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Abstract

We propose a novel discretization method for time domain boundary integral equations
of the 3d wave equation. The basic idea of the discussed approach is to treat time as if it
were an additional spatial coordinate. This leads to a discretization of the boundary integral
operators in 3+1 dimensional space-time by use of basis functions which do not separate
space and time variables. These functions are based on tetrahedral meshes of the lateral
boundary of the space-time cylinder. We discuss an explicit representation of the integral
operators of the wave equation, so-called retarded potential integral operators, which gen-
uinely conforms to the space-time setting. The majority of this work is concerned with
the numerical evaluation of these integrals. An accurate and robust Gaussian quadrature
scheme is proposed and verified by means of numerical experiments.
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1 Introduction

The study of transient wave propagation processes plays a key role in various fields of modern
engineering and applied sciences. In particular, the linear wave equation is a viable model for
acoustic as well as electromagnetic waves in many situations. An important class of problems
related to these types of waves are scattering problems, where the scattered wave field in the
unbounded exterior of the scatterer is of interest. For such problems the boundary integral
equation method is a promising approach, as it reduces the problem posed on the unbounded
exterior to the bounded surface of the scatterer. Due to the strong Huygens principle the integral
operators associated to the wave equation have a special structure, motivating the prominent
term retarded potential boundary integral equations (RPBIEs).

The inherent advantages of RPBIEs inspired numerous publications dedicated towards their
analysis and their discretization. The mathematical analysis of integral equations of hyperbolic
problems was sparked by the seminal publications of Bamberger and Ha-Duong [4, 5]. Their
approach uses the Laplace transform with respect to the time variable to transport results on the
solution in Laplace domain to time domain. The review paper of Ha-Duong [34] and the book
of Sayas [66] provide elegant overviews of this method. Rynne [59] and Sayas [65, 66] have
developed time domain techniques based on the theory of hyperbolic equations and semigroups
of operators respectively. The paper of Joly and Rodríguez [36] presents a thorough review and
discussion of the existing literature and analyzes different bilinear forms of RPBIEs.

1.1 Boundary element methods for RPBIEs

Approximation techniques for RPBIEs can be traced back to Friedman and Shaw [22]. Mansur
[47] developed the first boundary element method in the modern sense. The review article of
Costabel and Sayas [12] and the preface in [66] present an excellent overview of the available
literature. The following paragraphs attempt to provide a non-exhaustive overview of prominent
boundary element methods for time domain integral equations.

As already mentioned, the first and perhaps most straightforward class of discretization schemes
for RPBIEs has its origins in the work of Mansur [48, 47]. Within these procedures an ansatz for
the unknown surface density is constructed as a product of separate ansatz functions in the space
and time variable, see e.g. [11]. The RPBIE is collocated, i.e. interpolated, at certain collocation
points on the spatial grid and at fixed time steps. Due to inherent stability issues of these schemes
[10, 57, 60] several articles have been devoted towards their stabilization [58, 15, 14, 13].

A substantially more intricate approach is constituted by Galerkin methods based on space-
time variational formulations of RPBIEs. The stability of these procedures is due to coercivity
properties of certain bilinear forms associated to first kind RPBIEs [34]. Many papers were
dedicated towards their development [30, 1, 61, 8, 71, 28, 29].

A distinguished discretization scheme goes back to Lubich’s convolution quadrature method
(CQM) [43, 44]. The convolution type time domain integral operators are approximated via the
CQM, which is combined with standard spatial boundary element methods, e.g. collocation or
Galerkin methods [45, 68, 7, 6, 3]. This approach has been extended to accommodate variable
time step sizes in [40, 41, 42].

Moreover, there are boundary element methods for the wave equation that entirely avoid the
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use of retarded potentials. In a variant of Rothe’s method [56] the initial-boundary value problem
is discretized in time with a suitable implicit time-stepping scheme. The resulting stationary
problem at each time step is solved by well-established boundary element methods for elliptic
problems, see [12].

A common feature of virtually any yet implemented boundary element method for the wave
equation is that they discretize space and time separately. In contrast, we seek to take a first step
towards the development of a genuine space-time discretization method in this paper. The fol-
lowing paragraphs exhibit basic concepts and existing literature on the space-time methodology.

