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Abstract

Mechanical loads together with changing temperature conditions can be found in a wide
variety of fields. Their effects on elastic media are reflected in the theory of thermoelastic-
ity. For typical materials in engineering, very often a simplification of this coupled theory
can be used, the so-called uncoupled quasistatic thermoelasticity. Therein, the effects of the
deformations onto the temperature distribution is neglected and the mechanical inertia ef-
fects as well. The Boundary Element Method is used to solve numerically these equations in
three dimensions. Since convolution integrals occur in this boundary element formulation,
the Convolution Quadrature Method may be applied. However, very often in thermoelas-
ticity the solution shows rapid changes and later on very small changes. Hence, a time
discretisation with a variable time step size is preferable. Therefore, here, the so-called
generalised Convolution Quadrature is applied, which allows for non-uniform time steps.
Numerical results show that the proposed method works. The convergence behavior is, as
expected, governed either by the time stepping method or the spatial discretisation, depend-
ing on which rate is smaller. Further, it is shown that for some problems the proposed use
of the generalised Convolution Quadrature is the preferable.
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1 Introduction

In many engineering applications not only the deformation is of interest but as well the temper-
ature and their interaction. The presumably most prominent example are thermal stresses, i.e.,
the stress in an elastic body caused by a heat source or by a change in temperature. An industrial
example is hot forming with all its variants. These coupled effects are described in the theory of
thermoelasticity.

The theory of thermoelasticity is well known for several decades. In fact, the classical linear
approach goes back to Duhamel in 1837 [14] and Neumann in 1885 [31]1. It integrates the
effects of mechanical loads together with those of a temperature field onto an elastic structure.
The mathematical description is based on a system of coupled differential equations, consisting
of a temperature equation and an equation for the deformations and was established by Biot
[5]. The theory can be found in a variety of textbooks, see e.g., Nowacki [32]. This set of
two coupled partial differential equations can be simplified by assuming that the thermoelastic
dissipation can be neglected. Such an assumption results in an one-sided coupling, i.e., the
temperature development is not influenced by the displacement solution but vice-versa. The
other simplification is whether the inertia terms can be neglected for slow processes. Hence,
four different simplifications can be found in literature. For many engineering applications,
it can be assumed that the coupling of the temperature field with the displacement solution is
negligible and the mechanical inertia effects can be neglected as well. This is the so called
Uncoupled Quasistatic theory of Thermoelasticity (UQT), see e.g., [34], which is considered
here.

For the numerical solution of this set of governing equations most numerical methods have
corresponding formulations. This holds as well for the Boundary Element Method (BEM),
which has gained popularity since it requires only the meshing of the body’s surface. The ana-
lytical basis of a thermoelastic BEM, i.e., the respective integral representations and fundamen-
tal solutions, can be found in a series of papers by Sládek and Sládek [42, 43] and in the book
of Kupradze et al. [22].

The analysis of thermoelasticity using the BEM was started by Rizzo and Shippy [35] and Cruse
et al. [9]. They treated three-dimensional problems of uncoupled thermoelasticity for steady state
heat conduction. BE formulations for transient thermoelasticity in 2D were presented in [45]
and for 3D in [8]. First numerical results for an uncoupled formulation can be found in [41].
Further numerical results are presented for planar problems in [10] for coupled and uncoupled
quasistatic thermoelasticity. Later on, the same authors showed the general three-dimensional
case of UQT together with numerical results [11]. In [12], these authors show the similarities
of consolidation in poroelasticity and the quasi-static thermoelasticity with numerical results. A
2D-formulation of the coupled dynamic equations has been presented in [46] using the Laplace
transform and a numerical inverse transformation. By rewriting the thermal equation, a special
form of the coupling term can be found which allows a formulation of the coupled quasi-static
case using the elastostatic fundamental solution, i.e., partly the fundamental solutions of the un-
coupled formulation [44]. An approach using particular integrals for the solution of transient

1This historical comment has been taken from the book [18], where further remarks and literature on the history of
thermal stresses can be found.
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thermoelasticity combined with the complementary solution of the steady state problem was
presented by Park and Banerjee [33]. Chatterjee et al. [7] presented a simplified re-integration
based fast-convolution algorithm for UQT as a memory saving alternative for large scale prob-
lems. An extension to anisotropic elastic material properties for fully coupled thermoelasticity
is found in the book of Gaul [15] or in [20]. In this formulation, the dual reciprocity method is
used to handle the time dependent terms.

The above discussed formulations use either a formulation in the transformed domain with an
inverse transformation back to time domain, or they treat the problem in time domain directly. A
methodology to compute in time domain but using Laplace domain fundamental solution is the
Convolution Quadrature method (CQ), which goes back to Lubich [27, 28]. BEM formulations
based on CQ can be found, e.g., for elastodynamics [19], viscoelasticity [38], and poroelastic-
ity [39, 23]. In case of thermoelasticity, the respective formulation has been proposed in [1] with
numerical results in 2D. Here, an extension is presented towards 3D, which is for the formu-
lation of the equations straight forward. The main contribution is to allow for a variable time
step size. This can be done using the so-called generalized Convolution Quadrature method
(gCQ). Lopez-Fernandez and Sauter [24] published this generalisation of the CQ. The numeri-
cal realisation can be found in [25]. The extension to use a Runge-Kutta method as underlying
time stepping has been presented in [26]. An application of the gCQ in acoustics with absorbing
boundary conditions has been published in [36]. This extension to variable time step sizes seems
to be well suited for thermoelastic problems as the solution behavior in most applications show
in the beginning much larger gradients compared to later times. Hence, an adjustment of the
time step size seems to be favourable.

The paper is organised as follows. First, the basic equations and relations of thermoelasticity
are recapped. Next, the discretisations in space and time are introduced and the gCQ is ex-
plained. The comparison with two 1D solutions shows the performance of the method. Finally,
a simplified example from hot forming shows the applicability of the proposed formulation to
real world problems.

