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Abstract

A new simulation method for the vibro-acoustic simulation of poro-elastic shells is pre-
sented. The proposed methods can be used to investigate arbitrary curved layered panels,
as well as their interaction with the surrounding air. We employ a high order finite element
method (FEM) for the discretization of the shell structure. We assume that the shell geom-
etry is given parametrically or implicitly. For both cases the exact geometry is used in the
simulation. In order to discretize the fluid surrounding the structure, a variational variant of
the method of fundamental solutions (MFS) is developed. Thus, the meshing of the fluid
domain can be avoided and in the case of unbounded domains the Sommerfeld radiation
condition is fulfilled. In order to simulate coupled fluid-structure interaction problems, the
FEM and the MFS are combined to a coupled method. The implementation of the uncou-
pled FEM for the shell and the uncoupled MFS is verified against numerical examples based
on the Method of Manufactured Solutions. For the verification of the coupled method an
example with a known exact solution is considered. In order to show the potential of the
method sound transmission from cavities to exterior half-spaces is simulated.



1 Introduction

In order to reduce noise levels which are harmful for the human health, lightweight poro-elastic
materials are often used in a wide range of applications such as building acoustics, automotive
and aircraft interior noise. Typically, porous materials used as dissipative components are intro-
duced in multi-layered structures. This is the motivation to develop a new simulation method,
where a laminated shell structure made of elastic and poro-elastic materials is discretized by
the finite element method (FEM) and the surrounding fluid is discretized by the method of fun-
damental solutions (MFS). In particular we focus on situations as illustrated in Figure 1. We
assume that the upper half-space has a sound hard ground and is divided into an bounded inte-
rior domain and an unbounded exterior domain by a shell structure. Our main focus is to develop
a simulation method in order to calculate the sound transmission from the interior to the exterior
domain.

Ωint

Ωext

∂Ω+

Ωs

sound hard ground

Figure 1: Problem setting: Sound hard ground surface ∂Ω+, interior fluid domain Ωint , exterior
fluid domain Ωext , shell structure Ωs

The modeling of the vibro-acoustic behavior of systems including porous materials is far from
being trivial. Due to the fact that in most applications only small vibration amplitudes occur, it is
usual to use linear models. Therefore, air volumes are modeled with the acoustic fluid, whereas
solid structures are modeled with the linearized theory of elasticity. Poro-elastic materials are
described with the dynamic Biot theory. This theory was published in [6, 7] and has been adapted
to acoustic applications. Present-day descriptions can be found in [2] and [19].

Many structural parts can be classified as of shell-type. Their thickness is very small when
compared to the other dimensions. In such a situation, it is reasonable to describe the geometry
by a curved two-dimensional surface in space. A recent review of laminated plate and shell
models is given in [13]. In principle, two types of theories can be distinguished. In the first
type the number of parameters is independent of the number of layers. Such theories are termed
equivalent single layer theory. The second type referred to as layer-wise theories, where the
number of parameters depends on the number of layers. Such a theory is formed by packages
of single-layer shell models coupled at the layer interfaces. Concerning the literature on poro-
elastic plate and shell theories, we mention the thin poro-elastic plate theory for the consolidation
problem [63]. This theory has been extended to the dynamic problem in [64]. In [60], the
displacement kinematics are extended to allow for shear deformations. Following the idea of a
three-dimensional resolution, a series expansion in thickness direction by means of monomials
has been utilized for single layer poro-elastic plates in [43]. This approach has been extended to
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layered panels in [44], utilizing a layer-wise modeling. In this approach possible air layers can
also be considered [55]. A rigorous derivation of poro-elastic plate and shell theories have been
published only recently [39, 41].

The FEM is the most popular numerical discretization method for the analysis of shell struc-
tures. Due to the geometry, various locking phenomena can occur. To overcome this issue,
a huge number of different techniques have been developed. In order to resolve the locking
issues, many finite elements are based on mixed variational formulations. Common techniques
are Reduced Integration, Assumed Natural Strains, Enhanced Assumed Strains, and the Discrete
Strain Gap method (cf. [36, 70, 15]). Another possibility is the use a high order ansatz functions
to reduce the locking effects [23, 51]. Typically, the geometry of the shell reference surface
is approximated. However, in the present work, we make use of the exact geometry descrip-
tions within the FEM. For the case of a parametrized surface we mention [4, 50, 29], whereas
in [20, 27, 29] exact geometry methods for implicitly defined surfaces have been developed.
The FE discretization of poro-elastic media can e.g. be found in [2]. For sophisticated solution
techniques of the coupled poro-elastic system we refer to [42] and [11].

We assume that in the geometry definition of a problem only the shell geometry structure is
modeled directly. The geometry of the fluid domains is described indirectly by their boundary,
i.e. by the boundary of the half-space and the shell structure. In such a situation it can be a
rather difficult task to generate a volume mesh. To tackle this problem, one possibility is to use
embedded/fictitious domain methods. These methods are based on the idea of defining an auxil-
iary domain which can be meshed easily. As recent contributions in this field, we would like to
mention the Finite Cell method [49, 58], the Cartesian grid method [40] and the CutFEM [12].
Recent developments in the context of Constructive Solid Geometry modeling can be found in
[57] and [66]. An interesting application of this concept to shell analysis is given in [52]. An-
other possibility for the analysis of domains described by their boundary is to resort to boundary
related methods, where no volume mesh is required. The most developed method of this type is
the Boundary Element Method (BEM), see e.g. [10]. In the direct BEM, the unknown boundary
data are discretized, whereas in the indirect BEM, an auxiliary density function defined on the
boundary is sought. This density function is used to describe the solution field. The indirect
BEM can be seen as a Trefftz-type method. In such methods, the solution is approximated by
a linear combination of basis functions, which fulfill the underlying partial differential equa-
tion. Reviews on Trefftz-type methods along with their classification can be found in [35] and
[31]. A Trefftz-type which was developed with the aim to solve vibro-acoustic problems is the
Wave Based Method (WBM) developed in [21]. Since its first publication, this method has been
constantly developed further [18]. Within the WBM, the solution is determined by means of a
variational formulation. Despite that the BEM would be optimal with respect to the model of the
surrounding air, here, a more simpler approach, the MFS is used. This Trefftz-type method (see
e.g. [24]) uses fundamental solutions of the underlying partial differential equation for the solu-
tion approximation. Typically, the solution is determined by collocation at the boundary. Due to
the use of fundamental solutions, the Sommerfeld radiation condition is fulfilled exactly. Thus,
unbounded domains are easily treatable. We mention three applications of the MFS in the field
of poro-elasticity. Nennig et al.[45] applied the MFS to scattering problems from poro-elastic
bodies in two dimensions. Wen and Liu [67] derived the fundamental solution for a poro-elastic
plate in Laplace domain and applied the MFS for solving boundary value problems. Augustin

3



[5] presented density results and a MFS for quasi-static poro-elasticity.
In the present work, we couple the FEM and the MFS in order to benefit from both worlds.

The coupling of different numerical methods is a well known approach for acoustic-structure
interaction problems. The FEM is perfectly suited for models with complex geometries while
boundary related methods enable to account for the radiation of waves in domains of infinite
extent. The coupling of FEM-BEM is well-known in literature, see e.g. [25, 16, 69] among oth-
ers for structural-acoustic coupling. The coupling of the FEM and the WBM has been proposed
for different configurations. We mention the cases of structural (FEM) - acoustic fluid (WBM)
coupling [65], acoustic fluid (WBM) - poroelastic domain (FEM) coupling [34] and the coupling
of two different poroelastic domains [37]. For two-dimensional soil-structure interaction prob-
lems a coupled FEM-MFS schema has been developed in [30]. Thus, two elastic sub-domains
are coupled. This was extended to a 2.5-dimensional model for the prediction of vibrations due
to underground railway traffic in [3]. Furthermore, we mention [45], where an acoustic fluid
domain is coupled with a poro-elastic domain. Both are discretized using the MFS. To our best
knowledge, the coupling of a poro-elastic shell with an acoustic fluid was not considered before.