1.2 Space-time methodology

The basic idea of space-time methods is to treat the time variable as if it were an additional spatial
coordinate. This thinking suggests to treat the transient problem as a single operator equation in
space-time, even within the discretization. Consequently, one is confronted with a d +1 dimen-
sional computational domain, where d ∈ N is the number of spatial dimensions. This domain
can be decomposed into finite elements in an unstructured fashion, i.e. without distinguishing
between space and time dimensions. Such an unstructured discretization of the space-time do-
main [35] is the distinguishing feature of space-time discretization methods. The development
of space-time finite element methods has already reached a certain degree of maturity, see e.g.
[50, 69, 25, 51, 16, 72] and [18, 32, 33]. The major drawback of space-time methods is their
increased demand in terms of computational resources compared to classical approaches based
on semi-discretization. Nevertheless, space-time methods possess several crucial advantages:

• Flexible space-time meshes can adapt locally to special features of the solution, such as
wave fronts. Adaptivity within space-time boundary element methods for the 1d wave
equation is explored in [74, 54].

• Problems posed on instationary domains are treated naturally since the deformed con-
figuration of the domain at any point in time is captured by the space-time mesh itself
[50, 73].

• Treating the discretized transient problem as a single operator equation in space-time in-
cites the development of parallel solution strategies, cf. [50, 25].

On the other hand, there has been hardly any development of space-time discretization schemes
for time domain integral equations. The integral representations of these operators are quite
involved, especially in the case of hyperbolic problems. However, there exist techniques for
computing these integrals if space and time are treated separately [2, 28, 27]. The intricacy
of computing integral operators for unstructured space-time decompositions is the reason why,
almost any yet implemented discretization scheme for RPBIEs features a product structure in
space and time. To the best of our knowledge, the most successful attempt yet at abandoning
this product structure are the “causal” shape functions introduced by Frangi [21]. In this ap-
proach, the lateral boundary of the space-time cylinder is decomposed into space-time slabs,
which have a fixed substructure composed of simplices. The performed numerical experiments
yield promising results. Although this approach does not enable completely unstructured space-
time meshes, it can be seen as a precursor to them. Unstructured space-time meshes as well as
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instationary boundaries in the context of integral equations of parabolic problems are examined
in recent publications [46].

The novelty of this paper lies in the construction of genuine space-time approximations to
RPBIEs. The employed trial functions stem from standard finite element spaces defined on
tetrahedral meshes of the lateral boundary of the space-time cylinder. This approach inherits
the advantages of the space-time methodology, however, the integrals of the retarded layer po-
tentials are quite complicated within this approach. That is why we restrict our considerations
to collocation approaches, which we label space-time collocation schemes. The major part of
this contribution is dedicated towards a numerical integration technique for the computation of
the arising integrals. To the best of our knowledge, this paper provides the first implementation
and numerical computations of a method for RPBIEs in 3+ 1 dimensions using unstructured
space-time meshes.

The paper is organized as follows. In Section 2 the considered model initial-boundary value
problem and related time domain boundary integral equations are discussed. Section 3 exposes
the proposed space-time collocation method for the RPBIEs of the preceding section. The stan-
dard integral representations of retarded layer integral operators are recast to a form appropriate
for the chosen space-time trial functions. A numerical integration scheme for the occurring inte-
grals is proposed. In Section 4 the integration technique and the overall collocation method are
verified by means of numerical examples. Section 5 concludes this paper by summarizing the
findings and addressing critical issues of the proposed approach.