2 Uncoupled Quasistatic Thermoelasticity

The temperature field θ(x) and the displacement field u(x) are governed by the thermoelastic
theory. This system of coupled differential equations consists of a scalar differential equation
for the temperature and a vectorial differential equation for the elastic displacements. The tem-
perature equation is similar to the heat equation but with an additional term for the influence
of the mechanical heat contribution. The elastic equation is the Lamè Navier equation with a
contribution accounting for the temperature influence. This fully coupled system of differential
equations can be found, e.g., in [32, 22]. In many applications it is possible to neglect the influ-
ence of the displacement field on the temperature, i.e., the temperature is decoupled. Further, it
is often suitable to neglect the inertia terms in the elastic equation. These simplifications result
in the so called uncoupled quasistatic theory of thermoelasticity.

3



Preprint No 03/2019 Institute of Applied Mechanics

2.1 Differential and integral equations

Let Ω⊂ R3 be a bounded Lipschitz domain and Γ := ∂Ω its boundary with the outward normal
n. The one-sided coupled set of partial differential equations is [32]

µ∇
2u(x, t)+(λ+µ)∇∇ ·u(x, t)− (3λ+2µ) α∇θ(x, t) = 0

k∇
2
θ(x, t)−ρcp∂tθ = 0

∀(x, t) ∈Ω× (0,T ) . (1)

The spatial derivatives are denoted with the ∇-operator with its usual meanings as grad = ∇

or div = ∇·. The temporal derivative is denoted with ∂t . The used material parameters are
the Lamé constants λ and µ, the thermal expansion coefficient α, the thermal conductivity k,
the density ρ, and the specific heat constant cp. In (1), it is assumed that the strains are small
and, consequently, a linear strain-displacement relation has been used. Further, it is assumed
that the material parameters are constant. These restrictions allow to have the above set of
linear partial differential equations (1), which form the basis for the following deduced boundary
integral equations. The boundary Γ is split into non-overlapping sets ΓD,ΓN , and ΓR such that
Γ = ΓD∪ΓN ∪ΓR holds. The Dirichlet, Neumann, and Robin boundary conditions are given by

u(x, t) =fD (x, t) ∀x ∈ ΓD× (0,T )

θ(x, t) =gD (x, t) ∀x ∈ ΓD× (0,T )

t(x, t) = T Su(x, t)− (3λ+2µ)αθ(x, t)n =fN (x, t) ∀x ∈ ΓN× (0,T )

q(x, t) =−k
∂

∂n
θ(x, t) =gN (x, t) ∀x ∈ ΓN× (0,T )

q(x, t)+κ(x)θ(x, t) =gR (x) ∀x ∈ ΓR× (0,T )

(2)

where t(x, t) is the traction vector and q(x, t) the flux. In (2), the elastic traction operator
(Hooke’s law) T S• = λn∇ · •+ 2µ ∂

∂n •+µn× (∇×•) has been used. Certainly, the boundary
condition type, Dirichlet or Neumann, might differ in each direction of the vectorial dofs and
between the elastic and thermal dofs. However, for simplifying notation this is not separately
denoted. The Robin type boundary condition is mostly called convective boundary condition
and in engineering usually given in the form q(x, t) = −κ(x)(θ(x, t)−θ∞ (x)) with the heat
transfer coefficient κ and the ambient temperature θ∞. In the last line of (2), a more suitable
rearrangement is used with gR (x) = κ(x)θ∞ (x). Note, the heat transfer coefficient is assumed
to be independent of temperature during the calculation. This restriction allows to avoid a non-
linear iterative solution.

The respective representation formula to (1) can be found in literature [22] and in a series of
papers by Sládek and Sládek [42, 43]. To give a brief sketch of the derivation, the operator B
and its adjoint B∗ describing the governing equations (1) are introduced

B =

[
µ∇2 +(λ+µ)∇∇· −(3λ+2µ) α∇

0 k∇2−ρcp∂t

]
B∗ =

[
µ∇2 +(λ+µ)∇∇· 0
(3λ+2µ) α∇· k∇2−ρcp∂t

]
.

(3)
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With these operators the weighted residual statement is

t∫
0

∫
Ω

GT (x−y, t− τ)(Bug)(y,τ)dΩ =
∫
Ω

GT (x−y, t)∗ (Bug)(y, t)dΩ = 0 (4)

where the symbol ∗ denotes the time convolution. The vector ug = [uT θ]T collects the dis-
placements and the temperature. G denotes the fundamental solutions defined with the adjoint
operator

B∗G = B∗
[

U 0
ΘΘΘT

u Θ

]
=−

[
I 0
0 δ(t− τ)

]
δ(x−y) . (5)

The capital letters are used to mark fundamental solutions and the identity matrix is I. In (5), U is
the elastostatic fundamental solution, Θ the fundamental solution of the parabolic heat equation,
and ΘΘΘu a coupling term, which can be found in [43] (For convenience the fundamental solutions
are given in A). Performing the usual partial integrations with respect to space and time and
assuming vanishing initial conditions, the representation formula (∀x ∈Ω)[

u(x, t)
θ(x, t)

]
=−

t∫
0

∫
Ω

(B∗G)T (x−y, t− τ)ug (y,τ)dΩdτ =

∫
Γ

{[
U(x−y) −ΘΘΘu (x−y, t)∗

0 −Θ(x−y, t)∗

][
t(y, t)
q(y, t)

]
−
[

T(x−y) Qu (x−y, t)∗
0 Q(x−y, t)∗

][
u(y, t)
θ(y, t)

]}
dΓ

(6)

is obtained. As it is well known, the adjoint operator applied on the matrix of fundamental so-
lutions gives the right hand side. The newly introduced fundamental solution for the tractions
T(x−y) is the elastostatic traction fundamental solution and Q(x−y, t) the flux fundamental
solution for the heat equation (see, e.g., [6]). The fundamental solution for the coupling term
Qu (x−y, t) = k∇ΘΘΘu (x−y, t) is given in [43]. The limit to the boundary with a careful con-
sideration of the singular behavior of the fundamental solutions results in the boundary integral
equation (∀x ∈ Γ)[

C(x) 0
0 c(x)

][
u(x, t)
θ(x, t)

]
=

∫
Γ

{[
U(x−y) −ΘΘΘu (x−y, t)∗

0 −Θ(x−y, t)∗

][
t(y, t)
q(y, t)

]

−
[

T(x−y) Qu (x−y, t)∗
0 Q(x−y, t)∗

][
u(y, t)
θ(y, t)

]}
dΓ .

