , (19)

with the zeros of the Chebyschev polynomial ~ξ`. The second Lagrange interpolation in (18) is
defined analogously but there β 3 interpolation points are used. In the matrix [H] in (13), the
normal derivative q∗ =~n(~x) ·~∇xu∗(~ξ ,~x) of the fundamental solution is present, which is realised
by applying the gradient operator on the Lagrange interpolation

q∗
(
~ξ ,~x
)
≈

α3

∑
ι=1

β 3

∑
κ=1

Lι

(
~ξ
)

u∗
(
~ξι ,~xκ

)
(~n(~x) ·~∇xLκ (~x)) . (20)

These approximations of the fundamental solutions are used in the block cluster tree. Consider-
ing the block clusters Ji× J j with the size n̂× n̂ and J j× Ii with the size n̂× m̂, then the entries
are

ĥki =
α3

∑
ι=1

β 3

∑
κ=1

Lι

(
~ξk

)
u∗
(
~ξι ,~xκ

) ∫
supp(ϕi)

ϕi(~x)(~n(~x) ·~∇xLκ (~x))dΓi,

ĝki =
α3

∑
ι=1

β 3

∑
κ=1

Lι

(
~ξk

)
u∗
(
~ξι ,~xκ

) ∫
supp(ψi)

ψi(~x)Lκ (~x)dΓi,

b̂k j =
α3

∑
ι=1

β 3

∑
κ=1

Lι

(
~ξk

)
u∗
(
~ξι ,~xκ

) ∫
supp(Φ j)

Φ j(~x)Lκ (~x)dΩ j.

(21)

where index k determines the n̂-th row, i the n̂-th column and j is the m̂-th column. For block
cluster Ji× J j cluster Ji has β 3 and J j has α3 interpolation points. While block cluster Ii× J j

has β 3 and α3 interpolation points. Note, for the elements ĥki there is no integral free term. The
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integral free term is located on the main diagonal of [H] and such blocks can never be admissible.
Writing the above in a matrix notation for the whole block cluster results in

[Ĥ] = [Û ][Ŝ][V̂H ], [Ĝ] = [Û ][Ŝ][V̂G], [B̂] = [Û ][Ŝ][V̂B], (22)

with the elements

Ŝικ = u∗
(
~ξι ,~xκ

)
, Ûkι = Lι

(
~ξk

)
, (V̂H)κi =

∫
supp(ϕi)

ϕi(~x)(~n(~x) ·~∇xLκ (~x))dΓi,

(V̂G)κi =
∫

supp(ψi)

ψi(~x)Lκ (~x)dΓi, (V̂B)κ j =
∫

supp(Φ j)

Φ j(~x)Lκ (~x)dΩ j .

Those matrices collect the entries for all nodes in the block cluster, i.e., the sizes are [Û ] =
[n̂×α3], [Ŝ] = [α3×β 3] and for the right interpolation matrices [V̂H ] = [β 3× n̂∗], [V̂G] = [β 3×
n̂], [V̂B] = [β 3× m̂].

Following the H 2-strategy, a nested cluster basis is introduced to end up with an almost
linear complexity [37]. With nested cluster basis we can express polynomials corresponding to
clusters J in terms of polynomials corresponding to boundary elements on the leaf cluster. The
same holds for cluster I. Essentially, the Lagrange interpolant in (21) is again interpolated

Lι (~x) =
γ3

∑
λ=1

Lι (~xλ )L
′
λ (~x), ~n(~x) ·~∇ηLκ (~x) =

γ3

∑
λ=1

Lκ (~xλ )(~n(~x) ·~∇xL
′
λ (~x)) , (23)

where L ′ is of this form (19). The equal sign holds only if the interpolation order γ is large
enough with respect to α,β [42]. The nested cluster basis replace the Lagrange interpolation
functions in the elements Ûkι , (V̂H)κi, (V̂G)κi and (V̂B)κ j of (22)

Ûkι =
γ3

∑
λ=1

Lι (~xλ )L
′
λ (~x),

(V̂H)κi =
γ3

∑
λ=1

Lκ (~xλ )
∫

supp(ϕi)

ϕi(~x)(~n(~x) ·~∇xL
′
λ (~x))dΓi,

(V̂G)κi =
γ3

∑
λ=1

Lκ (~xλ )
∫

supp(ψi)

ψi(~x)L ′
λ (~x)dΓi,

(V̂B)κ j =
γ3

∑
λ=1

Lι (~xλ )
∫

supp(Φ j)

Φ j(~x)L ′
λ (~x)dΩ j .

