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Abstract

Mechanical loads together with changing temperature conditions can be found in a wide
variety of fields. Their effects on elastic media are reflected in the theory of thermoelastic-
ity. For typical materials in engineering very often a simplification of this coupled theory
can be used, the so-called uncoupled quasistatic thermoelasticity. Therein the effects of
the deformations onto the temperature distribution is neglected and the mechanical inertia
effects as well. The Boundary Element Method is used to solve these equations in three
dimensions numerically. Since convolution integrals occur in this boundary element for-
mulation, the Convolution Quadrature Method may be applied. However, very often in
thermoelasticity the solution shows rapid changes and later on very small changes. Hence,
a time discretisation with a variable time step size is preferable. Therefore, here, the so-
called generalised Convolution Quadrature is applied, which allows for non-uniform time
steps. Numerical results show that the proposed method works. The convergence behavior
is as expected governed either by the time stepping method or the spatial discretisation, de-
pending on which rate is smaller. Further, it is shown that for some problems the proposed
use of the generalised Convolution Quadrature is the preferable.
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1 Introduction

In a lot of engineering applications not only the deformation but as well the temperature has to
be considered. But not only that these two field variables are of interests also the interaction
is important. The presumably most prominent example are thermal stresses, i.e., the stress in
an elastic body caused by a heat source or by a change in temperature. An industrial exam-
ple is hot forming with all its variants. These coupled effects are described in the theory of
thermoelasticity.

The theory of thermoelasticity is well known for several decades. In fact, the classical lin-
ear approach goes back to Duhamel in 1838 and Neumann in 1885. It integrates the effects
of mechanical loads together with those of a temperature field onto an elastic structure. The
mathematical description is based on a system of coupled differential equations, consisting of a
temperature equation and an equation for the deformations and was established by Biot [4]. The
theory can be found in a variety of textbooks, see e.g., Nowacki [27]. This set of two coupled
partial differential equations can be simplified by assuming that the thermoelastic dissipation
can be neglected. Such an assumption results in an one-sided coupling, i.e., the temperature
development is not influenced by the displacement solution but vice-versa. The other simplifi-
cation is whether the inertia terms can be neglected for slow processes. Hence, four different
simplifications can be found in literature. For many engineering applications the following mod-
ell is applicable. It is assumed that the coupling of the temperature field with the displacement
solution is negligible and the mechanical inertia effects can be canceled. This is the so called
Uncoupled Quasistatic Theory of Thermoelasticity (UQT), see e.g., [29], which is considered
here.

For the numerical solution of this set of governing equations most numerical methods have
corresponding formulations. This holds as well for the Boundary Element Method (BEM),
which has gained popularity since it requires only the meshing of the body’s surface. The ana-
lytical basis of a thermoelastic BEM, i.e., the respective integral representations and fundamen-
tal solutions, can be found in a series of papers by Sládek and Sládek [37, 38] and in the book
of Kupradze et al. [18].

The analysis of thermoelasticity using the BEM was started by Rizzo and Shippy [30] and Cruse
et al. [8]. They treated three-dimensional problems of uncoupled thermoelasticity for steady
state heat conduction. Transient thermoelasticity boundary element formulations in 2D were
presented in [40] and for 3D in [7]. First numerical results for an uncoupled formulation can
be found in [36]. Further numerical results can be found for planar problems in [9] for coupled
and uncoupled quasistatic thermoelasticity. Later on the same authors showed the general three-
dimensional case of UQT together with numerical results [10]. In [11], these authors show the
similarities of consolidation in poroelasticity and the quasi-static thermoelasticity with numer-
ical results. An 2D-formulation of the coupled dynamic equations has been presented in [41]
using the Laplace transform and a numerical inverse transformation. By rewriting the thermal
equation a special form of the coupling term can be found which allows a formulation of the
coupled quasi-static case using the elastostatic fundamental solution, i.e., partly the fundamen-
tal solutions of the uncoupled formulation [39]. An approach using particular integrals for the
solution of transient thermoelasticity combined with the complementary solution of the steady
state problem was presented by Park and Banerjee [28]. Chatterjee et al. [6] presented a sim-
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plified re-integration based fast-convolution algorithm for UQT as a memory saving alternative
for large scale problems. An extension to anisotropic elastic material for the fully coupled ther-
moelasticity is found in the book of Gaul [13] or in [16]. In this formulation the dual reciprocity
method is used to handle the time dependent terms.

The above discussed formulations use either a formulation in the transformed domain with an
inverse transformation back to time domain, or they treat the problem in time domain directly.
A methodology to compute in time domain but using Laplace domain fundamental solution
is the Convolution Quadrature Method (CQM), which goes back to Lubich [23, 24]. BEM
formulations based on CQM can be found, e.g., for elastodynamics [15], viscoelasticity [33], and
poroelasticity [34, 19]. In case of thermoelasticity, the respective formulation has been proposed
in [1] with results in 2D. Here, an extension is presented towards 3D, which is straight forward
and not really something new. The main contribution is to allow for a variable time step size.
This can be done using the so-called generalized Convolution Quadrature Method (gCQ). Lopez-
Fernandez and Sauter [20] published this generalisation of the CQM. The numerical realisation
can be found in [21]. The extension to use a Runge-Kutta method as underlying time stepping
has been presented in [22]. An application of the gCQ in acoustics with absorbing boundary
conditions has been published in [31]. This extension to variable time step sizes seems to be
well suited for thermoelastic problems as the solution behavior in most applications show in the
beginning much larger gradients compared to later times. Hence, an adjustment of the time step
size seems to be favourable.