(7)

Also well know, the trace operation gives an integral free term with the known expression for
C and c from elastostatics and the heat equation, respectively. Further, the integral with T is
only defined as Cauchy Principal Value (CPV). All other integrals are either regular or weakly
singular. Note, in the second row of the matrices on the right hand side the convolution in time
has to be considered opposite to the first row which is essentially the integral equation from
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elastostatics. The lower line of the integral equation is the known equation for the parabolic heat
equation. As seen above, the respective differential equation is decoupled and, consequently,
also the integral equation. Note, the negative sign in front of the fundamental solutions ΘΘΘu and
Θ is due to the definition of the flux as negative co-normal derivative q = −k∂/∂nθ. This phys-
ically motivated definition, i.e., the negative sign, is not the mathematically suitable Neumann
trace [37]. Hence, often formulations with an opposite sign and, consequently, with positive
signs at the respective fundamental solutions can be found.

2.2 Spatial discretisation

Aiming at a boundary element formulation a discretisation in space and time must be introduced.
First, the spatial discretisation is discussed keeping the temporal behavior continuous. The ge-
ometry description is based on a linear triangulation of the boundary, Γ ≈ Γh =

⋃Ne
e τe. The

field variables are approximated by a linear combination of trial functions ψk and χk on these
elements, which span the trial spaces

S1
h(Γ) := span{ψ1

k}
ND
k=1 S0

h(Γ) := span{χ0
k}

NN
k=1 . (8)

The lowest order choice is applied in the following. Linear continuous trial functions ψ1
k ∈ S1

h(Γ)
are used for the temperature and the displacements as well as piecewise constant trial functions
χ0

k ∈ S0
h for the tractions and the heat flux. Hence, the Cauchy data are approximated by

uh (x, t) =
ND

∑
k=1

ψ
1
k (x) uk(t) th (x, t) =

NN

∑
k=1

χ
0
k (x) tk(t) (9)

θh (x, t) =
ND

∑
k=1

ψ
1
k (x) θ

k(t) qh (x, t) =
NN

∑
k=1

χ
0
k (x) qk(t) . (10)

Note, due to the different shape functions the numbers ND and NN differs. These shape functions
are inserted together with the geometry approximation in the boundary integral equation (7).
Further, a collocation approach is applied using the nodal values at the Dirichlet boundary and
the element center at the Neumann boundary. The spatially discretized operators are

V[nm] :=
∫

supp(χ0
m)

U(xn−y) χ
0
m (y)dΓy K[nm] :=

∫
supp(ψ1

m)

T(xn−y) ψ
1
m (y)dΓy

Vθ

[nm] :=
∫

supp(χ0
m)

Θ(xn−y, t) χ
0
m (y)dΓy Kθ

[nm] :=
∫

supp(ψ1
m)

Q(xn−y, t) ψ
1
m (y)dΓy

VC
[nm] :=

∫
supp(χ0

m)

ΘΘΘu (xn−y, t) χ
0
m (y)dΓy KC

[nm] :=
∫

supp(ψ1
m)

Qu (xn−y, t) ψ
1
m (y)dΓy ,

(11)

where the square brackets [·] denote the discretisation indices of the matrix elements. With these
operators, the two semi-discrete integral equations are

Cu(t) = V t(t)−K u(t)+VC (t)∗q(t)−KC (t)∗θ(t) (12a)

Cθ
θ(t) = Vθ (t)∗q(t)−Kθ (t)∗θ(t) (12b)

6
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The vectors u, t,θ, and q hold the values of the field variables at all nodes. The jump terms are
collected in the matrices C and Cθ, which depend on the boundary’s geometry. The jump term
for the heat equation can be found, e.g., in [2] and for elasticity in [29]. The regular integrals are
computed by Gauss quadrature. Occurring weakly singular integrals are handled by a coordinate
transformation, the Duffy transformation [13]. Strong singularities can be found in the elastic
double layer operator K and are treated by a regularization based on partial integration [17].

To handle mixed boundary value problems, it is convenient to reorder the equation system
with respect to the known and unknown data. This results in these two block equation systems[

VDD −KDN)
VND −(CNN +KNN)

][
tD(t)
uN(t)

]
=

[
CDD +KDD −VDN

KND −VNN

][
fD(t)
fN(t)

]
−
[
fθ
D (t)
fθ
N (t)

]
(13a)[

Vθ
DD (t) −Kθ

DN)(t)
Vθ

ND (t) −(Cθ
NN +Kθ

NN)(t)

]
∗
[
qD (t)
θN (t)

]
=

[
Cθ

DD +Kθ
DD (t) −Vθ

DN (t)
Kθ

ND (t) −Vθ
NN (t)

]
∗
[
gθ

D (t)
gθ

N (t)

]
(13b)

with fθ (t) = VC (t)∗q(t)−KC (t)∗θ(t). The indices D and N indicate that part of the boundary
where the collocation point is located and where the element for the integration is.