2 Integral form of the wave equation

Let Ω− ⊂R3 be a bounded open domain with Lipschitz boundary Γ := ∂Ω− and exterior Ω+ :=
R3 \Ω−. The vector field n : Γ→ R3 represents the unit outward normal vector of Γ, which
points towards Ω+. Moreover, let c > 0 be the wave velocity, e.g. the speed of sound. We
employ the scaled time coordinate t = ct∗, where t∗ is the physical time. Since t is the product of
velocity and time its physical dimension is length. Nevertheless, we refer to the coordinate t as
time from here on, since for every t there is exactly one corresponding physical time t∗ = c−1t.
For a fixed physical simulation end time T ∗ > 0 we define T = cT ∗ and the space-time cylinder
Q+ := (0,T )×Ω+ with lateral boundary Σ := (0,T )×Γ. We are concerned with solutions of
the homogeneous wave equation

∂
2
t u−∆xu = 0 in Q+ (1)

where ∆x denotes the the Laplacian with respect to the spatial coordinates. The solution is
subject to homogeneous initial conditions

u = 0 ∧ ∂tu = 0 on {0}×Ω
+. (2)

To impose boundary conditions we make use of the trace operator, which is for a sufficiently
smooth function f : Q+→ R defined by

γ
+
0 f (t,x) = lim

y∈Ω+,y→x
f (t,y), (t,x) ∈ Σ.
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Moreover, the normal derivative is denoted by

γ
+
1 f =

〈
n,γ+0 ∇x f

〉
where ∇x is the gradient with respect to the spatial coordinates and 〈·, ·〉 is the Euclidean scalar
product with induced norm ‖ · ‖ =

√
〈·, ·〉. We consider boundary conditions of Dirichlet type:

For given Dirichlet datum g the solution u has to satisfy

γ
+
0 u = g on Σ. (3)

The solution of the initial-boundary value problem Eqs. (1) to (3) can be represented by boundary
integrals in an elegant fashion, since they reduce the problem posed on the unbounded domain
Q+ to the bounded lateral boundary Σ. The main ingredient for a boundary integral formulation
is the forward (causal) fundamental solution of the wave operator in Eq. (1) for three spatial
dimensions [53, Ex. 1.4.12]

G (t,x) =
δ0(t−‖x‖)

4π‖x‖ (4)

where δ0 denotes the Dirac delta function. For sufficiently smooth surface densities w,v : Σ→R
and (t,x) ∈ Q+ the retarded single layer potential

SLw(t,x) =
∫
Γ

T∫
0

G (t−ζ ,x− y)w(ζ ,y)dζ dS(y) =
∫
Γ

w(t−‖x− y‖,y)
4π‖x− y‖ dS(y)

and the retarded double layer potential

DLv(t,x) =
∫
Γ

T∫
0

〈n(y),∇yG (t−ζ ,x− y)〉 v(ζ ,y)dζ dS(y)

=
∫
Γ

〈n(y),x− y〉
4π‖x− y‖2

(
v(t−‖x− y‖,y)
‖x− y‖ +∂tv(t−‖x− y‖,y)

)
dS(y)

satisfy Eqs. (1) and (2) if the densities are extended such that w(t, ·) = 0 and v(t, ·) = 0 for t < 0,
see e.g. [12, 66]. Note that the name retarded is due to the property that these operators integrate
their input densities along the retarded time t−‖x−y‖, which is elaborated in detail in Section 3.
Applying the trace to the layer potentials induces the retarded single and double layer boundary
integral operators

γ
+
0 SL = V , γ

+
0 DL = σ I+K

where σ : Γ→ R is the solid angle or jump term [64, Eq. (3.3.11)]. For (t,x) ∈ Σ the retarded
single and double layer boundary integral operators have the representations

Vw(t,x) =
∫
Γ

w(t−‖x− y‖,y)
4π‖x− y‖ dS(y) (5)

and

Kv(t,x) =
∫
Γ

〈n(y),x− y〉
4π‖x− y‖2

(
v(t−‖x− y‖,y)
‖x− y‖ +∂tv(t−‖x− y‖,y)

)
dS(y)
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where the densities are extended by zero for t < 0. Solutions of Eqs. (1) and (2) are unambigu-
ously defined by their Cauchy data (γ+0 u,γ+1 u) via the representation formula, also known as
Kirchhoff’s formula

u = DLγ
+
0 u−SLγ

+
1 u. (6)

In this work, we shall not use Eq. (6) to construct solutions of Eqs. (1) to (3) but we employ the
ansatz u := SLw, satisfying Eqs. (1) and (2) for any suitable surface density w. To satisfy Eq. (3)
the trace is applied to the ansatz yielding the boundary integral equation

Vw = g on Σ. (7)

Once the solution of Eq. (7) is known u = SLw yields the solution of Eqs. (1) to (3).