The paper is organised as follows. First, the basic equations and relations of thermoelasticity
are recapped. Next, the discretisations in space and time are introduced and the gCQ is ex-
plained. The comparison with two 1D solutions show the performance of the method. Finally, a
simplified example from hot forming shows the applicability of the proposed formulation to real
world problems.

2 Uncoupled Quasistatic Thermoelasticity

The temperature field θ(x) and the displacement field u(x) is governed by the thermoelastic the-
ory. This thermoelastic system of coupled differential equations consists of a scalar differential
equation for the temperature and a vectorial differential equation for the elastic description. The
temperature equation is similar to the heat equation but with an additional term for the influence
of the mechanical heat contribution. The elastic equation is the Lamè Navier equation with a
contribution accounting for the temperature influence. This fully coupled system of differential
equations can be found in, e.g., [27, 18]. In many applications it is possible to neglect the influ-
ence of the displacement field on the temperature, i.e., the temperature is decoupled. Further, it
is often suitable to neglect the inertia terms in the elastic equation. These simplifications result
in the so called uncoupled quasistatic theory of thermoelasticity.
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2.1 Differential and integral equations

Let Ω⊂ R3 be a bounded Lipschitz domain and Γ := ∂Ω its boundary with the outward normal
n. The one-sided coupled set of partial differential equations is

µ∇
2u(x, t)+(λ+µ)∇∇ ·u(x, t)− (3λ+2µ) α∇θ(x, t) = 0

k∇
2
θ(x, t)−ρcp∂tθ = 0

∀(x, t) ∈Ω× (0,T ) . (1)

The spatial derivatives are denoted with the ∇-operator with its usual meanings as grad = ∇

or div = ∇·. The temporal derivative is denoted with ∂t . The used material parameter are the
Lamé constants λ and µ, the thermal expansion coefficient α, the thermal conductivity k, the
density ρ, and the specific heat constant cp. In (1), it is assumed that the strains are small
and, consequently, a linear strain-displacement relation has been used. Further, it is assumed
that the material parameter are constant. These restrictions allows to have the above set of
linear partial differential equations (1), which form the basis for the following deduced boundary
integral equation. The boundary Γ is split into non-overlapping sets ΓD,ΓN , and ΓR such that
Γ = ΓD∪ΓN ∪ΓR holds. The Dirichlet, Neumann, and Robin boundary conditions are given by

u(x, t) =fD (x, t) ∀x ∈ ΓD× (0,T )

θ(x, t) =gD (x, t) ∀x ∈ ΓD× (0,T )

t(x, t) = T Su(x, t)− (3λ+2µ)αθ(x, t)n =fN (x, t) ∀x ∈ ΓN× (0,T )

q(x, t) =−k
∂

∂n
θ(x, t) =gN (x, t) ∀x ∈ ΓN× (0,T )

q(x, t) =−κ(x)(θ(x, t)−θ∞ (x))  
q(x, t)+κ(x)θ(x, t) =gR (x, t) ∀x ∈ ΓR× (0,T )

(2)

where t(x, t) is the traction vector and q(x, t) the flux. In (2), the elastic traction operator
(Hooke’s law) T S• = λn∇ · •+ 2µ ∂

∂n •+µn× (∇×•) has been used. Certainly, the boundary
condition type, Dirichlet or Neumann, might differ in each direction of the vectorial dofs and
between the elastic and thermal dofs. However, for simplifying notation this is not separately de-
noted. The Robin type boundary condition is mostly called convective boundary condition and
includes the heat transfer coefficient κ and the ambient temperature θ∞. Note, the heat transfer
coefficient is assumed to be no function of temperature during the calculation. This restriction
allows to avoid a non-linear iterative solution.

The respective representation formula to (1) can be found in literature [18] and in a series of
papers by Sládek and Sládek [37, 38]. To give a brief sketch of the derivation, the operator B
and its adjoint B∗ describing the governing equations (1) are introduced

B =

[
µ∇2 +(λ+µ)∇∇· −(3λ+2µ) α∇

0 k∇2−ρcp∂t

]
B∗ =

[
µ∇2 +(λ+µ)∇∇· 0
(3λ+2µ) α∇· k∇2−ρcp∂t

]
.

(3)

With these operators the weighted residual statement is
t∫

0

∫
Ω

GT (x−y, t− τ)(Bug)(y,τ)dΩ =
∫
Ω

GT (x−y, t)∗ (Bug)(y, t)dΩ = 0 (4)
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where the symbol ∗ will be used for the time convolution in the following. The vector ug =
[uT θ]T collects the displacements and the temperature. G denotes the fundamental solutions
defined with the adjoint operator

B∗G = B∗
[

U 0
ΘΘΘT

u Θ

]
=−

[
I 0
0 δ(t− τ)

]
δ(x−y) . (5)

The capital letters are used to mark fundamental solutions and the identity matrix is I. In (5), U is
the elastostatic fundamental solution, Θ the fundamental solution of the parabolic heat equation,
and ΘΘΘu a coupling term, which can be found in [38] (For convenience the fundamental solutions
are given also in the appendix B). Performing the usual partial integrations with respect to space
and time and assuming vanishing initial conditions, the representation formula (∀x ∈Ω)[

u(x, t)
θ(x, t)