Discrete realisation of Robin boundary conditions The Robin boundary condition in (2)
is obviously a combination of Dirichlet and Neumann data. They can be handled in the BE
formulation as a kind of generalised Neumann boundary condition. However, the Neumann
and Dirichlet data are approximated by different discrete function spaces and must be correctly
handled. Essentially, the temperature θh ∈ S1

h(ΓR) must be mapped on the function space of the
flux, i.e., to a function θ̄h ∈ S0

h(ΓR). The discrete version of the boundary condition is

q(x, t)+κ(x)Rhθ(x, t) = q(x, t)+κ(x) θ̄(x, t) = gR (14)

with the discretised operator matrix Rh, which maps between the different spaces. This operator
matrix Rh can be found by introducing the L2 projection (denoted by < ·, ·>Γ)

∑
k
< χ

0
` ,
(

ψ
1
kθ

k
)
>ΓR = ∑

k
< χ

0
` ,
(

χ
0
k θ̄

k
)
>ΓR

∑
k
< χ

0
` ,ψ

1
k >ΓR θ

k = ∑
k
< χ

0
` ,χ

0
k >ΓR θ̄

k

⇒ Rh = ∑
k
< χ

0
` ,χ

0
k >
−1
ΓR
< χ

0
` ,ψ

1
k >ΓR .

(15)

For the above introduced discretisations with constant and linear approximations, the compu-
tation of (15) is cheap as the inversion of the first mass matrix < χ0

` ,χ
0
k >ΓR can be performed

locally. Further, in the above derivation a triangulation with flat elements is assumed. In this
case, the Gram determinant is the same for both integrals and, hence, cancel itself.

The integral equation (13b) stays for a Robin boundary essentially the same. It results in[
Vθ

DD (t) −Kθ
DN)(t)−Vθ

DR (t)κRh
Vθ

ND (t) −(Cθ
NN +Kθ

NN)(t)−Vθ
NR (t)κRh

]
∗
[
qD (t)
θN (t)

]
=

[(
Cθ

DD +Kθ
DD (t)

)
∗gθ

D (t)−Vθ
DN (t)∗gθ

N (t)−Vθ
DR (t)∗gθ

R (t)
Kθ

ND (t)∗gθ
D (t)−Vθ

NN (t)∗gθ
N (t)−Vθ

NR (t)∗gθ
R (t)

]
.

(16)
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Here, the assumption of a time independent κ is used. If this assumption does not hold, a more
complicated matrix structure is obtained but there is no principal problem.

Since the heat equation (13b) is independent of the elastic equation (13a), it can be solved
separately, in a first step after a suitable time discretisation. Thereafter, the heat variables are
known at all times and can be handled as an input quantity for the convolutions in the elastic
equation, i.e., the fθ-terms. This can be seen as a kind of thermal load for an elastostatic problem,
which becomes time dependent due to the time dependency of the load. The time discretisation
can be tackled, essentially, in three ways. Dargush and Banerjee [11] used the time domain
fundamental solutions and solved the convolution integral analytically after assuming a constant
time dependency within each time step. The second approach is to transform to Laplace or
Fourier domain and solve the problem in the transformed domain. A very recent approach is to
utilize the Convolution Quadrature Method (CQM), which has been proposed by Abreu et al.
[1]. The latter will be used here as well and extended to allow for a variable time step size.

3 The Generalised Convolution Quadrature Method

The original CQM proposed by Lubich [27, 28] is restricted to a constant time step size. The
generalisation to a variable step size has been developed by Lopez-Fernandez and Sauter [24],
where the algorithmic realisation can be found in [25]. The extension to use a Runge-Kutta
method as underlying time stepping has been presented in [26]. The following is a brief extrac-
tion from these papers.

To show the principal algorithm, a standard convolution integral is used, where the function
f is replaced by its inverse Laplace transform

y(t) = f (t)∗g(t) =
t∫

0

f (t− τ) g(τ)dτ =
1

2πi

∫
C

f̂ (s)
t∫

0

es(t−τ) g(τ)dτ ds , (17)

where for the Laplace variable holds s ∈ C,s.t.ℜs > 0 and C denotes the usual integration path
from minus to plus infinity. The rearrangement in (17) is only valid if the Laplace transform
f̂ (s) and its inverse exist. This holds true for the kernel functions used here (see [43] for the
explicit expressions). The inner time integral is the solution of the differential equation of first
order

∂

∂t
x(t,s) = sx(t,s)+g(t) with x(t = 0,s) = 0 . (18)

Thus, zero initial conditions are required. This ordinary differential equation can be solved
numerically by a time-stepping method. Let time steps (tn)

N
n=0 be given

0 = t0 < t1 < .. . < tN = T (19)

and introduce the corresponding mesh sizes ∆tn = tn− tn−1. Using the implicit Euler method for
solving (18) defines the approximation

xn =
xn−1

1− s∆tn
+

∆tn
1− s∆tn

gn , (20)

8
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where the discrete values are the field variables at discrete times, e.g., xn = x(tn). Inserting this
approximation in (17) allows some rearrangements

y(tn) =
1

2πi

∫
C

f̂ (s)xn(s)ds

=
1

2πi

∫
C

f̂ (s)
∆tn

1− s∆tn
gn ds+

1
2πi

∫
C

f̂ (s)
xn−1

1− s∆tn
ds

= f̂
(

1
∆tn

)
gn +

1
2πi

∫
C

f̂ (s)
xn−1

1− s∆tn
ds .

(21)

In the last step, the condition has been used that f̂ (s) is analytic right to the contour C. This
holds for all fundamental solutions discussed in the previous section. For the remaining complex
integral a quadrature formula is applied and the final quadrature formula for the convolution
integral is

y(tn) = f̂
(

1
∆tn

)
gn +

NQ

∑
`=1

ω`
f̂ (s`)

1− s`∆tn
xn−1(s`) . (22)

The integration points s` are distributed on a circle in the right complex half plane. These points
s` and the integration weights ω` are given in C.