3 Space-time discretization of RPBIEs

To obtain approximate solutions of the boundary integral equation Eq. (7) we develop in this
chapter a space-time collocation approach. To this end, the lateral boundary Σ is decomposed
into a mesh ΣN of N ∈ N open boundary elements τ with

ΣN = {τ`}N
`=1, τi∩ τ j =∅ for i 6= j, Σ =

⋃
τ∈ΣN

τ.

The explicit choice of the geometric shape of the boundary elements is detailed in Section 3.2.
The local and global mesh size are defined by

hτ := diamτ, h := max
τ∈ΣN

hτ .

Each boundary element is the image of the same reference element τ̂ under a smooth bijective
parametrization χτ : τ̂ → τ . The gradient of χτ induces the Jacobi matrix

R4×3 3 Jτ(ξ ) := ∇χτ(ξ ) =
(
∂1χτ(ξ ) ∂2χτ(ξ ) ∂3χτ(ξ )

)
whose columns are the three tangential vectors ∂iχτ(ξ ), i= 1,2,3. For non-degenerate boundary
elements rankJτ(ξ ) = 3 holds for all ξ ∈ τ̂ . Consequently, the matrix

R3×3 3 Gτ(ξ ) := J>τ (ξ )Jτ(ξ ) =
(〈

∂iχτ(ξ ),∂ jχτ(ξ )
〉)3

i, j=1

is (symmetric) positive definite for all ξ ∈ τ̂ . The kernel of J>τ induces the space-time normal
vector field ν : Σ→ R4 via

kerJ>τ (ξ ) = span{ν ◦χτ(ξ )}.
For stationary domains, as introduced in Section 2 it holds for (t,x) ∈ Σ

ν(t,x) =
(

νt(t,x)
νx(t,x)

)
=

(
0

n(x)

)
i.e. the time component νt is zero and the spatial component νx is just the normal vector of Γ.
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To conclude this section, the employed trial spaces are discussed. In this work, standard finite
element spaces, i.e. spaces of piecewise polynomial functions, on the mesh ΣN are used. For
simplicity we only consider the lowest-order trial spaces, namely the discontinuous trial space
of piecewise constant functions

S0
h(ΣN) := {v : Σ→ R : v|τ ◦χτ ∈ P0(τ̂) ∀τ ∈ ΣN}

and the continuous trial space of hat functions

S1
h(ΣN) := {v : Σ→ R : v|τ ◦χτ ∈ P1(τ̂) ∀τ ∈ ΣN}∩C(Σ).

These spaces are space-time trial spaces, since there is no inherent distinction between space
and time coordinates. In order to collocate the boundary integral equation Eq. (7), evaluations
of Vwh(t,x) at (t,x) ∈ Σ are necessary, where wh is in one of the space-time trial spaces de-
fined above. While integral representations of retarded potentials like Eq. (5) are suitable for
classical methods that discretize space and time separately, they are inconvenient for capturing
the action of retarded potentials on space-time trial functions. To this end, we derive a different
representation of retarded potentials for the space-time mesh ΣN in the following subsection.

3.1 Retarded potentials and space-time meshes

For convenience of notation we introduce an operator that unifies the integral representations of
SL, DL, V, and K. For an arbitrary but fixed evaluation point (t,x) ∈ [0,T ]×R3 and surface
density w ∈ L∞(Σ) the abstract retarded potential integral operator Tk is defined by

Tk w(t,x) =
∫
Γ

T∫
0

k(x,y)δ0(t−ζ −‖x− y‖)w(ζ ,y)dζ dS(y)

=
∫
Γ

k(x,y)w(t−‖x− y‖,y)dS(y)

(8)

where k :R3×R3→R denotes the kernel function and w is extended trivially for negative times.
For the three kernel functions of interest

k1(x,y) =
1

4π‖x− y‖ , k2(x,y) =
〈n(y),x− y〉
4π‖x− y‖3 , k3(x,y) =

〈n(y),x− y〉
4π‖x− y‖2 (9)

the integral Eq. (8) exists as weakly singular surface integral if (t,x) ∈ Σ, see [64, Th. 3.3.5,
Lem. 3.3.8]. The operator Tk is identified with the operators of Section 2 via

V↔ SL = Tk1 , K↔ DL = Tk2 +Tk3 ∂t .