]
=−

t∫
0

∫
Ω

(B∗G)T (x−y, t− τ)ug (y,τ)dΩdτ =

∫
Γ

{[
U(x−y) −ΘΘΘu (x−y, t)∗

0 −Θ(x−y, t)∗

][
t(y, t)
q(y, t)

]
−
[

T(x−y) Qu (x−y, t)∗
0 Q(x−y, t)∗

][
u(y, t)
θ(y, t)

]}
dΓ

(6)

is obtained. As it is well known, the adjoint operator applied on the matrix of fundamental
solutions gives the right hand side. The new introduced fundamental solution for the tractions
T(x−y) is the elastostatic traction fundamental solution and Q(x−y, t) the flux fundamental
solution for the heat equation (see, e.g., [5]). The fundamental solution for the coupling term
Qu (x−y, t) = k∇ΘΘΘu (x−y, t) is given in [38]. The limit to the boundary with a careful con-
sideration of the singular behavior of the fundamental solutions results in the boundary integral
equation (∀x ∈ Γ)[

C(x) 0
0 c(x)

][
u(x, t)
θ(x, t)

]
=

∫
Γ

{[
U(x−y) −ΘΘΘu (x−y, t)∗

0 −Θ(x−y, t)∗

][
t(y, t)
q(y, t)

]

−
[

T(x−y) Qu (x−y, t)∗
0 Q(x−y, t)∗

][
u(y, t)
θ(y, t)

]}
dΓ .

(7)

Also well know, the trace operation gives an integral free term with the known expression for
C and c from elastostatics and the heat equation, respectively. Further, the integral with T is
only defined as Cauchy Principal Value (CPV). All other integrals are either regular or weakly
singular. Note, in the second row of the matrices on the right hand side the convolution in
time has to be considered oposite to the first row which is essentially the integral equation from
elastostatics. The lower line of the integral equation is the known equation for the parabolic heat
equation. As seen above, the respective differential equation is decoupled and, consequently,
also the integral equation. Note, the negative sign in front of the fundamental solutions ΘΘΘu

and Θ is due to the definition of the flux as negative co-normal derivative q = −k∂/∂nθ. This
physically motivated definition, i.e., the negative sign, is not the mathematical suitable Neumann
trace [32]. Hence, often formulations with an opposite sign and, consequently, with positiv signs
at the respective fundamental solutions can be found.
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2.2 Spatial discretisation

Aiming at a boundary element formulation a discretisation in space and time must be introduced.
First, the spatial discretisation is discussed keeping the temporal behavior still continuous. The
geometry description is based on a linear triangulation of the boundary, Γ ≈ Γh =

⋃Ne
e τe. The

field variables are approximated by a linear combination of trial functions ψk and χk on these
elements, which span the trial spaces

S1
h(Γ) := span{ψ1

k}
ND
k=1 S0

h(Γ) := span{χ0
k}

NN
k=1 . (8)

The lowest order choice is applied in the following. Linear continuous trial functions ψ1
k ∈ S1

h(Γ)
are used for the temperature and the displacements as well as piecewise constant trial functions
χ0

k ∈ S0
h for the tractions and the heat flux. Hence, the Cauchy data are approximated by

uh (x, t) =
ND

∑
k=1

ψ
1
k (x) uk(t) th (x, t) =

NN

∑
k=1

χ
0
k (x) tk(t) (9)

θh (x, t) =
ND

∑
k=1

ψ
1
k (x) θ

k(t) qh (x, t) =
NN

∑
k=1

χ
0
k (x) qk(t) . (10)

Note, due to the different shape functions the numbers ND and NN differs. These shape functions
are inserted together with the geometry approximation in the boundary integral equation (7).
Further, a collocation approached is applied using the nodal values at the Dirichlet boundary
and the element center at the Neumann boundary. The spatially discretized operators are

V[nm] :=
∫

supp(χ0
m)

U(xn−y) χ
0
m (y)dΓy K[nm] :=

∫
supp(ψ1

m)

T(xn−y) ψ
1
m (y)dΓy

Vθ

[nm] :=
∫

supp(χ0
m)

Θ(xn−y, t) χ
0
m (y)dΓy Kθ

[nm] :=
∫

supp(ψ1
m)

Q(xn−y, t) ψ
1
m (y)dΓy

VC
[nm] :=

∫
supp(χ0

m)

ΘΘΘu (xn−y, t) χ
0
m (y)dΓy KC

[nm] :=
∫

supp(ψ1
m)

Qu (xn−y, t) ψ
1
m (y)dΓy ,

(11)

where the square brackets [·] denote the discretisation indices of the matrix elements. With these
operators the two semi-discrete integral equations are

Cu(t) = V t(t)−K u(t)+VC (t)∗q(t)−KC (t)∗θ(t) (12a)

Cθ
θ(t) = Vθ (t)∗q(t)−Kθ (t)∗θ(t) (12b)

The vectors u, t,θ, and q hold the values of the field variables at all nodes. The jump terms are
collected in the matrices C and Cθ, which depend on the boundary’s geometry. The jump term
for the heat equation can be found, e.g., in [2] and for elasticity in [25]. The regular integrals are
computed by Gauss quadrature. Occurring weakly singular integrals are handled by a coordinate
transformation, the Duffy transformation [12]. Strong singularities can be found in the elastic
double layer operator K and are treated by a regularization based on partial integration [14].
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To handle mixed boundary value problems, it is convenient to reorder the equation system
with respect to the known and unknown data. This results in these two block equation systems[

VDD −KDN)
VND −(CNN +KNN)

][
tD(t)
uN(t)

]
=

[
CDD +KDD −VDN

KND −VNN

][
fD(t)
fN(t)

]
−
[
fθ
D (t)
fθ
N (t)

]
(13a)[

Vθ
DD (t) −Kθ

DN)(t)
Vθ

ND (t) −(Cθ
NN +Kθ

NN)(t)

]
∗
[
qD (t)
θN (t)

]
=

[
Cθ

DD +Kθ
DD (t) −Vθ

DN (t)
Kθ

ND (t) −Vθ
NN (t)

]
∗
[
gθ

D (t)
gθ

N (t)

]
(13b)

with fθ (t) = VC (t)∗q(t)−KC (t)∗θ(t). The indices D and N indicate that part of the boundary
where the collocation point is located and where the element for the integration is.