(24)

The elements under the boundary and domain integral are stored separately in leaf basis matrices

Tλ = L ′
λ (~x), (TH)iλ =

∫
supp(ϕi)

ϕi(~x)(~n(~x) ·~∇xL
′
λ (~x))dΓi,

(TG)iλ =
∫

supp(ψi)

ψi(~x)L ′
λ (~x)dΓi, (TB) jλ =

∫
supp(Φ j)

Φ j(~x)L ′
λ (~x)dΩ j ,

(25)

12
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where [T ] = Tλ , [TH ] = (TH)iλ , [TG] = (TG)iλ and [TB] = (TB) jλ . For the leaf basis matrices the
elements have to be integrated corresponding to the boundary element and domain cell. The sizes
of the leaf basis matrices are [T ] = [γ3], [TH ] = [TG] = [N× 9γ3] and [TB] = [M× 27γ3]. Please
note, only the leaf basis matrices are stored in the memory. The remaining polynomials can
either be computed on the fly during the matrix-vector product, which increases its computation
time or these interpolations are pre-computed and stored per level.

To speed up the matrix-vector product and to save storage the matrix [Ŝ] from equation (22) is
compressed with ACA, which is denoted recompression because it is already an approximation.
This matrix consists of the fundamental solution evaluated at a set of interpolation nodes (18).
As mentioned above, the size of this matrix is the interpolation order to the power of three. Here,
the fully pivoted ACA is used (see, e.g., [23]). Essentially, a low-rank decomposition is sought
after

[Ŝ]α3×β 3 = [A∗]α3×k[B
∗]k×β 3 , (26)

where k < α,β should hold. The ACA approximates these low-rank matrices with [Ŝk] =

∑
k
m=1~am~bT

m and the approximation algorithm can be sketched as follows:

• Set R0 = [Ŝ]

• For `= 1,2, . . . ,k

1. (i∗, j∗)` = ArgMax|R`−1|
2. τ` = (R`−1

i∗, j∗)
−1

3. ~a` = τ`R`−1
:, j∗ ,

~b` = (R`−1
i∗,: )

T

4. R` = R`−1−~a ~̀b` , Ŝ` = Ŝ`−1 +~a ~̀b`

• If (
∥∥R`
∥∥

F ≤ ε
∥∥Ŝ`
∥∥

F ∨ `= k) Stop

• EndFor

The notation Ri,: denotes the i-th column of R and analogously R:, j the row. The ACA does six
steps to approximate the matrix. In the first step, the residual matrix R0 is set. Secondly, the
maximal element in the matrix is determined. Thirdly, the value of τ for the maximal element is
calculated. After that the vectors ~a` and~b` are set as the row and column of the residual matrix
related to the maximal element. Then the residual matrix R` is computed by subtracting the
outer product of ~a and~b, i.e., its rank is reduced by one. In the last step, the Frobenius norm
of the residuum

∥∥R`
∥∥

F is calculated. The steps from two to six are repeated until the stopping
condition is satisfied or the maximal rank of matrix [Ŝ] is reached. The value of the stopping
condition ε is set a priori by the user.

4 Numerical test

In this section, we present numerical tests to show the performance of the proposed methodol-
ogy. The considerations are restricted to the matrix [B] in (12) as this matrix is the largest of
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the involved matrices. Further, both other matrices [H] and [G] are based only on the boundary
discretisation and have been studied in other publications on H 2-matrices for the Laplace op-
erator. Essentially, three test are presented. First, to validate the code, the fundamental solution
u∗
(
~ξι ,~xκ

)
in [B] is replaced by a polynomial

f (x) = xz, (27)

with degree z. Hence, the domain integral in this test is∫
f (x)Φ(x)dΩ =

∫
xz

Φ(x)dΩ . (28)

We expected an exact solution for z = α = β = γ because in this case the kernel expansion is
exact. The second and third test show the behavior of the approximation of [B] for the Yukawa
fundamental solution as proposed above. In the second test, the H 2-methodology is applied
without recompression, whereas in the third test the ACA is used for recompression of the matrix
[Ŝ]α3×β 3 .