In order to recast Eq. (8) we introduce the function φ : R×R3→ R

φ(ζ ,y) = ‖x− y‖− (t−ζ )

whose zero level set
Ξ := {(ζ ,y) ∈ R×R3 : φ(ζ ,y) = 0}
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is a three-dimensional conical hypersurface embedded in four-dimensional space-time with apex
at (t,x) and axis parallel to the time axis. This backward light cone is the support of the causal
fundamental solution of the wave operator Eq. (4), see [52, Op. 51]. An illustration of the light
cone in 2+1 dimensions is provided in Section 3.1.

SPACE
SPACE

TIME

OBSERVER
(t, x)

THE PRESENT

FORWARD LIGHT CONE

BACKWARD LIGHT CONE

Figure 1: Visualization of the light cone in 2+ 1 dimensions. The observer at (t,x) perceives
signals emitted on the backward light cone Ξ only. Conversely, a signal emitted at
(t,x) is perceived only by observers on the forward light cone. This idea bestows a
physical interpretation to retarded potentials, which integrate along the intersection of
Ξ and the space-time boundary Σ, see Eq. (11b).

Using the (formal) representation of Tk with the delta function in Eq. (8) in conjunction with
the decomposition ΣN yields

Tk w(t,x) =
∫
Σ

k(x,y)w(ζ ,y)δ0 ◦φ(ζ ,y)dS(ζ ,y)

= ∑
τ∈ΣN

∫
τ̂

k(x, ·)◦ |xχτ(ξ )w◦χτ(ξ )δ0 ◦φ ◦χτ(ξ )
√

detGτ(ξ )dξ

where |xχτ(ξ ) denotes the restriction of the vector χτ(ξ ) to the spatial component only. By
introducing the integrand

fτ(ξ ) = k(x, ·)◦ |xχτ(ξ )w◦χτ(ξ )
√

detGτ(ξ )

we obtain
Tk w(t,x) = ∑

τ∈ΣN

∫
τ̂

δ0 ◦φ ◦χτ(ξ ) fτ(ξ )dξ . (10)

To endow Eq. (10) with an intuitive interpretation, we shall use the coarea formula.

Theorem 3.1 (Coarea formula [19]). Let Ω ⊂ Rd , d ≥ 2 be open, g : Ω→ R be Lipschitz con-
tinuous and f : Ω→ R be integrable. Then it holds∫

Ω

f (x)‖∇g(x)‖dx =
∫
R

∫
x∈Ω:g(x)=z

f (x)dS(x)dz.
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Formally applying the coarea formula to Eq. (10) yields the desired integral representation

Tk w(t,x) = ∑
τ∈ΣN

∫
R

δ0(z)
∫

ξ∈τ̂:φ◦χτ (ξ )=z

fτ(ξ )

‖∇(φ ◦χτ(ξ ))‖
dS(ξ )dz (11a)

= ∑
τ∈ΣN

∫
χ
−1
τ (Ξ∩τ)

k(x, ·)◦ |xχτ(ξ )w◦χτ(ξ )

√
detGτ(ξ )

‖∇(φ ◦χτ(ξ ))‖
dS(ξ ). (11b)

where χ−1
τ (Ξ∩ τ) = {ξ ∈ τ̂ : φ ◦ χτ(ξ ) = 0} is the intersection of the backward light cone

Ξ and the boundary element τ in terms of reference coordinates. Note that in order to apply
Theorem 3.1 formally to Eq. (10) the function τ̂ → R : ξ 7→ fτ(ξ )‖∇(φ ◦ χτ(ξ ))‖−1 has to be
integrable. While fτ is integrable by assumption, the following lemma captures properties of
ξ 7→ ∇(φ ◦χτ(ξ )).