Discrete realisation of Robin boundary conditions The Robin boundary condition in (2)
is obviously a combination of Dirichlet and Neumann data. They can be handled in the BE
formulation as a kind of generalised Neumann boundary condition. However, the Neumann
and Dirichlet data are approximated by different discrete function spaces and must be correctly
handled. Essentially, the temperature θh ∈ S1

h(ΓR) must be mapped on the function space of the
flux, i.e., to a function θ̄h ∈ S0

h(ΓR). The discrete version of the boundary condition is

q(x, t)+κ(x)Rhθ(x, t) = q(x, t)+κ(x) θ̄(x, t) = gR (14)

with the discretised operator matrix Rh, which maps between the different spaces. This operator
matrix Rh can be found by introducing the L2 projection (denoted by < ·, ·>Γ)

∑
k
< χ

0
` ,
(

ψ
1
kθ

k
)
>ΓR = ∑

k
< χ

0
` ,
(

χ
0
k θ̄

k
)
>ΓR

∑
k
< χ

0
` ,ψ

1
k >ΓR θ

k = ∑
k
< χ

0
` ,χ

0
k >ΓR θ̄

k

⇒ Rh = ∑
k
< χ

0
` ,χ

0
k >
−1
ΓR
< χ

0
` ,ψ

1
k >ΓR .

(15)

For the above introduced discretisations with constant and linear approximations, the compu-
tation of (15) is cheap as the inversion of the first mass matrix < χ0

` ,χ
0
k >ΓR can be performed

locally. Further, in the above derivation a triangulation with flat elements is assumed. In this
case, the Gram determinant is the same for both integrals and, hence, cancel itself.

The integral equation (13b) stays for a Robin boundary essentially the same. It results in[
Vθ

DD (t) −Kθ
DN)(t)−Vθ

DR (t)κRh
Vθ

ND (t) −(Cθ
NN +Kθ

NN)(t)−Vθ
NR (t)κRh

]
∗
[
qD (t)
θN (t)

]
=

[(
Cθ

DD +Kθ
DD (t)

)
∗gθ

D (t)−Vθ
DN (t)∗gθ

N (t)−Vθ
DR (t)∗gθ

R (t)
Kθ

ND (t)∗gθ
D (t)−Vθ

NN (t)∗gθ
N (t)−Vθ

NR (t)∗gθ
R (t)

]
.

(16)

Here, the assumption of a time independent κ is used. If this assumption does not hold a more
complicated matrix structure is obtained but there is no principal problem.

Since the heat equation (13b) is independent of the elastic equation (13a), it can be solved
separately, in a first step after a suitable time discretisation. Thereafter, the heat variables are
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known at all times and can be handled as an input quantity for the convolutions in the elastic
equation, i.e., the fθ-terms. This can be seen as a kind of thermal load for an elastostatic problem,
which becomes time dependent due to the time dependency of the load. The time discretisation
can be tackled, essentially, in three ways. Dargush and Banerjee [10] used the time domain
fundamental solutions and solved the convolution integral analytically after assuming a constant
time dependency within each time step. The second approach is to transform to Laplace or
Fourier domain and solve the problem in the transformed domain. A very recent approach is to
utilize the Convolution Quadrature Method (CQM), which has been proposed by Abreu et al.
[1]. The latter will be used here as well and extended to allow for a variable time step size.

3 The Generalised Convolution Quadrature Method

The original CQM proposed by Lubich [23, 24] is restricted to a constant time step size. The
generalisation to a variable step size has been developed by Lopez-Fernandez and Sauter [20],
where the algorithmic realisation can be found in [21]. The extension to use a Runge-Kutta
method as underlying time stepping has been presented in [22]. The following is a brief extrac-
tion from these papers.

To show the principal algorithm, a standard convolution integral is used, where the function
f is replaced by its inverse Laplace transform

y(t) = f (t)∗g(t) =
t∫

0

f (t− τ) g(τ)dτ =
1

2πi

∫
C

f̂ (s)
t∫

0

es(t−τ) g(τ)dτ ds , (17)

where for the Laplace variable holds s ∈ C,s.t.ℜs > 0 and C denotes the usual integration path
from minus to plus infinity. The inner time integral is the solution of the differential equation of
first order

∂

∂t
x(t,s) = sx(t,s)+g(t) with x(t = 0,s) = 0 . (18)

Thus, zero initial conditions are required. This ordinary differential equation can be solved
numerically by a time-stepping method. For the application in BEM these methods should be
A- and L-stable [35]. Let time steps (tn)

N
n=0 be given

0 = t0 < t1 < .. . < tN = T (19)

and introduce the corresponding mesh sizes ∆tn = tn− tn−1 the implicit Euler method for solving
(18) defines the approximation

xn =
xn−1

1− s∆tn
+

∆tn
1− s∆tn

gn , (20)

where the discrete values are the field variables at discrete times, e.g., xn = x(tn). Inserting this

8
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approximation in (17) allows some rearrangements

y(tn) =
1

2πi

∫
C

f̂ (s)xn(s)ds

=
1

2πi

∫
C

f̂ (s)
∆tn

1− s∆tn
gn ds+

1
2πi

∫
C

f̂ (s)
xn−1

1− s∆tn
ds

= f̂
(

1
∆tn

)
gn +

1
2πi

∫
C

f̂ (s)
xn−1

1− s∆tn
ds .