In the present work, the main novelty is the development of a layer-wise poro-elastic shell the-
ory. The individual layer displacement kinematics are based on a seven-parameter shell model
[4, 8, 17], whereas the scalar fluid pressure field is assumed to be quadratic through-the-thickness
in each poro-elastic layer. The shell reference surface can be given either parametrically or im-
plicitly. In both cases the exact geometry is incorporated in the FEM following the developments
in [29]. The field approximation for the shell is done by means of arbitrary order hierarchical
shape functions. Furthermore, a variational variant of the MFS in order to discretize the fluid
domains is used. Schemata for the coupling of the FEM and the MFS at different interfaces
are presented. Wile the coupling formulation at fluid - elastic solid interfaces are known in
literature[65], to the best of our knowledge, the coupling formulation of a poro-elastic shell with
a fluid is new. The implementation of the method is verified with high rigor. To that end, the
method of manufactured solutions is adapted to the case of poro-elasticity for the first time. Fi-
nally, the proposed method is used to simulate the sound transmission from the inside of two
cavities bounded by a poro-elastic shell structure to the infinite outer domain.

2 Governing equations

In this section the governing equations of an acoustic fluid, an elastic solid and a poro-elastic
solid are briefly introduced. Harmonic time dependency of all fields is assumed where the angu-
lar frequency is denoted with ω .

2.1 Acoustic fluid

The propagation of sound waves in an fluid is governed by the Helmholtz equation [53]

k2 p+∆p = g, (1)

where p stands for the sound pressure fluctuation around the equilibrium state, k = ω

√
ρ

K is
the wave number, g the source term, and ∆ the Laplace operator. The material parameters are
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the density ρ and the bulk modulus K. A pure acoustic boundary value problem equation (1) is
supplemented by the boundary conditions

p(x,ω) = gD(x,ω) for x ∈ ΓD,

∂n p(x,ω)

iωρ
= gN(x,ω) for x ∈ ΓN .

(2)

On the Dirichlet boundary ΓD, the pressure has the prescribed value gD, whereas on the Neu-
mann boundary ΓN the normal velocity ∂n p(x,ω)

iωρ
has the prescribed value gN . In the case of an

unbounded domain, the solution has to fulfill the Sommerfeld radiation condition

lim
|x|→∞

|x|
(

∂

∂ |x| + ik
)

p(x) = 0, (3)

first considered in [62].

2.2 Elastic solid

The propagation of waves in elastic solids is governed by the following equations

−ρs ω
2u = ∇ ·σσσ +b (balance of momentum) (4)

σσσ = C : εεε (material law) (5)

εεε =
1
2
(∇u+(∇u)>) (kinematic relation). (6)

Here, u denotes the displacement vector, σσσ stands for the stress tensor, b is the volume load
density, εεε is the infinitesimal strain tensor, C denotes the fourth order elastic tensor, and ρs is the
solid density. Here, we consider linear isotropic materials where the elasticity tensor is given by

C=
Eν

(1+ν)(1−2ν)
I⊗ I+

E
1+ν

I (7)

where I is the second-rank identity tensor, and I is the symmetric part of the fourth-rank identity
tensor. E denotes the Young’s modulus and ν is the Poisson’s ratio. The boundary conditions
are given by

u(x,ω) = uD(x,ω) for x ∈ ΓD,

t(x,ω) = tN(x,ω) for x ∈ ΓN .
(8)

On the Dirichlet boundary ΓD the displacement vector has the prescribed value uD. On the
Neumann boundary ΓN the surface traction vector has the prescribed value tN

i .

2.3 Poro-elastic solid

Following Biot’s theory, wave propagation in a poro-elastic solid is governed by the equations

∇ ·σσσ tot +ω
2u(ρ +ρ f β )−β ∇p = 0, (9a)

− β

ω2ρ f
∆p+(β +α) ∇ ·u+

φ 2

R
p = 0 (9b)
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Here, σσσ tot stands for the total stress tensor

σσσ
tot =

E
1+ν

εεε +
Eν

(1+ν)(1−2ν)
tr(εεε) I−α p I , (10)

ρ = (1− φ)ρs + φρ f is the bulk density, ρ f is the fluid density, φ denotes the porosity, R is a
poro-elastic parameter, and α is the so-called effective stress coefficient [22]. To obtain (9) the
relative fluid to solid displacement

U−u =
β

ω2ρ f φ
(−∇p+ω

2
ρ f u), (11)

with the fluid displacement U has been eliminated. In (9) and (11) the abbreviation

β =
ω2ρ f φ

2

iωb−ω2(φρ f +ρa)
, (12)

is used, where ρa is the apparent mass density and b is the viscous drag force.
For typical poro-elastic materials used in acoustic applications, the bulk modulus of the elastic

solid Ks is very large as compared to the bulk modulus of the fluid K f and the bulk modulus of
the skeleton K. Thus, we assume an incompressible solid skeleton material which results in

R = φK f ,

α = 1
(13)

Following [33], the frequency dependent viscous drag is given as

b(ω) = σφ
2

√
1+

4iα2
∞ η f ρ f ω

σ2Λ2φ 2 . (14)

Here, σ denotes the static flow resistivity and α∞ is the tortuosity. Λ denotes the viscous char-
acteristic length, and η f is the dynamic viscosity. In order to take thermal effects into account,
Champoux and Allard [14] introduced the thermal characteristic length Λ′. Following this ap-
proach, the bulk modulus of the fluid becomes frequency dependent

K f (ω) =
γ p0

γ− γ−1
α ′(ω)

. (15)

Here, p0 is the ambient pressure of air, γ is the ratio of specific heats and

α
′(ω) = 1+

8η f

iωΛ′2Pr ρ f

√
1+ iρ f

PrΛ′2

16η f
. (16)

Here, Pr denotes the Prandtl number
Pr =

cp

η f κ
, (17)

with the specific heat capacity at constant pressure cp and the thermal conductivity κ .
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The boundary conditions for a poro-elastic solid are given by

u(x,ω) = uD(x,ω) for x ∈ Γ
u
D,

ttot(x,ω) = tN(x,ω) for x ∈ Γ
u
N ,

p(x,ω) = pD(x,ω) for x ∈ Γ
p
D,

qn(x,ω) = qN(x,ω) for x ∈ Γ
p
N .

(18)

On the Dirichlet boundary for the solid Γu
D the displacement has a prescribed value uD, whereas

on the Neumann boundary Γu
N the total surface traction vector is prescribed with tN . Further-

more, on the Dirichlet boundary for the fluid Γ
p
D the fluid pressure has a prescribed value pD,

whereas on the Neumann boundary Γ
p
N the normal flux

qn =
iβ

ωρ f

(
ω

2
ρ f u−∇p

)
·n (19)

is prescribed with qN . In general (Γu
D,Γ

u
N) and (Γp

D,Γ
p
N) can be two independent non-overlapping

decompositions of the boundary. Thus, on a boundary point two conditions have to be fulfilled.

2.4 Coupling conditions

In this section, we outline the coupling conditions between the physical models. In Figure 2, the
abstract setting of coupled continua is depicted. The domains Ωa, Ωe, Ωp refer to an acoustic
fluid, to an elastic solid and to a poro-elastic solid respectively. The boundary of Ωa is denoted
by Γa = Γa

D∪Γa
N ∪Γae∪Γap and is the union of four non-overlapping parts. In view of all three

models, Γo
D and Γo

N are the Dirichlet and the Neumann boundary of the domain Ωo, o∈ {a,e, p}.
Γae and Γap denote the coupling boundary of the acoustic fluid domain Ωa with the elastic
solid domain Ωe and the poro-elastic solid domain Ωp. The boundary of Ωe is denoted by
Γe =Γe

D∪Γe
N∪Γae∪Γep, whereas the boundary of Ωp is Γp =Γ

p
D∪Γ

p
N∪Γap∪Γep. The coupling

boundary between Ωe and Ωp is Γep. Before we consider the coupling of different models, we
examine the coupling of two elastic continua. The coupling of two elastic continua (Ω1,Ω2)
over the common interface Γ yields two conditions. The first condition which has to hold is the
continuity of the displacements

u(1) = u(2) on Γ. (20)

The second condition is the equilibrium of forces, which results in

t(1)+ t(2) = 0 on Γ. (21)

In the case of an acoustic f luid - elastic solid interface Γae also two coupling conditions are
necessary. According to the inviscid assumption for the acoustic fluid, no shear stresses occur
in the fluid. Hence, particles of the fluid can move tangential to the interface without resistance.
Therefore, only the normal displacements are continuous

ua ·n = ue ·n. (22)
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Ωa

Ωe

Ωp
Γae

Γap

ΓepΓe
D

Γe
N

Γpu
D ∩ Γ

pp
N

Γpu
D ∩ Γ

pp
N

Γpu
N ∩ Γ

pp
D

Γpu
N ∩ Γ

pp
NΓa

N

Γa
D

Figure 2: Coupled continua: acoustic fluid continuum Ωa, elastic solid continuum Ωe, poro-
elastic solid continuum Ωp