The above made derivation has been based on the implicit Euler method to keep the formulas
simple. The extension to a Runge-Kutta method is straight forward and results, essentially, in a
vector xn of solutions at all stages of the Runge-Kutta method. Let us assume an A- and L-stable

Runge-Kutta method given by its Butcher tableau
c A

bT with A ∈ Rm×m, b,c ∈ Rm and m is

the number of stages. The stability assumptions require that bTA−1 = (0,0, . . . ,1) holds (see B
for more details). With the vector 1 = (1,1, . . . ,1)T of size m and the vector gn filled with the
values of the function g(t) at the stages within the time step n the algorithm is

• First step
y (t1) = f̂

(
(∆t1A)

−1
)
g1

with implicit assumption of zero initial condition.

• For all steps n = 2, . . . ,N the algorithm has two steps

1. Update the solution vector xn−1 at all integration points s`

xn−1 (s`) = (I−∆tn−1s`A)
−1 ((bTA−1 ·xn−2(s`)

)
1+∆tn−1Agn−1

)
for `= 1, . . . ,NQ with the number of integration points NQ.

2. Compute the solution of the integral at the actual time step tn

y (tn) = f̂
(
(∆tnA)

−1
)
gn +

NQ

∑
`=1

ω` f̂ (s`)
(
bTA−1 ·xn−1(s`)

)
(I−∆tns`A)

−1
1 (23)

9
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As mentioned above, the parameters to be selected are given in C.
The application of formula (23) to the convolution integrals in (13) is straight forward. For

the elastic equation (13a) only the contribution of the thermal load in fθ (t) has to be discretised,
which results in

fθ (tn) =V̂C
(
(∆tnA)

−1
)
qn− K̂C

(
(∆tnA)

−1
)

θn

+
NQ

∑
`=1

ω`

[
V̂C (s`)

(
bTA−1 ·xV c

n−1(s`)
)
− K̂C (s`)

(
bTA−1 ·xKc

n−1(s`)
)]

(I−∆tns`A)
−1
1

(24)

where the upper index at x()n−1 indicates that these are the results of the former step related to
the operator in this upper index. Further, (̂) at the matrices VC and KC denotes that in these
operators the Laplace transformed fundamental solutions at the complex frequency s` are used
with the exception of the actual time step where the Laplace transformed fundamental solutions
at (∆tnA)

−1 are evaluated. The application of (23) in the thermal equation (13b) gives

M̂1

(
(∆tnA)

−1
)[q

θ

]
n
= M̂2

(
(∆tnA)

−1
)[gθ

D
gθ

N

]
n

+
NQ

∑
`=1

ω`

[
M̂2 (s`)

(
bTA−1 ·xM2

n−1(s`)
)
− M̂1 (s`)

(
bTA−1 ·xM1

n−1(s`)
)]

(I−∆tns`A)
−1
1

(25)

with the same notation for x()n−1 as above and the matrices

M̂1 =

[
V̂θ

DD −K̂θ
DN

V̂θ
ND −(Cθ

NN + K̂θ
NN)

]
M̂2 =

[
Cθ

DD + K̂θ
DD −V̂θ

DN
K̂θ

ND −V̂θ
NN

]
.

To solve the thermal and the elastic system of equations, the block structure of the system matri-
ces is used to define a Schur complement for the solution procedure. This automatically scales
the different physical quantities in a mixed problem. The equation solving is performed by a
direct solver, which might be replaced by a nested iterative solver for larger problems.

4 Numerical study

The above proposed thermoelastic BE formulation is applied to three examples. The first two
are used for verification, whereas the third example is taken from a real world problem. The
first two are by nature simple examples, essentially, a 1D solution is reproduced with the 3D BE
formulation. In both cases, the load consists of a prescribed temperature and the temperature
and displacement solutions are observed.

In all examples, the same material data, those of steel, are used. The specific values are given
in Tab. 1. To show the effect of a variable time step size, the discretisation in time is set by

tn =
( n

N

)α

T with α = 1.5 and n = 0, . . . ,N . (26)

10
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λ µ ρ cp k α

1.1 ·1011 N/m2 7.3 ·1010 N/m2 7850 kg/m3 460 J/K 40 W/mK 12 ·10−12 K−1

Table 1: Used material data (steel S235)

This graded time mesh serves as an example and is not adjusted to the known solution behavior
in the first two examples. In a real world scenario, the solution behavior can only be guessed
and, hence, the time step should be adjusted adaptively. However, this is beyond the scope of
this paper. The spatial discretisation is performed with linear triangles and, as mentioned above,
the simplest low order shape functions, i.e., linear for the temperature and displacement and
constant for traction and fluxes.

4.1 Rod under temperature load

The first example is a rod of size 3m×1m×1m which is heated at its free side and constrained
at all other sides. In Fig. 1, the geometry, boundary conditions, and one of the used meshes (the
second coarsest) are displayed. The circles denote roller bearings, i.e., the normal displacements

q = 0

q = 0

q = 0

θ(t > 0) = 1◦K• •

Figure 1: Geometry, boundary conditions (side view), and the mesh with h = 0.5m of the rod

are set to zero and the tangential direction is traction free. This ensures that a 1D solution
is computed, i.e., 3D effects are suppressed. The analytical solutions for the temperature and
displacements can be found in several papers, e.g., in [7] and are given here for convenience (L
is the length of the bar)

θ1D (x, t) = 1− 4
π

∞

∑
n

(−1)n

2n+1
e
− (2n+1)2π2kt

4ρcpL2 cos
(
(2n+1)πx

2L

)
(27)

u1D (x, t) =
3λ+2µ
λ+2µ

α

(
x− 8L

π2

∞

∑
n

(−1)n

(2n+1)2 e
− (2n+1)2π2kt

4ρcpL2 sin
(
(2n+1)πx

2L

))
. (28)

In the following, the results of the displacements at the green point (right side of the rod x = L)
and the temperature at the red point (left side of the rod x = 0) are computed and compared
to the analytical solution. In Fig. 2, the computed temperature is plotted versus time, where