(21)

In the last step the condition has been used that f̂ (s) is analytic right to the contour C. This holds
for all fundamental solutions discussed in the previous section. For the remaining complex
integral a quadrature formula is applied and the final quadrature formula for the convolution
integral is

y(tn) = f̂
(

1
∆tn

)
gn +

NQ

∑
`=1

ω`
f̂ (s`)

1− s`∆tn
xn−1(s`) . (22)

The integration points s` are distributed on a circle in the right complex half plane. These points
s` and the integration weights ω` are given in the appendix A.

The short derivation has been made with an implizit Euler method to keep the formulas simple.
The extension to a Runge-Kutta method is straight forward and results, essentially, in a vector
xn of solutions at all stages of the Runge-Kutta method. Let assume an A- and L-stable Runge-

Kutta method given by its Butcher tableau
c A

bT with A ∈ Rm×m, b,c ∈ Rm and m is the

number of stages. The stability assumptions require that bTA−1 = (0,0, . . . ,1) holds. With the
vector 1= (1,1, . . . ,1)T of size m the algorithm is

• First step
y (t1) = f̂

(
(∆t1A)

−1
)
g1

with implicit assumption of zero initial condition and a vector of discrete values gn filled
with the values of the function g(t) at the stages within the time step n.

• For all steps n = 2, . . . ,N the algorithm has two steps

1. Update the solution vector xn−1 at all integration points s`

xn−1 (s`) = (I−∆tn−1s`A)
−1 ((bTA−1 ·xn−2(s`)

)
1+∆tn−1Agn−1

)
for `= 1, . . . ,NQ with the number of integration points NQ.

2. Compute the solution of the integral at the actual time step tn

y (tn) = f̂
(
(∆tnA)

−1
)
gn +

NQ

∑
`=1

ω` f̂ (s`)
(
bTA−1 ·xn−1(s`)

)
(I−∆tns`A)

−1
1 (23)

9
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As mentioned above, the parameters to be selected are given in appendix A.
The application of formula (23) to the convolution integrals in (13) is straight forward. For

the elastic equation (13a) only the contribution of the thermal load in fθ (t) has to be discretised,
which results in

fθ (tn) =V̂C
(
(∆tnA)

−1
)
qn− K̂C

(
(∆tnA)

−1
)

θn

+
NQ

∑
`=1

ω`

[
V̂C (s`)

(
bTA−1 ·xV c

n−1(s`)
)
− K̂C (s`)

(
bTA−1 ·xKc

n−1(s`)
)]

(I−∆tns`A)
−1
1

(24)

where the upper index at x()n−1 indicates that these are the results of the former step related to
the operator in this upper index. Further, ˆ at the matrices VC and KC denotes that in these
operators the Laplace transformed fundamental solutions at the complex frequency s` is used
with the exception of the actual time step where the Laplace transformed fundamental solutions
at (∆tnA)

−1 is evaluated. The application of (23) in the thermal equation (13b) gives

M̂1

(
(∆tnA)

−1
)[q

θ

]
n
= M̂2

(
(∆tnA)

−1
)[gθ

D
gθ

N

]
n

+
NQ

∑
`=1

ω`

[
M̂2 (s`)

(
bTA−1 ·xM2

n−1(s`)
)
− M̂1 (s`)

(
bTA−1 ·xM1

n−1(s`)
)]

(I−∆tns`A)
−1
1

(25)

with the same notation for x()n−1 as above and the matrices

M̂1 =

[
V̂θ

DD −K̂θ
DN

V̂θ
ND −(Cθ

NN + K̂θ
NN)

]
M̂2 =

[
Cθ

DD + K̂θ
DD −V̂θ

DN
K̂θ

ND −V̂θ
NN

]
.

To solve the thermal and the elastic system of equations, the block structure of the system ma-
trices is used to define a Schur complement for the solution procedure. The equation solving
is performed by a direct solver, which might be replace by an nested iterative solver for larger
problems.

4 Numerical study

The above proposed thermoelastic BE formulation is applied to three problems. The first two
examples are used for verification, whereas the third example is taken from a real world problem.
The first two are by nature simple examples, essentially, a 1D solution is reproduced with the 3D
BE formulation. In both cases the load consists of a prescribed temperature and the temperature
and displacement solution is observed.