In all tests, the relative root mean square error defined by

RMS[B] =

((
‖B− B̃‖

)2

‖B‖2

) 1
2

(29)

is used to measure the approximation. ‖B‖ is the Frobenius norm of the original matrix [B] and
B̃ denotes the approximated matrix.

The test geometry is a three-dimensional unit cube. Hexahedral elements are used in the
domain cells. The mesh density of the computational domain was varied from 93 = 729 to
913 = 753571 nodes.

4.1 Code validation

As written above, first, we does not use the fundamental solution but a polynomial of degree z
as kernel function. Please, note that the integral (28) consists of the polynomial and the shape
functions. In Fig.7, the RMS[B] is displayed versus the approximation, i.e., the degree of the
Lagrange polynomials. When the number of interpolation points α and β is equal to the degree
of the polynomial z the error drops to a very small value close to machine precision. As expected,
the accuracy increases with increasing the number of interpolation points.

The parameter γ governs the interpolation (23) within the levels. Its influence is studied in the
right panel of Fig.7, where γ = 5 was set. Also as expected, γ has to grow with α and β , else an
error is introduced, which gives the straight line after α = β > γ for a z < γ .

4.2 Results for the Yukawa kernel

In the following tests, the kernel is the fundamental solution u∗(~ξ ,~x) from (5). Please, remember
that the case µ = 0 represents the case of a Poisson equation with a right hand side~b∗(~x). This
right hand side is approximated by the shape function in (10). The following results are again
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Figure 7: The norm RMS[B] is plotted versus the number of interpolation points α = β for a
polynomial as integral kernel (27). In the left figure γ = α = β is set, whereas in the
right figure γ = 5 is used. The mesh density was 93 nodes.

restricted to show the approximation of matrix [B] and, hence, are valid for any right hand side
which can be approximated by these shape functions. Please note, for these results the criterium
(16) was disabled.

In Fig.8 and Fig.9, we present the accuracy of the approximated [B] for different interpolation
orders without recompression. Results are displayed for four different meshes and two parameter
choices η . In both figures, the results in the upper line are produced with the maximum based
admissibility criterium (14) and the lower line with the minimum based admissibility criterium
(15). Obviously, the results depend on η , where the larger value produce slightly worse results.
This is reasonable as an increased η results in more approximated clusters. Further, the different
mesh sizes show a similar behavior. On the other hand the different admissibility conditions
show for η = 1 a better approximation quality for the maximum based criterion. However, for
η = 5 this effect is reduced. Nevertheless, it must be remarked that the minimum criterion
produce less cluster and, as shown later, results in a faster matrix-vector product.

Next, the influence of the parameter distm in the condition (16) is studied. In Fig.10, we
present the RMS[B] depending on the distance distm for different µ and different meshes. Note,
now we have the Yukawa type kernel and criterium (16) decides whether the kernel is interpo-
lated or not. For this test these dense blocks are not compressed with ACA and, hence, are not
approximated. Decreasing the distance distm increases the number of admissible block clusters
where the kernel interpolation is applied. Thus, more elements in the matrix are approximated
and, consequently, the accuracy of [B] decreases. Further, for higher values of µ this effect is
stronger as a lot of entries are set to zero following (17) and the overall amount of block clus-
ters with kernel interpolation is smaller. Finally, it may be remarked that the influence of the
interpolation order is not affected by this additional condition.