The fluid displacement can be expressed through the pressure by ua = ρa

ω2 ∇p. Thus, the coupling
condition gets

ρa

ω2 ∇pa ·n = ue ·n on Γ
ae. (23)

The traction on the interface resulting from the scalar pressure field in the fluid is ta = −pa n.
Thus, the equilibrium of forces yields

te =−pa n on Γ
ae, (24)

where the normal vector is the outward normal vector of the elastic domain.
On an acoustic f luid - poro− elastic solid interface Γap, three coupling conditions have to

be fulfilled. The continuity of normal displacements implies

ua ·n = up ·n on Γ
ap, (25)

where up = (1− φ)u+ φU is the displacement of a ’poro-elastic particle’. Using the relative
displacement between solid and fluid defined in (11), the coupling condition gets

∇pa ·n
ρaω2 = u ·n+

1
iω

q ·n on Γ
ap. (26)

The second condition is given by the equilibrium of forces. The surface traction induced by the
scalar pressure in the acoustic fluid has to be balanced with the total traction in the poro-elastic
solid

−pa n = ttot on Γ
ap, (27)
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where the normal vector is the outward normal vector of the poro-elastic domain. The third
condition ensures the continuity of the pressure fields. Hence,

pa = pp on Γ
ap. (28)

The remaining combination is an elastic solid - poro− elastic solid interface Γep. The elastic
solid and the poro-elastic solid are able to resist shear forces. Therefore, no relative motion
between the two solid phases are allowed

us = ue on Γ
ep. (29)

The elastic domain represents an impervious interface for the fluid in the poro-elastic solid.
Therefore, the relative mass flux normal to the interface has to be zero

q ·n = 0 on Γ
ep. (30)

As a third condition, the equilibrium of forces demands

te + ttot = 0 on Γ
ep. (31)

3 Poro-elastic shell structure

In this section, we describe a layer-wise theory for laminated poro-elastic shells. We consider
shell reference surfaces Ω̄ which are given parametrically or implicitly. In the former case we
have a parametrization g : Ū ⊂ R2→ Ω̄ available with given parameter domain Ū . In the latter
case, the reference surface is given as the zero-level set of a function φ : R3→R inside a cuboid
B,

Ω̄ = {x ∈ B|φ(x) = 0}. (32)

For this setting, the normal vector to the surface is given by

ñ(x) =
∇φ(x)
||∇φ(x)|| . (33)

In the numerical method, we will make use of a piecewise parametrization of the exact surface
over a space triangulation. Therefore, the implicit description of the reference surface is turned
into a parametric one (cf. [27, 29]). Given the parametrization g, we can define the two covariant
base vectors Gα := ∂g

∂θ α , which span the tangent plane to Ω̄. Here and in the following, Greek
indices take the values 1 and 2 and Latin indices the values 1, 2, 3. With the base vectors we can
define the unit normal vector

n =
G1×G2

||G1×G2||
. (34)

Having defined the normal vector the parametrization of the three-dimensional shell volume Ω

is given by
g : (Ū×T )⊂ R3→Ω⊂ R3

(θ 1,θ 2)×θ
3 7→ g(θ 1,θ 2,θ 3) = g(θ 1,θ 2)+θ

3 n,
(35)
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θ1

θ2

θ3

g, g

e1

e2
e3

G1

G2

n

Figure 3: Parametrization of the shell. The parameter space on the left is mapped to the physical
space on the right. The reference surface is parametrized by g, whereas the shell
volume is parametrized by g.

with the one-dimensional thickness interval T . The geometric setting is illustrated in Figure 3.
We consider a layered shell structure with a layup as depicted in Figure 4. The total number of
layers is L. Each layer has a thickness ti, i= 1 . . .L and is classified as elastic or poro-elastic. The
distance from the reference surface to the bottom of the shell is denoted by t0. Furthermore, we
define the individual layer thickness intervals Ti =

[
∑

i−1
j=0 t j , ∑

i
j=0 t j

]
. Thus, T =

⋃L
i=1 Ti. The

relations between the local thickness coordinate τi ∈ [0,1] of layer i and the global thickness
coordinate θ 3 ∈ Ti are

τi(θ
3) =

1
ti

(
θ

3−
i−1

∑
j=0

t j

)
, (36)

and

θ
3(τi) =

i−1

∑
j=0

t j + ti τi . (37)

The present layer-wise theory is based on the assumed seven-parameter displacement field for
layer ` ∈ {1, . . . ,L} of the form

u`(θ 1,θ 2,θ 3) =
(1)
V (τ`(θ

3))
(1,`)
ui ei +

(2)
V (τ`(θ

3))
(2,`)
ui ei +

(n)
V (τ`(θ

3))
(n,`)
u n. (38)

Here,
(·)
V (τ`(θ

3)) are through-the-thickness functions and
(1,`)
u i,

2,`
u i,

(n,`)
u are seven local displace-

ment parameters and ei are the base vectors of a Cartesian coordinate system. The through-the-
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t1

1

. . .

ti

i

. . .

tL

L

reference surface

t0

Figure 4: Layup of the shell

thickness functions are chosen as
(1)
V (τ) = 1− τ,

(2)
V (τ) = τ,

(n)
V (τ) = τ

2− τ.

(39)

Thus, the parameters
(1,`)
ui =

(1,`)
ui (θ

1,θ 2) and
(2,`)
ui =

(2,`)
ui (θ

1,θ 2) describe the displacement of the
bottom (τ = 0) and the top (τ = 1) of layer ` respectively. This is enhanced with the parameter
(n,`)
ui =

(n,`)
ui (θ

1,θ 2), which accounts for a quadratic variation of the displacement in thickness
direction, which vanishes at the bottom and the top surface of the layer. In all possible combina-
tions of elastic and poro-elastic layers, the continuity of the displacement field is required. Thus,
for two subsequent layers, we set

(2,`)
ui =

(1,`+1)
ui . (40)

Therefore, the total number of parameters describing the displacement is 3(L+ 1)+ L and is
independent of the stacking sequence. Following [60], the fluid pressure field in poro-elastic
layers is approximated by a quadratic expansion through-the-thickness. The pressure field for
layer ` is assumed to be of the form

p`(θ 1,θ 2,θ 3) =
(1)
V (τ`(θ

3))
(1,`)

p +
(2)
V (τ`(θ

3))
(2,`)

p +
(n)
V (τ`(θ

3))
(n,`)

p , (41)

where
(1,`)

p =
(1,`)

p (θ 1,θ 2),
(2,`)

p =
(2,`)

p (θ 1,θ 2), and
(n,`)

p =
(n,`)

p (θ 1,θ 2) are three local parameters.
Between two poro-elastic layers, we require the continuity of the pressure. Thus, if layer ` and
`+1 both are poro-elastic, we set

(2,`)
p =

(1,`+1)
p . (42)

Therefore, the total number of parameters describing the fluid pressure is 3Lp−np, where Lp is
the number of poro-elastic layers and np is the number of interfaces between two poro-elastic
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layers. Since the considered coupling of elastic and poro-elastic layers is natural [2], it is suf-
ficient to enforce the continuity of the displacement field and the pressure field, as it is done in
(40) and (42).

4 Numerical methods

4.1 Finite element method for the poro-elastic shell

The FEM developed for the layered poroelastic shell structure is based on the weak formulation
of the respective governing equations (4) and (9) and on the through-the-thickness discretizations
(38) and (41).

Weak form of elastodynamics The weak form of elastodynamics is obtained by multiplying
(4) with a vector-valued test function ū ∈ V u

0 = {ū ∈ [H1(Ω)]3| ū = 0 on ΓD}, integrating over
the domain Ω and applying integration by parts we obtain

−ρ ω
2Mu(u, ū)+Ku(u, ū) = fV (ū)+ fN(ū), (43)

where
Mu(u, ū) =

∫
Ω

u · ū dx, Ku(u, ū) =
∫
Ω

(C : εεε(u)) : εεε(ū) dx,

fV (ū) =
∫
Ω

b · ū dx, fN(ū) =
∫

ΓN

tN ū dsx.
(44)

Thus, the weak form of the problem reads: Find u ∈V u = {u ∈ [H1(Ω)]3| u = uD on Γu
D} such

that (43) is fulfilled for all ū ∈V0.