11
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Figure 2: Temperature at the fixed end versus time. gCQ 1 is computed with NQ = N log2(N)
and gCQ 2 with NQ = N log3(N)

CQ denotes results using a constant time step size. The results marked gCQ 1 are computed
with a variable time step size following (26) and NQ = N log2(N), whereas gCQ 2 means the
same variable time step size but NQ = N log3(N). In all computations shown in Fig. 2 a 2-stage
Radau IIA method (see B) is used and a mesh with 3548 elements. All other parameters of the
computations can be found in Tab. 2. Figure 2a shows the comparison of the CQ and gCQ results
with the analytical solution. The agreement is very good. The error plot presented in Fig. 2b
shows that for earlier times the variable time step size is superior. The large time behavior is the
same for the CQ and the gCQ as long as a sufficient amount of frequencies NQ are used, i.e., the
solution gCQ 2. Nevertheless, also the solution gCQ 1 has an acceptable error for larger times.
In this solution less frequencies are used which makes it computational advantageous. For the
displacement solution, very similar plots could be made, where exactly the same tendency is
found. Hence, these plots are skipped.

To see the behavior of the numerical method, the error measured with

error2 =
1
N

√
N

∑
n=0

∆tn |u(x, tn)−uh (x, tn)|2 (29)

errormax = max
1≤n≤N

∣∣∣∣u(x,
tn + tn−1

2

)
−uh

(
x,

tn + tn−1

2

)∣∣∣∣ (30)

is studied. It must be remarked that due the pointwise nature of the 1D solution also the error
measure can only be pointwise, i.e., at only one single point. The error (29) is an approximation
of the L2-error in time and (30) is the maximum error in time. The approximated BE solution is
denoted with uh, whereas u means the exact solution. For the temperature, the analogous error
definition is used. To see the convergence behavior, the spatial and temporal discretisation has
been refined by an uniform refinement. The respective values of the numbers of elements, time
steps and their sizes can be found in Tab. 2. As underlying time stepping method, the backward
differential formula of order 1 (BDF 1) and a 2-stage Radau IIA method with NQ = N log2(N)

12



Preprint No 03/2019 Institute of Applied Mechanics

Elements h N (BDF 1) N (Radau IIA2) ∆tconst (BDF 1) ∆tconst (Radau IIA2)
56 1 6 3 266666 533333
224 0.5 12 6 133333 266666
896 0.25 24 12 66666 133333
3584 0.125 48 24 33333 66666
14336 0.0625 96 48 16666.7 33333.3

Table 2: Data for the refined meshes of the rod (∆t in seconds)
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Figure 3: Pointwise error for the temperature solution at the fixed end

is used. A higher value of NQ does not change the following results significantly. To have a
fair comparison, the step size in the BDF 1 is chosen half of the 2-stage method. Hence, the
numerical effort for both methods are comparable. However, it is expected that the 2-stage
method shows a higher convergence order. It must be mentioned that the comparison is not a
strict convergence study as it is observed only at one point (see the comment on the piecewise
error above) and the analytical solution is only 1D and not a solution of the 3D problem. Never-
theless, the results show how the proposed method behaves and the difference of the CQ to the
gCQ. In Fig. 3, the rates for the temperature solution are presented and the respective results for
the displacements can be found in Fig. 4.

It must be remarked that the x-labels in the plots in Fig. 3 and Fig. 4 are somehow misleading
as not only the spatial mesh is refined but as well the temporal. Hence, the ratio spatial mesh
size to the time step size is kept constant. The essential conclusion of these results is that the
expected convergence rate can be achieved. It can be observed that the convergence rates are
determined either by the spatial discretisation or by the underlying time stepping method. The
BDF 1 allows in maximum order one and the 2-stage Radau IIA could achieve order three. But,
the linear spatial discretisation of the Dirichlet data restrict the convergence rate to two. Based
on these considerations, it can be concluded that the expected convergence rates are obtained.
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Figure 4: Pointwise error for the displacement solution at the free end

Further, it is observed that the error level of the gCQ is smaller if a sufficient small h is used,
i.e. the gCQ has a smaller constant in the error compared to the CQ solution. This was already
expected from the error plot in Fig. 2b.

These observations can be clearly identified for the L2 error in time (29) but are not that
obvious for the maximum error (30). In Fig. 4b, the rates for the displacement solutions are not
as close to order two as for the temperature. This might have several reasons as, e.g., an 1D
solution is compared to a 3D solution. This is more critical for the displacements as the lateral
displacements have some values not equal to zero, which are small compared to the longitudinal
values, but still spoil the results.

4.2 Solid sphere

The second example can as well be found in other publications as a kind of benchmark. It
is a sphere with radius 1 m loaded by a temperature jump. The surface is traction free. An
analytical solution can be found, e.g., in [33] and [32]. It is essentially a radial symmetric
solution, which is modelled here with the 3D BE formulation. The problem setting is in principle
a pure Neumann problem for the elastostatic part of the governing equations, which causes
trouble. However, in the numerical model only one eighth of the sphere is discretised with
symmetry boundary conditions. These boundary conditions fix the center of the sphere and,
hence, the problem is no longer a pure Neumann problem. This ensures the solvability of the
problem and reduces the problem size. In Fig. 5, the geometry, boundary conditions, and the
second coarsest mesh with 64 elements are presented. As before, first the solution and the error
over time are discussed. In Fig. 6, the displacement solution in radial direction is plotted versus
time. The green point in figure 5 marks the evaluation point on the surface of the sphere. Also for
this problem, the displacement and temperature BE solutions show the same behavior. Hence,
only the displacement solutions are presented. The results in Fig. 6 indicate that the error of the
gCQ solution is mostly smaller than that of the CQ solution. These results are obtained with
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•

Figure 5: Geometry, boundary conditions (side view), and the mesh with h= 0.5m for the sphere
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Figure 6: Displacement at the surface of the sphere versus time

NQ = N log2(N).
For the convergence study, an initial very coarse mesh is uniformly refined by bisection of the

hypothenuse of the triangles. The displayed mesh in Fig. 5 is obtained after the first refinement
step. The respective time step size is as well refined with the spatial mesh, i.e., the ratio of time
step size to mesh size is kept constant. The respective data can be found in Tab. 3.