In all examples the same material data, those of steel, are used. The specific values are given
in Tab. 1. To show the effect of a variable time step size the discretisation in time is set by

tn =
( n

N

)α

T with α = 1.5 and n = 0, . . . ,N . (26)

The spatial discretisation is performed with linear triangles and, as mentioned above, the sim-
plest low order shape functions, i.e., linear for the temperature and displacement and constant
for traction and fluxes.
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λ µ ρ cp k α

1.1 ·1011 N/m2 7.3 ·1010 N/m2 7850 kg/m3 460 J/K 40 W/mK 12 ·10−12 K−1

Table 1: Used material data (steel S235)

4.1 Rod under temperature load

The first example is a rod of size 3m×1m×1m which is heated on its free side and constrained
on all other sides. See Fig. 1 for a picture of the geometry, boundary conditions, and one of
the used meshes (the second coarsest). The circles denote roller bearings, i.e., the normal dis-

q = 0

q = 0

q = 0

θ(t > 0) = 1◦K• •

Figure 1: Geometry, boundary conditions (side view), and the mesh with h = 0.5m of the rod

placements are set to zero and the tangential direction is traction free. This ensures that a 1D
solution is computed, i.e., 3D effects are suppressed. The analytical solution for the temperature
and displacements can be found in several papers, e.g., in [6]. In the following, the results of the
displacements at the green point (right side of the rod) and the temperature at the red point (left
side of the rod) are computed and compared to the analytical solution. In Fig. 2, the computed
temperature is plotted versus time at the fixed end (red point in Fig. 1). The computation has
been performed with the CQM using constant step sizes, denoted in the following with CQM
and the generalised CQ denoted with gCQ. Both choices result in the same good solution. In
both cases a 2-stage Radau IIA method and a mesh with 3548 elements is used. All other pa-
rameters of the computations can be found in Tab. 2. The plot of the difference of the solutions
in Fig. 2b shows that for earlier times the variable time step size is better compared to the large
time behavior, where the time grading results in large time steps and, consequently, the CQ has
smaller errors. But overall, the variable step size pays off. For the displacement solution very
similar plots could be made, where exactly the same tendency is found. Hence, these plots are
skipped.

To see the behavior of the numerical method the error measured with

error2 =
1
N

√
N

∑
n=0

∆tn |u(x, tn)−uh (x, tn)|2 (27)

11
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Figure 2: Temperature at the fixed end versus time

errormax = max
1≤n≤N

∣∣∣∣u(x,
tn + tn−1

2

)
−uh

(
x,

tn + tn−1

2

)∣∣∣∣ (28)

is studied. Both error measures are pointwise with respect to the spatial variable because a com-
parison with a 1D solution is only possible at distinct points. The error (27) is the approximation
of an L2-error in time. In contrast, (28) is the maximum error in time. The approximated BE so-
lution is denoted with uh, whereas u means the exact solution. For the temperature the analogous
error definition is used. To see the convergence behavior, the spatial and temporal discretisation
has been refined by an uniform refinement. The respective values of the element numbers, time
step numbers and sizes can be found in Tab. 2. As underlying time stepping method either the

Elements h N (BDF 1) N (Radau IIA2) ∆tconst (BDF 1) ∆tconst (Radau IIA2)
56 1 6 3 266666 533333
224 0.5 12 6 133333 266666
896 0.25 24 12 66666 133333
3584 0.125 48 24 33333 66666
14336 0.0625 96 48 16666.7 33333.3

Table 2: Data for the refined meshes of the rod (∆t in seconds)

backward differential formula of order 1 (BDF 1) and a 2-stage Radau IIA method is used. To
have a fair comparison the step size in the BDF 1 is chosen half of the 2-stage method. Hence,
the numerical effort for both methods are comparable. However, it is expected that the 2-stage
method shows a higher convergence order. But it must be mentioned that the comparison is not a
strict convergence study as it is observed only at one point and the analytical solution is only 1D
and not a solution of the 3D problem. Nevertheless, the results show how the proposed method
behaves and the difference of the CQM to the gCQ. In Fig. 3, the rates for the temperature
solution are presented and the respective results for the displacements can be found in Fig. 4.

A very similar behavior of both Dirichlet data are observed. The BDF 1 results in a conver-

12
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Figure 3: Pointwise error for the temperature solution at the fixed end
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Figure 4: Pointwise error for the displacement solution at the free end
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gence order of one, whereas the 2-stage Radau IIA comes close to an order of two. This is the
expected behavior as either the time stepping method restricts the convergence order, as for BDF
1, or the linear spatial approximation of the Dirichlet data in case of the 2-stage Radau IIA. An-
other observation is that the gCQ has a smaller constant compared to the CQM solution, which
was already expected from the error plot in Fig. 2b. It must be remarked that the x-label in these
plots is somehow misleading as not only the spatial mesh is refined but as well the temporal.
Hence, the ratio spatial mesh size to the time step size is kept constant.

As the above discussed points a very clear for the L2 error in time it is not that clear for the
maximum error. Here, the rates for the displacement solutions are not as close to order two as
for the temperature. This might have several reasons as, e.g., an 1D solution is compared to a
3D solution. This is more critical for the displacements as the lateral displacements have some
values not equal to zero, which are small compared to the longitudinal values, but still spoil the
results.