Weak form of poro-elasticity The derivation of the weak form of poro-elasticity follows the
same arguments as for elastodynamics. We multiply (9a) with vector-valued test function ū∈V u

0 ,
integration over the domain and apply integration by parts,

−
∫
Ω

σσσ
tot : ∇ū dx+

∫
Γ

ttot · ū dsx +
∫
Ω

(
ω

2u(ρ +ρ f β )−β∇p
)
· ū dx = 0. (45)

Furthermore, we multiply (9b) with a scalar test function p̄ ∈V p
0 = { p̄ ∈ H1(Ω)| p̄ = 0 on Γ

p
D}

and perform an integration over the domain. This yields with some rearrangements∫
Ω

β

ω2ρ f
∇ · (ω2

ρ f u−∇p)p̄ dx+
∫
Ω

∇ ·u p̄ dx+
φ 2

R

∫
Ω

p p̄ dx = 0. (46)

Now, we apply integration by parts to the first integral and using (19) in order to obtain

−
∫
Ω

β

ω2ρ f
(ω2

ρ f u−∇p)∇p̄ dx+
∫

Γ
p
N

qN p̄
iω

dsx +
∫
Ω

∇ ·u p̄ dx+
φ 2

R

∫
Ω

p p̄ dx = 0. (47)
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Thus, we can formulate the weak form of the poroelastic boundary value problem: Find (u, p) ∈
V u×V p such that

−Ku(u, ū)+ω
2 (

ρ +βρ
f )Mu(u, ū)+D(p, ū)−L(p, ū)+ fu(ū) = 0,

Kp(p, p̄)+Mp(p, p̄)+D(p̄,u)−L(p̄,u)+ fp(p̄) = 0,
(48)

are fulfilled for all test functions (ū, p̄) ∈ V u
0 ×V p

0 . The bilinear and linear forms in (48) are
defined in (44) and

Kp(p, p̄) =
β

ω2ρ f

∫
Ω

∇p ·∇p̄ dx, Mp(p, p̄) =
φ 2

R

∫
Ω

p p̄ dx,

D(p, ū) =
∫
Ω

p ∇ · ū dx, L(p, ū) = β

∫
Ω

∇p · ū dx,

fu(ū) =
∫

Γu
N

tN ū dsx, fp(p̄) =
∫

Γ
p
N

qN p̄
iω

dsx.

(49)

Discretization The discretization is based on the standard reference element technique, i.e. on
the reference element hierarchical shape functions of arbitrary order and quadrature are defined
[61]. Thus, the shell reference surface is subdivided into ne non-overlapping geometric elements
τe such that Ω̄ =

⋃ne
e=1 τe. In the case of an parametrically defined reference surface the para-

metric domain is subdivided into quadrilaterals Qe and the geometric elements in real space are
given by τe = g(Qe), see Figure 5. The standard affine mapping from the reference element τR

to Qe is denoted by Φe. For implicitly defined reference surfaces the parametrization g is not
explicitly available. Therefore, the exact geometry is parametrized over a piecewise flat triangu-
lation with elements ψe in real space, see Figure 6. The elements in real space are obtained by
τe = ae(ψe). Here, ae is a mapping which is only implicitly defined [27, 29], i.e. for the evalu-
ation a one-dimensional nonlinear root finding problem has to be solved. For further details on
the evaluation of the integrals in (44) and (49) we refer to [28].

τR

ξ

η
Φe

θ1

θ2

Qe

g

e1

e2
e3

τe

Figure 5: Geometry mappings for parametrically given shells
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θ1

θ2

(0, 0) (1, 0)

(0, 1)

τR

ψe τe

Φe ae

Figure 6: Geometry mappings for implicitly given shells

4.2 Method of fundamental solutions for a single fluid domain

In this section, we will introduce a variant of the MFS, which is a Trefftz-type method. This
method is used to discretize the acoustic fluid surrounding the shell structure. In general, a
Trefftz method consists of a discrete Trefftz space and a Trefftz variational formulation [31].
Usually, the MFS refers to a particular combination of discrete space and variational formulation.
The ansatz functions are fundamental solutions (Green’s function) with source points placed
along a curve (in 2D) or on a surface (in 3D) surrounding the computational domain Ω. It is
necessary that the source points lie in the complement of Ω, since the fundamental solutions are
singular at the source points. The coefficients are determined by collocation. Here, we want to
solve the boundary value problem of acoustics (2). The well known fundamental solution of the
Helmholtz operator in the full 3D space is given by

G 3D(x,y) =
e−ikr

4πr
, r = ||y−x||. (50)

The point x is called field point, whereas y is called source point. We restrict our further
considerations to half-space problems. This means that we assume that the upper half-space
Ω+ = {(x,y,z) ∈ R3|z > 0} is divided by the shell structure Ωs into two fluid domains Ωint and
Ωext , such that Ω+ = Ωint ∪Ωext ∪Ωs. We assume a sound hard surface ∂Ω+ at z = 0. Thus, the
normal fluid velocity vanishes,

va(x) · e3 = 0, for x ∈ ∂Ω+. (51)

By making use of the well known half-space fundamental solution, the condition at sound hard
surface ∂Ω+ is fulfilled exactly. The half-space fundamental solution is given by[9]

G (x,y) =
e−ikr

4πr
+

e−ikr̃

4π r̃
, r̃ = ||ỹ−x||, ỹ = (y1,y2,−y3). (52)

In the present work, we use fundamental solutions placed on a surface embracing the fluid
domain to approximate the pressure field in the acoustic fluid, as it is done in the classical
MFS. The unknown coefficients are determined by a variational formulation, like in the WBM
[18]. To this end, the residuals

RD(x) = p(x)−gD(x) for x ∈ ΓD,

RN(x) =
∇p(x) ·n(x)

iωρ
−gN(x) for x ∈ ΓN ,

(53)
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are introduced. The solution in the fluid domain is approximated by a linear combination of
fundamental solutions G weighted with coefficients ci

pa(x) =
Np

∑
i=1

ci G (x,yi). (54)

In order to treat non-homogeneous problems, i.e. where sources are located inside the acoustic
fluid domain, we extend (54) to

pa =
Ns

∑
i=1

ci G (x,yi)+Fp, (55)

where Fp are particular solutions of the in-homogeneous problem. In the present work, we
consider point sources only. Thus, Fp is a linear combination of fundamental solutions

Fp =
Np

∑
s=1

ds G (x,ys), (56)

where ds is the strength of an acoustic source at ys. The discrete fluid displacement is given by

ua(x) =
1

ρaω2

Np

∑
i=1

ciH (x,yi). (57)

where
H (x,y) = ∇xG (x,y). (58)

Thus,

H (x,y) · e j = (1+ ikr)
y j− x j

4πr3 e−ikr +(1+ ikr̃)
ỹ j− x j

4π r̃3 e−ikr̃ . (59)

In the proposed MFS either the interior acoustic problem in Ωint or the exterior acoustic problem
Ωext can be tackled. In both cases, we assume that the boundary Γ of the respective domain can
be decomposed into Γ = ΓD ∪ΓN ∪ ∂Ω+. Due to the ansatz (55), the Helmholtz equation in
Ω+ and the hard wall condition at ∂Ω+ are fulfilled exactly. Nevertheless, the other boundary
conditions cannot be fulfilled exactly, yielding the residua (53). Therefore, the unknown coeffi-
cients ci in (55) are determined in a weighted residual sense. To this end, the boundary residua
are weighted with the complex conjugate of the test functions η and their normal derivative,∫

ΓD

∇η̄(x) ·n(x)
iωρ

RD(x) dsx +
∫

ΓN

η̄(x)RN(x) dsx = 0. (60)

Applying a Galerkin approach, the test functions η̄ are chosen to be fundamental solutions with
the same source points as in (54). This leads to the linear system of equations

KMFSuMFS = f MFS, (61)
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where matrix and vector entries are given by

KMFS[i, j] =
∫

ΓD

H (x,yi) ·n(x) G (x,y j) dsx

+
∫

ΓN

G (x,yi) H (x,y j) ·n(x) dsx,

uMFS[i] = ci,

f MFS[i] =
∫

ΓD

H (x,yi) ·n(x)
(

gD−
Np

∑
l=1

dlG (x,yl)

)
dsx

+
∫

ΓN

G (x,yi)

(
gN−

Np

∑
l=1

dlH (x,yl) ·n(x)
)

dsx.

(62)

4.3 Coupled method

In this section we present a coupling approach for the FEM and the MFS.