The errors are studied for the temperature and the displacement solution. The same notation
and time stepping methods as in section 4.1 are used and it is expected to get similar results. But,
it must be remarked that different to the rod, here, an additional error appears, the discretisation
error of the geometry. Flat linear triangles are used to approximate the sphere, which is for the
coarse meshes a crude approximation. Nevertheless, the error level is comparable to the rod
example. Different to the rod problem above, here, a true L2-error in the spatial variable can be
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N h N (BDF 1) N (Radau IIA2) ∆tconst (BDF 1) ∆tconst (Radau IIA2)
16 1 16 50000 8 100000
64 0.5 32 25000 16 50000
256 0.25 64 12500 32 25000
1024 0.125 128 6250 64 12500
4096 0.0625 256 3125 128 6250

Table 3: Data for the refined meshes of the sphere (∆t in seconds)
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Figure 7: Error for the temperature solution of the sphere

studied. The used error measures are

error2 =
1
N

√
N

∑
n=0

∆tn‖u(x, tn)−uh (x, tn)‖2
L2(Γ)

(31)

errormax = max
1≤n≤N

‖u
(

x,
tn + tn−1

2

)
−uh

(
x,

tn + tn−1

2

)
‖L2(Γ) . (32)

In Fig. 7 and Fig. 8, these two errors are plotted for the temperature and displacement solution,
respectively. As anticipated, the overall behavior is the same. However, the maximum error
in time shows for the displacement solution only a linear behavior. The temperature solution
and the L2 errors in time show, as expected, a linear order for BDF 1 and a quadratic order for
the 2-stage Radau IIA method. One reason for the breakdown in Fig. 8b might be that the error
introduced by the geometry approximation is dominating. Nevertheless, without a mathematical
analysis this effect cannot be clarified. From an engineering point of view, the method seems to
be suitable to be used with an acceptable error behavior.

Remark 1. The presented results show some advantages of the gCQ compared to the CQ. How-
ever, as usual in numerics this flexibility to adapt the time step size is not for free. From the
determination of NQ (see C) it is clear that more BE calculations have to be performed for the
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Figure 8: Error for the displacement solution of the sphere

gCQ compared to the CQ if the same N is assumed. But, if much less time steps are necessary
due to a coarsening of the step size, there may exist a situation where the gCQ is computational
advantageous. A more severe drawback of gCQ is that the algorithm is inherently sequential
with the exception of the computation of the system matrices. The CQ can be performed eas-
ily in parallel as long as it is set up as proposed in [3]. But for large systems this realisation
with one equation solve per complex frequency may become slow without an efficient precon-
ditioner. This is different for the gCQ, where the equation solve is done in time domain with a
nearly sparse matrix. Nevertheless, both methods need fast BE methods to work for large real
world problems.

4.3 Hot forming tool

The last example is to demonstrate that also realistic modells can be computed with the proposed
method. The example is taken from hot forming processes as they occur, e.g., in car production.
The main interest in such a simulation is the form of the deformed metal sheet and its material
properties. Both points are not considered here, but the tool itself is simulated. Those tools
should not deform and steer the cooling process within the sheet. Hence, the challenging task
is to locate the cooling channels such that the required material properties in the sheet can be
obtained. This results in an highly complicated geometry of the tool. The temperature and the
deformation of the tool can be approximated by a linear theory, hence, the proposed method is
applicable.

In the following, the tool displayed in Fig. 9 is considered. The influence of the sheet on the
tool is modelled with a Robin boundary condition, where the heat transfer coefficient κ(x) is
determined by an energy estimate as proposed in [21, 47]. This approached has been verified
experimentally in these papers. As well, the temperature solution of a purely thermal calculation
has been checked against the measured data with a reasonable agreement [30]. The new part here
is the deformation in the coupled computation. The sheet has a temperature of 750 oC at the time
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Figure 9: Forming tool with the prescribed boundary conditions

of contact with the tool. At the bottom, room temperature is assumed. In the channels and on
the front side, as well convective boundary conditions are set. The material data of the tool
are listed in Tab. 1. The time is discretised with a variable time step size following (26) using
α = 1.5,T = 120s, and N = 30. Again, a 2-stage Radau IIA method is used within the gCQ and
the spatial discretisation is performed with linear triangles. The shape functions are chosen as
before, linear for the Dirichlet data and constant for the Neumann data.

The screenshots in Fig. 10 show the temperature distribution and the norm of the displace-
ments on the tool at the end time (T = 120s) of the simulation. Aside, the temperature and
displacement behavior with respect to time is shown. Certainly, the results can only be ranked
as reasonable without a reference solution. The displacements are well below the millimetre
range and the temperature is up to 72 oC. The graphs of the variation in time for the temperature
and displacements at a point on the surface are as well reasonable. The large displacements
around one millimetre showing up at some points are presumably numerical artifacts as they
appear on the cooling channels. These circular channels are approximated by a minimum of flat
triangles. A better mesh resolution would most probably eliminate these peaks in the displace-
ment distribution. Unfortunately, without compression techniques the used spatial mesh is the
largest for the available computing facilities.