Lemma 3.1. For ξ ∈ τ̂ almost everywhere ∇(φ ◦χτ(ξ )) = J>τ (ξ )∇φ ◦χτ(ξ ) and

β2(ξ )≤ ‖∇(φ ◦χτ(ξ ))‖2 ≤ 2β4(ξ )

hold, where 0 = β1(ξ )< β2(ξ )≤ β3(ξ )≤ β4(ξ ) are the eigenvalues of Jτ(ξ )J>τ (ξ ).

The proof is only technical and carried out in Appendix A. By Lemma 3.1 we have ξ 7→
‖∇(φ ◦χτ(ξ ))‖−1 ∈ L∞(τ̂). Consequently, the integrand in Eq. (11b) is integrable and the appli-
cation of Theorem 3.1 to Eq. (10) is justified (in the claimed formal sense).

Representation Eq. (11b) strikingly shows that retarded layer potentials integrate over the
intersection of the backward light cone Ξ and the lateral boundary Σ. Both Ξ and Σ are three-
dimensional hypersurfaces embedded in R4, hence, their (non-empty, non-degenerate) intersec-
tion is a two-dimensional surface. Clearly, the complexity of Ξ∩τ is controlled by both the light
cone Ξ and the boundary element τ . While the light cone is stringently dictated by the wave
equation, the shape of the boundary elements is still to be specified. Since the goal of this paper
is to take a first decisive step towards space-time discretizations of RPBIEs, we restrict ourselves
to boundary elements of simplest shape.

3.2 Piecewise flat boundary description

The simplest boundary elements are simplex elements, which are in this case tetrahedral surface
elements. Any tetrahedron τ can be parametrized by the affine map χ : τ̂ → τ

χ : ξ 7→
(

t0
x0

)
+ Jξ (12)

with the constant Jacobi matrix J ∈R4×3 with rankJ = 3. Here (t0,x>0 )
> ∈R×R3 is the coordi-

nate vector of the first vertex of the tetrahedron τ . Furthermore, the space-time normal vector ν

with span{ν}= kerJ> is also constant. The Jacobi matrix has the block structure J>=
(

jt J>x
)

where jt ∈ R3 and Jx ∈ R3×3 are the time and space components respectively. From νt = 0 it
follows

0 = J>ν = jtνt + J>x n = J>x n

9
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which implies 1 = dimkerJ>x = dimkerJx since Jx is a square matrix. Obviously, Eq. (12)
is well-defined in the entire reference space R3. This motivates to think of Eq. (12) as map
χ : R3→ ran χ (ran denotes the range) and the parametrization of τ as the restriction χ|τ̂ : τ̂→ τ .
From here on, χ shall always denote the extended affine map χ : R3→ ran χ . Its range ran χ is
a three-dimensional affine subspace of R4. In other words, ran χ is the hyperplane induced by
the normal vector ν of the flat element τ .

In order to construct an admissible tetrahedral mesh ΣN we employ the algorithm outlined in
[37]. In our case, the cited procedure uses a given admissible decomposition of Γ into triangles
to build a tetrahedral mesh of Σ. Different strategies for generating space-time meshes can be
found in [9, 20].

3.3 Intersection of light cone and flat boundary

Throughout the remainder of this section we consider an arbitrary but fixed point (t,x)∈ [0,T ]×
R3 and a tetrahedral boundary element τ ∈ ΣN with affine parametrization χ : R3→ ran χ . For
simplicity of notation we omit the subscripts related to τ and introduce the metric signature
M := diag(−1,1,1,1). The surface in Eq. (11b) can be rewritten as

χ
−1(Ξ∩ τ) = {ξ ∈ R3 : φ2 ◦χ(ξ ) = 0}∩{ξ ∈ R3 : |t χ(ξ )≤ t}∩ τ̂ (13)

where |t χ(ξ ) denotes the restriction of the vector χ(ξ ) to its time component and φ2 : R×R3→
R is the quadratic level set function

φ2(ζ ,y) = ‖x− y‖2− (t−ζ )2 =

〈
M
(

t−ζ

x− y

)
,

(
t−ζ

x− y

)〉
.