Acoustic-elastic FEM-MFS coupling We consider the case of an elastic solid which is in
contact with an acoustic fluid at the interface Γae. The presented formulation is similar to the one
in [65]. The variational formulation of the governing equations for an elastic solid is rewritten
to

−ρ ω
2Mu(ue, ū)+Ku(ue, ū)−

∫
Γae

te · ū dsx = fV (ū)+ fN(ū). (63)

Here, we have assumed the case Γ = ΓN ∪ΓD ∪Γae. The case of an additional interface be-
tween an elastic solid and a poro-elastic solid was commented in Section 3. The two coupling
conditions for the interface Γae stated in (23) and (24) are rewritten to

te =−pa n, on Γ
ae, (64)

and
1

ρaω2 ∇p ·n−ue ·n = 0, on Γ
ae. (65)

The incorporation of the first coupling condition in (63) yields

−ρ ω
2Mu(ue, ū)+Ku(ue, ū)+

∫
Γae

pa n · ū dsx = fV (ū)+ fN(ū). (66)

Following the variational MFS approach in Section 4.2, the second coupling condition is weighted
with the complex conjugate of the test function η and integrated over the coupling interface∫

Γae

η̄(x)
(

1
ρaω2 ∇p ·n−ue ·n

)
dsx. (67)
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The discretization of (65) and (67) leads to a system of equations in the form of[
−ω2Mu +Ku G1

(G1)
> −H

][
ui

ck

]
=

[
fV + fN− fae

fp

]
. (68)

The matrices Mu and Ku are the mass and the stiffness matrix and fV + fN is the load vector,
which arise from the FEM discretization. In order to state the entries of the other matrices,
we use the global index i = i(i1, i2, i3, l), which refers to the respective finite element func-

tion Ni1(x)
(i3)
V (τ̃ l(x))

(i3,l)
ui2 ei2 . Here, Ni1 denotes a two-dimensional finite element shape function.

Thus,

G1[i,k] =
∫

Γae

Ni1(x)
(i3)
V (τ̃ l(x)) G (x,yk)ei2 ·ne(x) dsx,

H[k, l] =
1

ρaω2

∫
Γae

H (x,yl) ·n(x) G (x,yk) dsx,

fae[i] =
Ns

∑
s=1

ds

∫
Γae

Ni1(x) G (x,ys)ei2 ·ne(x) dsx,

fp[k] =
Ns

∑
s=1

ds

ρaω2

∫
Γae

H (x,ys) ·n(x) G (x,yk) dsx.

(69)

Using ∆G (x,y) = 0, ∀x 6= y and applying integration by parts two times,

0 =
∫
Ω

∆G (x,yi)G (x,y j) dx

=
∫
Γ

H (x,yi) ·n(x)G (x,y j) dsx−
∫
Ω

∇G (x,yi) ·∇G (x,y j) dx

=
∫
Γ

H (x,yi) ·n(x)G (x,y j) dsx−
∫
Γ

G (x,yi)H (x,y j) ·n(x) dsx +
∫
Ω

G (x,yi)∆G (x,y j) dx

=
∫
Γ

H (x,yi) ·n(x)G (x,y j) dsx−
∫
Γ

G (x,yi)H (x,y j) ·n(x) dsx,

(70)
yields ∫

Γ

H (x,yi) ·n(x)G (x,y j) dsx =
∫
Γ

G (x,yi)H (x,y j) ·n(x) dsx, (71)

and we obtain that the matrix H is symmetric. Therefore, the system matrix of (68) is symmet-
ric. We remark that the integrals are transformed to the reference element for their numerical
evaluation by means of a quadrature rule.

Acoustic−poro-elastic FEM-MFS coupling. We proceed with the coupling in the case of an
acoustic fluid where the pressure field is approximated by an MFS ansatz and a poroelastic solid,
which is discretized by the FEM. Our formulation is different to the one in [34], with the feature
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of yielding a symmetric system matrix. We rewrite the variational formulation of the governing
equations for a poroelastic solid stated in (48) to

−Ku(u, ū)+ M̃u(u, ū)+D(p, ū)−L(p, ū)+ fu(ū)−
∫

Γap

ttot · ū dsx = 0,

Kp(p, p̄)+Mp(p, p̄)+D(p̄,u)−L(p̄,u)+ fp(p̄)+
∫

Γap

q ·np

iω
p̄ dsx = 0,

(72)

with M̃u(u, ū) = ω2
(
ρ +βρ f

)
Mu(u, ū). Here, we have assumed that Γ = ΓN ∪ΓD ∪Γap. We

incorporate the coupling condition (27) and (28) in the first equation of (72), which gives for the
integral over Γap

−
∫

Γap

ttot · ū dsx =
∫

Γap

pn · ū dsx. (73)

The coupling condition (26) is incorporated in the second equation of (72). For the integral over
Γap, we obtain ∫

Γap

q ·n
iω

p̄ dsx =
∫

Γap

(
∇pa ·n
ρaω2 −u ·n

)
p̄ dsx. (74)

Following the variational MFS approach in Section 4.2, the coupling condition (28) is weighted
with the gradient of the complex conjugate of the test function η and integrated over the coupling
interface ∫

Γae

∇η̄(x) ·n(pa− p) dsx = 0. (75)

After discretization we have the symmetric system of equations Ku− M̃u L−D−MΓ 0
(L)>− (D)>− (MΓ)

> Kp +Mp G2
0 (G2)

> −H

ui

p j

ck

=

 f u
N− f u

ap
− fNp− f p

ap

fp2

 , (76)

where the newly introduced matrices and vectors are

G2[ j,k] =
∫

Γap

N j1(x)
( j2)
V (τ̃ l(x)) H (x,yk) ·n(x) dsx,

MΓ[i, j] =
∫

Γap

N j1(x)
( j2)
V (τ̃ l(x))Ni1(x)

(i3)
V (τ̃ l(x))ei2 ·n(x) dsx,

f u
ap[i] =

Ns

∑
s=1

ds

∫
Γap

Ni1(x)
(i3)
V (τ̃ l(x)) G (x,ys)ei2 ·ne(x) dsx,

f p
ap[ j] =

Ns

∑
s=1

ds

∫
Γap

N j1(x)
( j2)
V (τ̃ l(x)) H (x,ys) ·ne(x) dsx,

fp2 [k] =
Ns

∑
s=1

ds

ρaω2

∫
Γap

G (x,ys) H̄ (x,yk) ·n(x) dsx.

(77)
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5 Numerical results

5.1 Verification

The aim of this section is to verify the implementation of the methods developed in Section 4.
In order to ensure the reliability of a numerical simulation software, verification and validation
(V &V ) are unavoidable tasks [46, 47].

5.1.1 Verification of the poro-elastic shell FEM

In this section, we apply code verification to the poro-elastic shell FEM developed in Section 4.1
based on order-of-accuracy tests and on the method of manufactured solutions (MMS) [59, 54,
56, 38, 26]. The necessary prerequisite to apply an order-of-accuracy test to a numerical schema
is the knowledge of a formal order of convergence and exact solutions. Thus, one has to know
an estimate of the type

||uexact −unumerical|| ≤C hq ||uexact ||, (78)

where C is a constant and h is a characteristic discretization parameter. Here, we refer to a
characteristic element size. Then q is called the formal order of convergence with respect to the
norm || · ||. For two meshes with characteristic element sizes h1 and h2, the experimental order
of convergence (eoc) is defined as

eoc =
log(e1)− log(e2)

log(h1)− log(h2)
, (79)

where
ei = ||uexact −unumerical

hi
|| (80)

is the numerical error corresponding to the discretization hi. The code is verified, if the eoc
matches the formal order of convergence within the asymptotic range. For the FEM with arbi-
trary ansatz order p applied here, we expect q = p+ 1 for the error in the L2 norm for smooth
solutions.

In the case of the elastic solid problem (8), the procedure above is straightforwardly applica-
ble. The implemented finite element code needs the components bi of the source term b = biei

with respect to the global Cartesian frame. In the case of the poro-elastic solid problem (9), we
include artificial source terms in the formulation, in order to apply the MMS. We modify the
respective equations (9) to

bu = ∇ ·σσσ tot +ω
2u(ρ +ρ f β )−β ∇p,

bp =− β

ω2ρ f
∆p+(β +α) ∇ ·u+

φ 2

R
p.

(81)

We remark that these source terms have no physical meaning. They are incorporated in the
variational formulation and in the FEM easily, leading to additional entries in the load vectors.
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Example 1 Example 2 Example 3
(1)

uM
i [0 0 0] [cos(20θ 1) 0 0] [xy 0 0]

(2)

uM
i [0 0 0] [cos(20θ 1) 0 0] [x 0 0]

(n)

uM 0 exp(θ 2) z
(1)

pM exp(θ 1)sin(20θ 2) 0 z
(2)

pM exp(θ 2)sin(θ 1) 0 0
(n)

pM cos(θ 1)sin(θ 2) 0 0

Table 1: Parameters for the manufactured solutions

Verification examples We have checked the order of convergence for a number of exam-
ples, considering different material parameters, frequencies, geometries, displacement fields,
and pressure fields. In all examples, the optimal asymptotic order of convergence could be
observed.