5 Conclusions

A boundary element formulation for uncoupled themoelasticity has been proposed. Different
to existing formulations, here, the generalised Convolution Quadrature method (gCQ) is used
for time discretisation and, therefore, a variable time step size is possible. Also, Robin type
boundary conditions, i.e., convective boundary conditions, have been realised via a modified
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Figure 10: Temperature and displacement distribution in the hot forming tool

19



Preprint No 03/2019 Institute of Applied Mechanics

Neumann boundary condition. The results show, first, the proposed method works. Second,
the convergence behavior is as expected governed either by the spatial discretisation or by the
temporal discretisation. The rates are the same as in the corresponding elliptic problem if the
temporal discretisation is sufficiently good. Essentially, a higher order Runge-Kutta method
should be used within the gCQ. Further, if the problem has strong gradients in the temporal
solution a variable time step size pays off. Last, it is shown that also real world problems can
be handled with the proposed method. Certainly, without using fast methods the applicability is
restricted as in all 3D BE formulations. But the structure of the gCQ allows for an application
of either H -matrices with adaptive cross approximation or the fast multipole method based on a
Chebyshev expansion.

Acknowledgement The authors gratefully acknowledge the financial support by the Austrian
Science Fund (FWF) under Grant P 25557-N30.

A Fundamental solutions

The fundamental solution tensors corresponding to the adjoint operator in (5) can be found in
literature, e.g., [43]. One part is the elastostatic fundamental solution, i.e., the displacement
solution due to a mechanical load (an impulse)

Ui j =
1

8πr
1

µ(λ+2µ)
[δi j (λ+3µ)+(λ+µ)r,ir, j] . (33)

The temperature caused by a mechanical load is

(Θu)i =
(3λ+2µ)α

(λ+2µ)
r,i

4πsρcpr

[(√
s
ρcp

k
+

1
r

)
e−
√

s ρcp
k r−1

r

]
(34)

the temperature caused by a heat source

Θ =
1

4πrk
e−
√

s ρcp
k r

. (35)

The solution for the tractions is as well that of elastostatics

Ti j = µ
(
Ui j,k +Uk j,i

)
nk +λUk j,kni

=
−1

4π(λ+2µ)r2

{
[µδi j +(λ+µ)3r,ir, j]r,n−µ(r,in j− r, jni)

} (36)

and the (adjoint) fluxes are

Q =
−r,n
4πr

(√
s
ρcp

k
+

1
r

)
e−
√

s ρcp
k r (37)

(Qu)i =
(3λ+2µ)α

(λ+2µ)
k

4πsρcpr

[e−
√

s ρcp
k r

r

(√
s
ρcp

k
+

1
r

)
− 1

r2

(ni−3r,ir,n)

− s
ρcp

k
e−
√

s ρcp
k r r,ir,n

]
.

(38)
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B Runge-Kutta methods in gCQ

A comprehensive presentation of Runge-Kutta methods may be found in the book by Hairer and
Wanner [16].

Let a Runge-Kutta method of (classical) order p and stage order q be given by its Butcher

tableau
c A

bT with A ∈ Rm×m, b,c ∈ Rm and m is the number of stages. A Runge-Kutta

method is said to be A-stable if the stability function

R(z) = 1+ zt(I− zA)−1
1, 1 := (1,1, . . . ,1)T , (39)

is bounded as

|R(z)| ≤ 1, for ℜz≤ 0 and I− zA is non-singular for all ℜz≤ 0. (40)

The experience with the multistep based CQ in the application on BEM shows that the as-
sumption of A-stability is necessary (see, e.g., [40]). In order to be able to make use of the
convergence results proved in [4], the following assumptions will be made on the Runge-Kutta
method:

1. The Runge-Kutta method is A-stable with (classical) order p≥ 1 and stage order q≤ p.

2. The stability function satisfies |R(iy)|< 1 for all real y 6= 0.

3. R(∞) = 0.

4. The Runge-Kutta coefficient matrix A is invertible.

To simplify expressions assume further that bTA−1 = (0,0, . . . ,1) holds, i.e., that the method
is stiffly accurate [16] or also called L-stable. This in turn implies that cm = 1. Radau IIA
and Lobatto IIIC are examples of Runge-Kutta methods satisfying all of the above conditions
(see Tab. 4 for their Butcher tableaus). In a Runge-Kutta method computations are done not only
at the equally spaced points tn = n∆t but also at the stages tn + c`∆t, ` = 1,2, . . . ,m. Note that
cm = 1 implies tn + cm∆t = tn+1.

C Parameter for the gCQM

The derivation and reasoning how the integration weights and points are determined can be
found in [25, 26]. The result of these papers are recalled here. The integration points in the
complex plane are

s` = γ(σ`) , ω` =
4K(k2)

1πi
γ
′(σ`) , NQ = N log(N) ,

where for Runge-Kutta methods with stages m > 1 it should be NQ = N log2(N) or sometimes
NQ = N log3(N). K(k) is the complete elliptic integral of first kind

K(k) =
1∫

0

dx√
(1− x2)(1− k2x2)

, K′(k) = K(1− k)
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Table 4: Butcher tableaus of A- and L-stable Runge-Kutta methods

and K′ is its derivative, which equals the integral of the complementary modulus. The argument
k depends on the relation q of the maximum and minimum step sizes in the following way

k =
q−
√

2q−1
q+
√

2q−1
q =

∆tmax5maxi |λi (A) |
∆tmin mini |λi (A) |

,

with the eigenvalues λi (A). For the implicit Euler, i.e., a one stage Runge-Kutta method, the
eigenvalues are 1 and the factor 5 in q can be skipped. The functions γ(σ`) and γ′(σ`) are

γ(σ`) =
1

∆tmin(q−1)

(√
2q−1

k−1 + sn(σ`)

k−1− sn(σ`)
−1
)

,

γ
′(σ`) =

√
2q−1

∆tmin(q−1)
2 cn(σ`) dn(σ`)

k(k−1− sn(σ`))2 ,

σ` =−K(k2)+

(
`− 1

2

)
4K(k2)

NQ
+

i
2

K′(k2) ,

where sn(σ`), cn(σ`) and dn(σ`) are the Jacobi elliptic functions. As seen from above, the
integration contour is only determined by the largest and the smallest time steps chosen but not
dependent on any intermediate step sizes. Due to the symmetric distribution of the integration
points with respect to the real axis, only half of the frequencies s` need to be calculated.
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