4.2 Solid sphere

The second example can as well be found in other publications as a kind of benchmark. It is a
sphere with radius 1 m loaded by a temperature jump. The surface is traction free. An analytical
solution can be found, e.g., in [28] and [27]. It is essentially a radial symmetric solution, which is
modelled here with the 3D BE formulation. The problem setting is in principle a pure Neumann
problem for the elastostatic part of the governing equations, which causes trouble. However, in
the numerical model only one eight of the sphere is discretised with symmetry boundary condi-
tion. These boundary conditions fix the center of the sphere and, hence, the problem is no longer
a pure Neumann problem. This ensures the solvability of the problem and reduces the problem
size. In Fig. 5, the geometry, boundary conditions, and the second coarsest mesh with 64 ele-
ments is presented. As before, first the solution and the error over time is discussed. In Fig. 6

q = 0

q = 0

θ(t > 0) = 1◦K

•

Figure 5: Geometry, boundary conditions (side view), and the mesh with h= 0.5m for the sphere

the displacement solution in radial direction is plotted versus time. The evaluation point lies on
the surface of the sphere where the green point in figure 5 is set. Also here, the displacement
and temperature solution show the same behavior. That is why only the displacement solution

14
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Figure 6: Displacement at the surface of the sphere versus time

N h N (BDF 1) N (Radau IIA2) ∆tconst (BDF 1) ∆tconst (Radau IIA2)
16 1 16 50000 8 100000
64 0.5 32 25000 16 50000
256 0.25 64 12500 32 25000
1024 0.125 128 6250 64 12500
4096 0.0625 256 3125 128 6250

Table 3: Data for the refined meshes of the sphere (∆t in seconds)

is presented. The error of the gCQ calculation is in this examples either smaller or at least the
same as for the CQM calculation, i.e., in this example the variable time step size is advantageous
over the whole time range.

As before, the behavior of the proposed method is studied with a kind of convergence study.
An initial very coarse mesh is uniformly refined by bisection of the hypothenuse of the triangles.
The displayed mesh in Fig. 5 is obtained after the first refinement step. The respective time step
size is as well refined with the spatial mesh, i.e., the ratio of time step size to mesh size is kept
constant. The respective data can be found in Tab. 3.

Next, the errors are studied for the temperature and the displacement solution. The same nota-
tion and time stepping methods as in section 4.1 are used and it is expected to get similar results.
However, it must be remarked that different to the rod, here, an additional error appears, the dis-
cretisation error of the geometry. Flat linear triangles are used to approximate the sphere, which
is for the coarse meshes a crude approximation. Nevertheless, the error level is comparable to
the rod example. Different to the example above, for the sphere not only a pointwise error in the
spatial variable can be studied. The analytical solution is available at all points of the boundary
and, consequently, an L2-error (‖·‖L2(Γ)) in the spatial variable can be computed. The used error
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Figure 7: Error for the temperature solution of the sphere

measures are

error2 =
1
N

√
N

∑
n=0

∆tn‖u(x, tn)−uh (x, tn)‖2
L2(Γ)

(29)

errormax = max
1≤n≤N

‖u
(

x,
tn + tn−1

2

)
−uh

(
x,

tn + tn−1

2

)
‖L2(Γ) . (30)

In Fig. 7 and Fig. 8, these two errors are plotted for the temperature and displacement solution,
respectively. As anticipated the overall behavior is the same but, especially, the maximum error
in time shows for the displacement solution no longer a quadratic behavior but only a linear one.
The temperature solution and the L2 errors in time show, as expected, a linear order for BDF 1
and a quadratic behavior for the 2-stage Radau IIA method. One reason for the breakdown in
Fig. 8b might be that the error introduced by the geometry approximation is dominating. Also the
results for the rod have shown for the maximum error in the displacement solution a sub-optimal
behavior, which is probably now more pronounced due to the geometry error. Nevertheless,
without a mathematical analysis this effect cannot be clarified. From an engineering point of
view the method seems to be suitable to be used with an acceptable error behavior.

Remark 1. The above results show some advantages of the gCQ with respect to the CQM.
However, as usual in numerics this flexibility to adapt the time step size is not for free. The
numerical effort of the gCQ is usually higher than that of the CQM if both computations need
the same amount of time steps. From the determination of NQ (see appendix A) it is clear
that more BE calculations have to be performed. But if much less time steps are necessary
if a coarsening of the step size is possible, there may be a situation where the gCQ is also
computational advantageous. A more severe drawback is that the gCQ is inherently sequential
besides the computation of the system matrices, where the CQM can be performed easily in
parallel as long as it is set up as proposed in [3]. But for large systems this realisation with
an equation solve per complex frequency may become slow without an efficient preconditioner.
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Figure 8: Error for the displacement solution of the sphere

This is different for the gCQ, where the equation solve is done in time domain with a nearly
sparse matrix. Nevertheless, both methods needs fast BE methods to work for large real world
problems.

4.3 Hot forming tool

The last example is to demonstrate that also realistic configurations can be computed with the
proposed method. The example is taken from hot forming processes as they occur, e.g., in car
production. The main interest in such a simulation is the form of the deformed metal sheet and
its material properties. Both points are not considered here but the tool itself is simulated. Those
tools should not deform and steer the cooling process within the sheet. Hence, the challenging
task is to locate the cooling channels such that the required material properties in the sheet can
be obtained. This results in an highly complicated geometry of the tool. The temperature in the
tool and the deformation of the tool can be governed by the theory of linear thermoelasticity,
where the here tackled uncoupled quasistatic theory is used in practise.