In this section, we show the results of four verification examples in total. In the first three
examples, we use a parametric description of the reference surface, whereas in the fourth exam-
ple, an implicit description is used. In the first example, we prescribe the trivial displacement
solution and a non-trivial pressure solution. In the second example, we make it the other way
round. In both examples, we use the reference surface given by

x = θ
1,

y = θ
2,

z = θ
1

θ
2

(82)

and θ 1 ∈ [0,0.56] and θ 2 ∈ [0,0.73]. In the third example, we consider a part of a sphere
singularly parametrized by

x = cos(θ 2)sin(θ 1),

y = sin(θ 2)sin(θ 1),

z = cos(θ 1),

(83)

and θ 1 ∈ [0,1] and θ 2 ∈ [0,2π]. In all three examples we choose for the thickness coordinate
θ 3 ∈ [−0.05,0]. We use the material parameters of polyurethane given in Table 4 and an angular
frequency ω = 20s−1. For the construction of the manufactured solution, we take the structure
of the shell model into account. Therefore, the solution is defined by specifying the parameters
in (38) and (41). For the presented examples, these parameters are given in Table 1. The errors
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Figure 7: Example 1: pressure error ep
Ω

(left), displacement error eu
Ω
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Figure 8: Example 2: pressure error ep
Ω

(left), displacement error eu
Ω

(right)

at multiple meshes with ne elements each are illustrated in the Figures 7 to 9. In all graphs, the
respective absolute error defined by

eu
Ω =

√∫
Ω

(u−uM) · (u−uM) dx,

ep
Ω
=

√∫
Ω

(p− pM)2 dx
(84)

is plotted. Therein, u and p denote the numerical solution, whereas uM and pM denote the
manufactured solutions. We observe the optimal convergence rate in all examples. Furthermore,
we see from Figure 8 that a small discretization error in the displacement field leads to large error
in the pressure field. This is due to the conditioning of the physical problem and depends on the
material parameters. Therefore, we conclude that a accurate discretization of the displacement
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Figure 9: Example 3: pressure error ep
Ω

(left), displacement error eu
Ω

(right)

field is necessary in order to obtain an accurate pressure approximation.
Next, we discuss the results of the fourth verification example for the poro-elastic shell FEM

in the case of an implicitly given reference surface. The considered spherical reference surface
is given by φ = x2 + y2 + z2− 1 and B = [0,2]3. The shell volume has the extension t in the
thickness direction and is symmetric around the reference surface. We prescribe the solution as

uM =


xyz

xyz

xyz

 , (85)

and
pM = xyz. (86)

It is important to note that this solution cannot be exactly represented by the shell model. There-
fore, a modeling error and a discretization error occurs. We use quintic shape functions for the
discretization of a series of problems with decreasing thickness T . The results are depicted in
Figure 10. We observe that the modeling error dominates in the case of thick shells. Therefore,
a mesh refinement cannot reduce the overall error in this case. However, with decreasing thick-
ness, the modeling error decreases and the discretization error dominates for the coarse meshes.
In this regime, we observe the expected order of convergence of the FEM. In order to verify
the layered shell theory we consider a fixed shell thickness T = 0.2 and use a varying number
of layers nL through-the-thickness and different numbers of finite elements. The results of the
convergence study are depicted in Figure 11. With increasing number of layers the individual
layer thickness t is reduced, which reduces the modeling error. We observe optimal quadratic
convergence with respect to the layer thickness.
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5.1.2 Verification of the MFS implementation

This section deals with the verification of the MFS for uncoupled acoustic fluid problems de-
scribed in Section 4.2. To this end, we present the results of two examples. In both cases, the
considered fluid is air with the material parameters given in Table 2.

In the first example, an interior problem is considered. The domain Ωint is bounded by the
plane ∂Ω+ and a parametrically given surface Γ,

x = cos(θ 1)sin(θ 2),

y = 2sin(θ 1)sin(θ 2),

z =
1
2

cos(θ 2),

(87)

where θ 1 ∈ [0,2π] and θ 2 ∈ [0, π

2 ], see Figure 12. The constructed solution is obtained by means

Figure 12: Configuration of the parametric MFS verification example: Sound hard plane at z = 0
(gray), sound hard surface Γ (red), MMS source point (white), MFS source points
(blue)

of the fundamental solution. Therefore, we specify the point y0 = [1m, 0m, 1m], which lies
outside the problem domain. This defines the sought solution according to

pM(x) = G (x,y0) for x ∈Ω
int. (88)

The boundary data is derived from this solution as

gM
N (x) = H (x,y0) ·n(x) for x ∈ Γ. (89)

This boundary data is the input for the numerical method. The source points for the approxi-
mation are obtained by placing points on Γ and moving each 0.3m in the direction normal to Γ.
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Figure 13: Error convergence for the parametric MFS verification example

The problem setting and a source point configuration are depicted in Figure 12. We investigate
the acoustic problem at a frequency f = 200Hz. In order to study the convergence behavior we
introduce the relative error

eΓ =

√∫
Γ
(pM− p)2 dsx∫
Γ
(pM)2 dsx

. (90)

We evaluate this error for a number of solutions obtained with different number of source points.
Furthermore, we study the influence of the numerical integration. The computed errors are
plotted in Figure 13 for different number of quadrature points ng used. It is evident that the
integration has to be sufficiently accurate in order to obtain an accurate result. Therefore, one
has to increase also the number of quadrature points when increasing the number of source
points in order to obtain a monotonic convergence. Nevertheless, very accurate solutions are
possible with only a few source points for the solution approximation.

In the second verification example, we consider an exterior problem. The unbounded problem
domain is given as {(x,y,z)|φ(x,y,z)> 0}∩Ω+, where

φ(x,y,z) =

((
x2 + y2−1

)2
+

(
1
2
+ z
)2
)
×

×

x2 +

(
25
16

y2−1+
(

1
5
+ z
)2
)2
− 4

5
.

(91)

The geometry of the problem and a source point configuration is depicted in Figure 14. We
use y0 = [0.7m, 0.7m, 0.25m] for the construction of the solution and the boundary data by
means of (88) and (89). Again, we solve the acoustic problem at f = 200Hz. The convergence
behavior of the error (90) is plotted in Figure 15. We observe that the MFS is able to reproduce
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(a) Full model. (b) Structure cut at y = 0.

Figure 14: Configuration of the implicit MFS verification example: Sound hard plane at z = 0
(gray), sound hard surface Γ (red), MMS source point (white), MFS source points
(blue)

the solution accurately in the case of this geometrically complex problem as well. As in the
previous example, we see that a sufficient number of quadrature points is necessary in order to
obtain stable results and a monotonic convergened method. Therefore, the number of source
points and quadrature points has to be chosen with care, when applying the MFS.

5.1.3 Verification of the coupled method

In this section, we are concerned with the verification of the coupled MFS-FEM developed in
Section 4.3. To this end, we consider radial symmetric problems, which allow for a closed
form solution. Thus, we consider a spherical shell structure separating the upper half space into
an interior and an exterior domain. The exact solutions of the three-dimensional problems are
derived in Appendix B. In our FEM modell we approximate the spherical shell structure with a
shell theory, hence, a modeling error is introduced.

The reference surface for the shell structure is a hemisphere with unit radius. First, we con-
sider the case of an elastic aluminum structure with a thickness of t = 0.025m. Therefore, the
ratio of curvature radius and thickness is 40, classifying the structure as thin shell. The used
material parameters are given in Table 3. In this example, an implicit geometry description of
the hemisphere is used. The displacement of the shell is discretized with quartic finite element
shape functions. The interior and exterior fluid pressure is discretized by means of the MFS.
The error according to (90) is evaluated for the exterior acoustic fluid and plotted in Figure 16.
The error is evaluated for varying finite element meshes and for varying number of MFS source
points. The finite element meshes are identified by their number of elements ne. Depending on
the used discretization, the error is dominated either by the FEM or the MFS. For horizontal
lines the error is dominated by the FEM discretization. This verifies the coupled method for the
case of the acoustic fluid - elastic solid coupling.