Next, the influence of µ and different mesh sizes is studied. In Fig.11, we present the RMS[B]
depending on the mesh density and the shape of the fundamental solution. When we increase µ ,
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Figure 8: The norm RMS[B] versus interpolation order for different meshes and values of param-
eter µ . No recompression is applied. In the top panels the admissibility condition (14)
is used and in the bottom panels (15) both with η = 1.
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Figure 9: The norm RMS[B] versus interpolation order for different meshes and values of param-
eter µ . No recompression is applied. In the top panels the admissibility condition (14)
is used and in the bottom panels (15) both with η = 5.
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Figure 10: The RMS[B] for distm = 0.125 and distm = 0.25. The value of parameter µ was 20 and
50 and results for the meshes with 253 and 413 nodes are displayed. Admissibility
condition (15) is used with η = 5. No recompression is applied.
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Figure 11: The RMS[B] for two values of parameter µ . The mesh densities are 253 (left), 313

(middle) and 413 (right). No recompression is used. Admissibility condition (15) is
used with η = 5.

the global character of the Yukawa fundamental solution changes to local, i.e., the values of the
fundamental solution decrease away from the collocation point to a low order polynomial and,
hence, can be better approximated by the chosen Lagrange interpolation. This effect is similar
for all presented meshes. Increasing the interpolation order decreases the error. However, for
high values of µ the influence of the interpolation order is nearly not visible because the error is
too small to see any influence.

A similar study but differently displayed can be found in Fig.12. There, again, the RMS[B]
is shown for different meshes and different values of µ but now the error for all meshes is
shown in one graph. The number of interpolation points α = β = γ were increased from 1 to
7. The condition (16) was enabled and distm was set to 0.25. Four different mesh densities
were employed. We observe that the accuracy depends slightly on the mesh density, whereas an
increase of the interpolation order decreases the error as expected. The error level is different
for different values of µ because an increase of µ allows to discard matrix blocks following
(17). On the left and middle panel in Fig.12 the results for interpolation order α = β = γ = 7
are missing. Computing RMS[B] requires to compute the dense matrix as well and, hence, the
meshes 413 and 463 last too long.
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Figure 12: The norm RMS[B] versus interpolation order for different meshes and parameters µ .
No recompression is applied and the admissibility condition was (15) with η = 1.
The condition (16) was enabled with distm = 0.25.
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Figure 13: The norm RMS[B] versus interpolation order for different meshes and parameters µ

without recompression. In the top panels the admissibility condition (14) is used
and in the bottom panels (15) with η = 5. The condition (16) was enabled with
distm = 0.25.
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Figure 14: The norm RMS[B] for γ = 3 or γ = 5 and different µ without recompression. The used
mesh has 253 nodes and η = 5 is chosen.

To show the influence of the two admissibility conditions (14) and (15), in Fig.13 we com-
pare the RMS[B] again for both conditions but now, different to the study above, including the
condition (16) with distm = 0.25. We observe no dependence of the approximation accuracy on
the admissibility condition. The RMS[B] is for all cases similar. Compared to the study in Fig.9
without condition (16) the accuracy is similar or even better for µ = 50. Hence, this additional
condition (16) pays off.

In the previous subsection the influence of the interpolation order γ was studied on the arti-
ficial polynomial function (see Fig.7). The same effect should be visible for the fundamental
solution. In Fig.14, we present the RMS[B] versus the interpolation order γ . As expected, the
error decreases with increasing interpolation order α = β up to the point α = β = γ . An further
increase of the interpolation order does not decrease the error because it is dominated by the
error due to the nested cluster basis (23), which is only introduced for γ < α = β . The effect
is the same for different values of µ as this parameter does not change this dominance of the
interpolation error. However, overall the error is smaller for larger µ due to the above discussed
local behavior.

4.3 Results with recompression

For the last test, the ACA algorithm was employed to compress the matrix [Ŝ] from (22) in
admissible block clusters, which is denoted recompression. In Fig.15, we present the RMS[B] to
measure the influence of this recompression. Please note that the admissibility condition (15)
and condition (16) with distm = 0.25 are used. The interpolation of the kernel is done in all three
coordinate directions, hence, the size of [Ŝ] is α3×β 3 with the number of interpolation points
α and β . The user-defined parameter ε determines the compression of the matrix with the ACA
and is varied on the horizontal axis in Fig.15 from 10−4 to 10−10. Obviously and expected, a
lower ε results in a better approximation of [B]. In the left panel it can be further observed that
a point can be reached, where the interpolation error dominates and the ACA does not increase
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Figure 15: The RMS[B] versus ε of the ACA stopping condition for µ = 20 (left) and µ = 50
(right). The mesh with 463 nodes and η = 5 was chosen.

the overall error. For µ = 50 in all tests the ACA based error dominates because the kernel can
easily be approximated by a low order interpolation.