In the following, the tool displayed in Fig. 9 is considered. The influence of the sheet on
the tool is modelled with a Robin boundary condition, where the heat transfer coefficient κ(x) is
determined by an energy estimate as proposed in [17, 42]. The sheet has a temperature of 750 oC
at the time of contact. At the bottom room temperature is assumed. In the channels and on the
front side as well convective boundary conditions are set. The tool itself has indeed be produced
and being used for measurements to check the energy estimate mentioned in these papers. As
well, the temperature solution of a purely thermal calculation has been checked against the
measured results with a reasonable agreement [26]. The new part here is the deformation in the
coupled computation. The material of the tool has modelled with the data from table 1. The
time is discretised with a variable time step size following (26) with α = 1.5,T = 120s, and
N = 30. The underlying time stepping method is the 2-stage Radau IIA method. The spatial
discretisation is not changed to the previous section.
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Figure 9: Forming tool with the prescribed boundary conditions

The screenshots in Fig. 10 show the temperature distribution and the norm of the displace-
ments on the tool at the end time (T = 120s) of the simulation. Aside, the temperature and
displacement behavior with respect to time is shown. Certainly, the results can only be ranked
as reasonable, as there is no reference solution. The displacements are well below the millimetre
range and the temperature is up to 72 oC. The graphs of the variation in time of the temperature
and displacements at a point on the surface are as well reasonable. The large displacements
around one millimetre showing up at some points are presumably numerical artifacts as they
appear on the cooling channels. These circular channels are approximated by a minimum of flat
triangles. A better mesh resolution would most probably eliminate these peaks in the displace-
ment distribution. Unfortunately, without compression techniques the used spatial mesh is the
largest for the available computing facilities.

5 Conclusions

A boundary element formulation for uncoupled themoelasticity has been proposed. Different
to existing formulations, here, the generalised Convolution Quadrature method (gCQ) is used
for the time discretisation. This allows for a variable time step size. Also, Robin type bound-
ary conditions, i.e., convective boundary conditions, have been realised via a modified Neuman
boundary condition. The results show, first, that the proposed method works. Second, the con-
vergence behavior is as expected governed either by the spatial discretisation or by the temporal
discretisation, depending which rate is smaller. The rates are the same as in the corresponding
elliptic problem if the temporal discretisation is sufficiently good. Essentially, a higher order
Runge-Kutta method should be used within the gCQ. Further, if the problem has strong gradi-
ents in the temporal solution a variable time step size pays off. Last, it is shown that also real
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Figure 10: Temperature and displacement distribution in the hot forming tool
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world problems can be handled with the proposed method. Certainly, without using fast methods
the applicability is restricted as in all 3D BE formulations. But the structure of the gCQ allows
for an application of either H -matrices with adaptive cross approximation or the fast multipole
method based on a Chebyshev expansion.

Acknowledgement The authors gratefully acknowledge the financial support by the Austrian
Science Fund (FWF) under Grant P 25557-N30.

A Parameter for the gCQM

The derivation and reasoning how the integration weights and points are determined can be
found in [21, 22]. The result of these papers are recalled here. The integration points in the
complex plane are

s` = γ(σ`) , ω` =
4K(k2)

1πi
γ
′(σ`) , NQ = N log(N) ,

where for Runge-Kutta methods with stages m > 1 it should be NQ = N log2(N). K(k) is the
complete elliptic integral of first kind

K(k) =
1∫

0

dx√
(1− x2)(1− k2x2)

, K′(k) = K(1− k)

and K′ is its derivative, which equals the integral of the complementary modulus. The argument
k depends on the relation q of the maximum and minimum step sizes in the following way

k =
q−
√

2q−1
q+
√

2q−1
q =

∆tmax5maxi |λi (A) |
∆tmin mini |λi (A) |

,

with the eigenvalues λi (A). For the implicit Euler, i.e., a one stage Runge-Kutta method, the
eigenvalues are 1 and the factor 5 in q can be skipped. The functions γ(σ`) and γ′(σ`) are

γ(σ`) =
1

∆tmin(q−1)

(√
2q−1

k−1 + sn(σ`)

k−1− sn(σ`)
−1
)

,

γ
′(σ`) =

√
2q−1

∆tmin(q−1)
2 cn(σ`) dn(σ`)

k(k−1− sn(σ`))2 ,

σ` =−K(k2)+

(
`− 1

2

)
4K(k2)

NQ
+

i
2

K′(k2) ,

where sn(σ`), cn(σ`) and dn(σ`) are the Jacobi elliptic functions. As seen from above, the
integration contour is only determined by the largest and the smallest time steps chosen but not
dependent on any intermediate step sizes. Due to the symmetric distribution of the integration
points with respect to the real axis, only half of the frequencies s` need to be calculated.
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B Fundamental solutions

The fundamental solution tensors corresponding to the adjoint operator in (5) can be found in
literature, e.g., [38]. It consists of the elastostatic fundamental solution, i.e., the displacement
solution due to a mechanical load (an impulse)

Ui j =
1

8πr
1

µ(λ+2µ)
[δi j (λ+3µ)+(λ+µ)r,ir, j] . (31)

The temperature caused by a mechanical load is

(Θu)i =
(3λ+2µ)α

k (λ+2µ)
r,i

4πλ2
1r

[(
λ1 +

1
r

)
e−λ1r−1

r

]
(32)

with λ2
1 = s ρcp

k and the temperature caused by a heat source

Θ =
1

4πrk
e−λ1r . (33)

The solution for the tractions is as well that of elastostatics

Ti j = µ
(
Ui j,k +Uk j,i

)
nk +λUk j,kni

=
−1

4π(λ+2µ)r2

{
[µδi j +(λ+µ)3r,ir, j]r,n−µ(r,in j− r, jni)

} (34)

and the (adjoint) fluxes are

Q =
−r,n
4πr

(
λ1 +

1
r

)
e−λ1r (35)

(Qu)i =
(3λ+2µ)α

(λ+2µ)
1

4πλ2
1r

[(
e−λ1r

r

(
λ1 +

1
r

)
− 1

r2

)
(ni−3r,ir,n)−λ

2
1 e−λ1r r,ir,n

]
. (36)
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