Next, we consider a poro-elastic polyurethane shell structure separating the interior domain
from the exterior domain. The material parameters are given in Table 4. The spherical shell is
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Figure 15: Error convergence for the implicit MFS verification example

described parametrically and has a thickness of t = 0.002m. Quartic finite element shape func-
tions are used for the discretization of the displacement and pressure field of the shell structure.
The error according to (90) is evaluated for the exterior acoustic fluid and plotted in Figure 17.
The numerical integration for all matrix entries is done on the finite elements. In the case of
ne = 4, we can see the instability, which arises due to the insufficient numerical integration.
However, we do not observe such instability in the case of the other meshes. In the present
example, we see that due to the modeling error the minimal achievable error is around 10−9. Up
to this error, we observe the convergence of the coupled method. Hence, this examples verifies
the coupled method for the case of acoustic fluid − poro-elastic solid coupling.

5.2 Sound transmission through poro-elastic shells

In the previous section, the implemented numerical methods were verified. Here, the capabilities
of the developed methods are shown on the basis of more complex examples. We investigate the
sound transmission from the inside of two cavities bounded by a poro-elastic shell structure to
the outside. In one example the reference surface of the shell is given parametrically, whereas in
the other it is given implicitly.

5.2.1 Deformed Sweep

In this example, we analyze a geometry which is given parametrically. We consider an ellipse
which is moved along a circular path. Furthermore, the initial shape is deformed when moved.
The initial ellipse lies in the x− y plane with the center at [0m,1m,0m]. The semi-major axis
is 0.5m in y direction, whereas the semi-major axis is 0.25m in x direction. Finally, taking the
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Figure 16: Error eΓ for the exterior fluid in case of the coupled MFS-FEM: elastic structure and
implicitly given reference surface

deformation into account, the reference surface is parametrically given by

x =
cos(2π θ 2)

4
(
cos
(
π

2 f (θ 1)
)
−2
)
,

y =
cos(π f (θ 1))

4
(4+2sin(2π θ

2)− sin(π f (θ 1))sin(2π θ
2)),

z =
sin(π f (θ 1))

4
(4+2sin(2π θ

2)− sin(π f (θ 1))sin(2π θ
2)).

(92)

with the mapping

f (τ) = τ((3−2τ)τ +b(1−3τ +2τ
2)), b =

1
50

. (93)

The parameter domain is (θ 1,θ 2) ∈ [0,1]× [0,1]. In Figure 18, the geometry of the problem is
visualized.

The shell structure is composed of two layers. We assign the material parameters of aluminum
(see Table 3) to the first layer, which has a thickness of 0.01m. The second layer is a poro-elastic
polyurethane (see Table 4) layer with a thickness of 0.03m. This poro-elastic layer is in contact
with the interior fluid.

For the sake of solution verification, we consider the uncoupled dynamic response of the
shell structure as a result of a surface load t = −ez103 N/m2 applied on the free surface of the
aluminum layer. For the analysis at 250 frequencies in the range [0Hz, 500Hz] we use sextic
ansatz functions. The vertical displacements uz at the point (θ 1,θ 2) = (0.5, 0.25) are plotted
over the frequency in Figure 19 for three meshes (each mesh has ne elements). For the better
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Figure 17: Error eΓ for the exterior fluid in case of the coupled MFS-FEM: poro-elastic structure
and parametrically given reference surface

visualization, we have used the logarithmic measure

Lp(u) = 10 log10

(
u2

4 ·10−10

)
dB. (94)

Due to these results, we will further use the 64-element mesh.
Next, the performance of the uncoupled MFS is studied. To this end, we calculate the interior

pressure field due to a source with unit strength at the point [0m,−1m, 0.5m]. The structure
is assumed to be rigid in this case. The exact solution to this problem has to be real-valued. In
Figure 20, the imaginary part of the solutions at the evaluation point [0m, 1m, 0.5m] obtained
for a varying number of approximation source points are plotted. Based on this result, we
proceed with 372 source points for the interior, as well as for the exterior fluid.

With the discretization described above, we study the sound transmission from the interior to
the exterior. Again, we consider a source at the point [0m,−1m,0.5m] with unit strength for
the excitation of the system. In Figure 21, the sound pressure level determined at the interior
evaluation point [0m,1m,0.5m] is plotted. We compare the cases uncoupled MFS (rigid struc-
ture), aluminum shell (only the aluminum layer) and poro-elastic shell (the aluminum layer with
the polyurethane layer). The results for the cases uncoupled MFS and aluminum shell virtually
agree. In the case of the uncoupled MFS, no dissipation occurs in the system and the solution is
infinite at the eigenfrequencies. In the case of aluminum shell a small structural dissipation ef-
fect is present. This can be seen in Figure 21, where the eigenfrequencies are damped. However,
we conclude that the compliance of the aluminum structure has only little influence on the inte-
rior sound pressure field. Nevertheless, the effects of the dissipation introduced by virtue of the
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Figure 18: Geometry of the deformed sweep problem

poro-elastic polyurethane layer are clearly visible. In particular, the calculated sound pressure
levels are significantly reduced for frequencies above f = 200Hz. The same conclusion is valid
for the results at the exterior evaluation point [0m,0m,1.5m]. The sound pressure level deter-
mined at the exterior evaluation point [0m,0m,1.5m] is plotted over the frequency in Figure 22.
In the case of an rigid structure no transmission can occur. Therefore, this case is not considered
in Figure 22. Again, the sound pressure level is significantly reduced in the case poro-elastic
shell compared to the case aluminum shell.

5.2.2 Sound transmission through an implicitly given shell

In this section, we consider the sound transmission through a shell structure described by an
implicitly given reference surface. The corresponding level-set function is

φ(x,y,z) = (2x)4 +(2y)2 +(2z)2−0.25. (95)

The geometry of the problem is depicted in Figure 23. The shell structure is composed of an
aluminum (see Table 3) and a poro-elastic polyurethane layer (see Table 4). The aluminum layer
is t = 0.002m thick, whereas the polyurethane layer has a thickness t = 0.01m. The poro-elastic
layer is in contact with the interior fluid.

In this example, we have chosen the discretization according to similar considerations made
in Section 5.2.1. We use octic shape functions constructed on a 64-element mesh for the dis-
cretization of the parameters in the shell model. For the discretization of the interior and exterior
fluid pressure fields, we use 145 MFS source points each. The sound pressure level at the in-
terior evaluation point [0m, 0m, 0.1m] due to a source at the point [−0.25m,−0.05m, 0.1m]
with unit strength is plotted in Figure 24. Therein, the case of a rigid structure (uncoupled MFS),
an aluminum shell and the full poro-elastic structure is considered. We conclude that the com-
pliance of the aluminum structure has only little influence on the interior sound pressure field.
However, the effects of the dissipation introduced by virtue of the poro-elastic layer are visible.
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Figure 19: Deformed sweep problem: Vertical displacement uz at point (θ 1,θ 2) = (0.5, 0.25) of
the uncoupled shell problem

The same conclusion is valid for the results at the exterior evaluation point [0m, 0m, 0.3m], see
Figure 25.

6 Conclusions

We have presented a new simulation method for vibro-acoustic analysis. In particular, we have
treated the simulation of laminated poro-elastic shell structures and their interaction with the
surrounding fluid. In order to face this complicated situation, a layer-wise shell model has
been developed. The through-the-thickness variation of the displacement field is described by a
seven-parameter model, which is assumed in each layer. The pressure field occurring only in the
poro-elastic layers is described with a quadratic expansion through-the-thickness.

The numerical model consists of a FEM formulation for the shell and the MFS for the acoustic
domains. Hence, the radiation condition is implicitly fulfilled by the MFS due to the usage of
the acoustic fundamental solutions. The FEM for the shell is based on the exact geometry given
by either a parametric or an implicit representation of the reference surface. In the case of a
given parametrization, the evaluation of the quantities from differential geometry are done with
respect to this parametrization and not with respect to a superfluous geometry discretization. In
the case of an implicitly defined surface, the exact parametrization is constructed by means of
the level-set function. Contrary to most MFS solutions, here, the strength of the sources for the
field approximation are determined by a variational formulation. This has the advantage that the
need of collocation points is circumvented.

The implemented numerical methods are verified against solutions obtained from the method
of manufactured solutions. In this method, a distinct solution is chosen and the corresponding
source terms and boundary conditions are derived from the chosen solution. For the devel-

31



0 100 200 300 400 500

-8

-6

-4

-2

0

2

Figure 20: Deformed sweep problem: Imaginary part of the uncoupled MFS solution

oped shell FEM, this approach has been implemented in the curvilinear coordinates induced by
the shell geometry. For the verification of the MFS, the prescribed solution is constructed by
a fundamental solution. Thus, the FEM and the MFS could be verified with high rigor. The
coupled method has been verified against radial symmetric problems. The reference solutions
were obtained by solving these problems analytically. The calculation of the sound transmis-
sion through geometrically complicated layered shells structure has shown the suitability of the
proposed approach for real world examples.