The recompression is introduced to decrease the storage of the H 2-matrix. To see the influ-
ence of the ACA the storage of [B] is plotted versus ε in Fig.16. For higher values of ε the storage
is substantially smaller. The effect is larger for larger matrices comparing the left and right plot
in Fig.16. This is not astonishing because larger matrices have more admissible blocks, where
the recompression with ACA can be applied. As discussed above, the price for less storage is
less accuracy.

After these tests for different approximations, next, the overall complexity is studied numeri-
cally. It can be expected that a linear complexity is obtained. In Fig.17, we present the memory
usage for an increasing number of unknowns m. The memory is presented for computations
with µ = 20 and µ = 50 and for both admissibility conditions. Additionally, complexity curves
are displayed for O(nm),O(m logm), and O(m). It seems that the proposed method reduces the
complexity from O(nm) for a dense version to O(m), i.e. the expected linear behavior. When
µ is growing the memory decreases, as more matrix blocks are neglected following condition
(17). The admissibility condition (15) and (14) have a minor influence on the storage, which is
for both conditions O(m).

Beside storage the CPU-time usage is an important criterium. In Fig. 5 it was shown that
the min-based condition produces less block clusters, which should improve the speed in the
matrix-vector product. This is studied in Fig 18 where the CPU-time for 100 matrix-vector
products [B]{b} is plotted versus the number of unknowns. It can be observed that the matrix-
vector product is faster, when condition (15) is employed. The parameter µ has no influence on
the CPU-time. This faster matrix-vector product might justify the slightly worse approximation
presented in Fig.8. However it must be remarked that condition (15) has no mathematical basis.
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Figure 16: The influence of ACA on the storage of matrix [B] for two meshes and values of µ .
The interpolation order was α = β = γ = 3. The admissibility conditions (14) and
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Figure 17: The amount of memory needed to store the matrix [B]. The interpolation order is
α = β = γ = 3 and the stopping condition was set to ε = 10−8. MIN indicates the
admissibility condition (15) and MAX is (14).
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Figure 18: CPU-time of 100 matrix-vector products [B]{b} for four meshes and three values of
µ . MIN indicates the admissibility condition (15) and MAX is (14). The interpolation
order was α = β = γ = 3, the ACA stopping condition ε = 10−8 and η = 5.

5 Conclusions

The Yukawa equation with an inhomogeneous right hand side has been considered. Beside other
applications, an exemplarily physical application might be the incompressible, laminar flow of a
Newtonian fluid handled with the false transient approach. The Poisson equation is a special case
and can be handled as well with the proposed approach. The corresponding boundary domain
integral equation (BDIM) is classically discretised but the H 2-methodology is applied to reduce
the complexity. The main focus was on the application of H 2-matrices to represent the matrix
from the domain integral. Two cluster trees are necessary where one is living on the boundary
and the other in the domain. Further, the block clusters have been combined not necessarily
within one level. Recompression was done with a fully pivoted adaptive cross approximation
(ACA).

Tests revealed that the developed algorithm reduces the computational cost of the BDIM from
O(nm) to O(m), where m is the number of unknowns in the domain and n on the boundary. The
accuracy of the approximation depends on the interpolation order of the kernel expansion and on
the recompression with ACA. A naive implementation may cause for medium sized problems
an higher effort compared to a classical BDIM without fast methods. Here, additionally to the
admissibility criterion of the H 2-matrices, block clusters with very small entries compared to
other blocks, i.e., with a very small Frobenius norm, have been discarded. Such situations are
caused by the strong decrease of the fundamental solution of the Yukawa operator. As usual in
all fast BE methods, one should take care that the error introduced by adding additional approxi-
mation techniques within the H 2-method is of the same order of magnitude as the discretization
error and the error due to the solver of the system of linear equations.
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