A Material parameter

The material parameters used in the numerical examples are summarized in the following tables.

bulk modulus K[kN/m2] 1.01 ·105

density ρ[kg/m3] 1.205

Table 2: Material parameter of air

B Radial symmetric solutions

We derive radial symmetric solutions of two coupled problems. In both cases a spherical
shell structure separates a bounded interior fluid domain from an unbounded exterior fluid do-
main. In particular, we consider the cases acoustic f luid - elastic layer - acoustic f luid and
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Young’s modulus E[N/m2] 70 ·109

Poisson’s ratio ν [-] 0.3

density ρ[kg/m3] 2700

loss factor η [-] 0.01

Table 3: Material parameter of aluminum

Young’s modulus E[N/m2] 70 ·103

Poisson’s ratio ν [-] 0.39

density ρ[kg/m3] 22.1

loss factor η [-] 0.265

porosity φ [-] 0.98

static flow resistivity σ [kg/m3s] 3750

tortuosity α∞[-] 1.17

viscous length Λ[µm] 110

thermal length Λ′[µm] 742

Table 4: Material parameter of a polyurethane foam [32]
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Figure 21: Deformed sweep problem: Comparison of the sound pressure level at the interior
evaluation point for elastic and poro-elastic shell

acoustic f luid - poro− elastic layer - acoustic f luid. We employ the spherical coordinates
(r,ϕ,γ). Thus,

x = r cos(ϕ)cos(γ)

y = r sin(ϕ)cos(γ)

z = r sin(γ).

(96)

Acoustic fluid The Helmholtz equation in spherical coordinates assuming radial symmetry
(p(r,ϕ,γ) = p(r)) reads

k2 p+
∂ 2 p
∂ r2 +

2
r

∂ p
∂ r

= 0. (97)

By setting r = x
k , we obtain

x2 d2y
dx2 +2x

dy
dx

+[x2−n(n+1)]y = 0 (98)

with n = 0. The solutions for n ∈ N are the Spherical Bessel functions jn(x) and yn(x). For the
case n = 0, they are

j0(x) =
sin(x)

x
and y0(x) =

−cos(x)
x

. (99)

Thus, solutions of (97) are of the form

p(r) = a1 j0(kr)+a2 y0(kr), (100)

where a1, a2 are constants, which have to be adapted to the respective problem. The radial
displacement of the acoustic fluid is given by

ua(r) =
p,r

ω2ρa . (101)
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Figure 22: Deformed sweep problem: Comparison of the sound pressure level at the exterior
evaluation point for elastic and poro-elastic shell

Elastodynamics The equations of motion for a elastic solid in spherical coordinates assuming
radial symmetry (u(r,ϕ,γ) = eru(r)) reduce to [1]

∂σrr

∂ r
+

1
r
(2σrr−σθθ −σφφ ) =−ω

2
ρ ur. (102)

The stress components are given by

σrr = (λ +2µ)
∂u
∂ r

+2λ
u
r
,

σθθ = σφφ = λ
∂u
∂ r

+2λ
u
r
+2µ

u
r
.

(103)

Inserting (103) in (102) yields

∂ 2u
∂ r2 +

2
r

∂u
∂ r

+

(
ω2

c2 −
2
r2

)
u = 0 (104)

with c =
√

λ+2µ

ρ
. Multiplying with r2 and Λ2 = ω2

c2 gives

r2 ∂ 2u
∂ r2 +2r

∂u
∂ r

+
(
Λ

2r2−2
)

u = 0. (105)

By setting r = x
Λ

, we obtain

x2 ∂ 2u
∂x2 +2x

∂u
∂x

+
(
x2−2

)
u = 0, (106)
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Figure 23: Geometry of the implicitly given shell

which is in accordance with (98) for n = 1. Therefore, the solutions are

j1(x) =
sin(x)

x2 − cos(x)
x

, y1(x) =−
cos(x)

x2 − sin(x)
x

. (107)

Thus, the radial symmetric displacement field is of the form

ue(r) = b1 j1(kr)+b2 y1(kr), (108)

with the two constants b1 and b2.

Poroelasticity For the derivation of the poro-elastic spherical radial symmetric solution, we
follow [48]. The governing equations are

M
∂

∂ r

(
1
r2

∂

∂ r

(
r2u
))
− (α +β )

∂ p
∂ r

+ω
2(ρ +βρ f ) u = 0 (109)

and

− β

ω2ρ f
∆p+(β +α) ∇ ·u+ φ 2

R
p = 0. (110)

Defining the displacement potential u = ∂Φ

∂ r leads to

∂

∂ r

[
M
(

1
r2

∂

∂ r

(
r2 ∂Φ

∂ r

))
− (α +β ) p+ω

2(ρ +βρ f ) Φ

]
= 0 (111)
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Figure 24: Comparison of the sound pressure level at the interior evaluation point for the alu-
minium and the poro-elastic shell

Furthermore, we set Φ = ξ

r and p = χ

r to obtain

ξ,rr−
α +β

M
χ +

ω2(ρ +βρ f )

M
ξ = 0,

β

ω2ρ f
χ,rr +(α +β ) ξ,rr +

φ 2

R
χ = 0.

(112)

The ansatz
ξ = ξi eωΛir,

χ = χi eωΛir
(113)

leads to the system of equationsω2(Λ2 +
ρ+βρ f

M ) (α+β )
M

ω2Λ2(α +β ) βΛ2

ρ f
+ φ 2

R

ξi

χi

=

0

0

 . (114)

The four roots of the characteristic equation are found to be

Λ1 =−Λ2 =

√
−A+

√
A2−4B√

2
,

Λ3 =−Λ4 =

√
−A−

√
A2−4B√

2
,

(115)

where

A =−ρ f φ
2

βR
− ρ f (α +β )2

βM
+

ρ +βρ f

M
,

B =−ρ f φ
2(ρ +βρ f )

βMR
.

(116)
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Figure 25: Comparison of the sound pressure level at the exterior evaluation point for the alu-
minium and the poro-elastic shell

Furthermore, χi =− ω2

α+β
(λ 2

i M+ρ +βρ f )ξi. Thus, the homogeneous solution has the form

u(r) =
4

∑
i=1

ξi

(
ωλi−

1
r

)
eωλir

r
,

p(r) =
4

∑
i=1
− ω2

α +β
(λ 2

i M+ρ +βρ f )ξi
eωλir

r
.

(117)

Here, we have four constants ξi, which have to be determined. We remark that the total radial
stress is given by

σ
tot
rr (r) = (λ +2µ)

∂u(r)
∂ r

+2λ
u(r)

r
−α p(r). (118)

Coupled Solutions. The unknown coefficients introduced above can be determined, if the
boundary and coupling conditions are taken into account. We state them for the two cases
used in Section 5.1.3. These cases are the acoustic f luid - elastic layer - acoustic f luid and
acoustic f luid - poro− elastic layer - acoustic f luid problems. Thus, we have two acoustic
fluid domains and two material interfaces in both domains. The pressure solutions of the in-
terior domain and the exterior domain are denoted by pint and pext , respectively. The material
interfaces are located at the fixed radii rint and rext . The excitation is given by an acoustic point
source placed at the origin. Thus, we make the ansatz

pint =
cos(kr)

r
aint +

e−ikr

4πr
, (119)

where we considered the non-singular part in (100). In order to fulfill the Sommerfeld radiation
condition, we set a2 =−a1 = aext in (100) and write

pext =
cos(kr)− i sin(kr)

r
aext . (120)

38



The interface conditions for the acoustic fluid - elastic solid interfaces are given by

pint(rint) = σrr(rint),

uint(rint) = ue(rint),

pext(rext) = σrr(rext),

uext(rext) = ue(rext).

(121)

Therefore, the unknown constants aint , aext and b1, b2 in (108) can be determined. The respective
conditions for the acoustic fluid − poro-elastic solid interfaces are

pint(rint) = σ
tot
rr (r

int),

pint(rint) = p(rint),

uint(rint) = up(rint),

pext(rext) = σ
tot
rr (r

ext),

pext(rext) = p(rext),

uext(rext) = up(rext).

(122)

These conditions allow to uniquely determine the six coefficients aint , aext and ξi in this case.
We have used the computer algebra system Mathematica [68] for this task.
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