In essence, Eq. (13) separates χ−1(Ξ∩ τ) into three components: The set {ξ : φ2 ◦ χ(ξ ) = 0}
is the intersection of the hyperplane ran χ and the double light cone, i.e. both forward and
backward portion, in terms of reference coordinates. The second part in Eq. (13) restricts to the
backward light cone while the third part restricts to the actual boundary element. We shall study
the zero level set of φ2 ◦χ and recall that χ−1(Ξ∩ τ) is a certain subset of it.

Insertion of the affine parametrization Eq. (12) yields the quadratic equation

φ2 ◦χ(ξ ) = 〈Aξ ,ξ 〉+2〈b,ξ 〉+ c0

with A ∈ R3×3, b ∈ R3, c0 ∈ R, and z0 ∈ R4 defined by

A := J>MJ , b :=−J>Mz0 , c0 := 〈Mz0,z0〉 , z0 :=
(

t− t0
x− x0

)
.

Since A is symmetric its eigenvalues are real and its eigenvectors form an orthonormal basis. Let
the ith column of E ∈R3×3 be the ith eigenvector of A associated to the eigenvalues λ1≤ λ2≤ λ3.
With the matrix D := diag(λi)

3
i=1 the diagonalization A = EDE> is obtained. We introduce the

affine map κ : R3→ R3

κ(η) = ξO +Eη

10
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with the origin ξO =−A−1b and get the quadratic equation in principal axes

φ2 ◦χ ◦κ(η) = ∑
3
i=1 λiη

2
i + cM (14)

where cM := 〈b,ξO〉+c0. Obviously ξO is well-defined iff A is invertible. The following lemma
enables a categorization of Eq. (14).

Lemma 3.2. It holds λ1 < 0 < λ2 ≤ λ3 and cM = 〈z0,ν〉2 = 〈x− x0,n〉2.

The proof of this lemma is merely technical and deferred to Appendix A. From Lemma 3.2
we observe that cM = 0 iff 〈z0,ν〉 = 0. This is the case iff (t,x) ∈ ran χ , i.e. the apex of the
light cone at (t,x) lies in the hyperplane ran χ . From Lemma 3.2 it follows that the zero set of
Eq. (14) and hence {ξ : φ2 ◦χ(ξ ) = 0} is an elliptic hyperboloid of two sheets if (t,x) 6∈ ran χ or
an elliptic double cone if (t,x) ∈ ran χ . One sheet of the hyperboloid or one cone of the double
cone is associated to the forward light cone and consequently not of interest for Eq. (13). To
ensure that η1 > 0 is associated to the backward light cone, the eigenvector e1 with eigenvalue
λ1 < 0 is oriented such that

〈e1, jt〉 < 0 (15)

where we recall that jt is the first column of J>.
As next step Eq. (11b) is transformed to an integral in a parameter domain of the light cone in

reference coordinates. The employed parametrization is available for flat boundary elements as
discussed previously. The integral in Eq. (11b) is abbreviated

I :=
∫

χ−1(Ξ∩τ)

kx(ξ )wτ̂(ξ )dS(ξ ) (16)

where

kx(ξ ) = k(x, ·)◦ |xχ(ξ ), wτ̂(ξ ) = w◦χ(ξ )

√
detG

‖∇(φ ◦χ(ξ ))‖ , ξ ∈ τ̂.

The key ingredients of the employed transformation are well-known parametrizations of the
cone/hyperboloid. The backward cone is parametrized by

ψC : [0,2π)× [0,∞) → R3

(
ρ1
ρ2

)
7→
√
−λ1 ρ2


1√
−λ1

1√
λ2

cosρ1
1√
λ3

sinρ1


while the backward sheet of the two-sheeted hyperboloid is parametrized by

ψH : [0,2π)× [0,∞) → R3

(
ρ1
ρ2

)
7→ √cM coshρ2


1√
−λ1

1√
λ2

tanhρ2 cosρ1
1√
λ3

tanhρ2 sinρ1


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and the desired parametrization is defined by

ψ :=

{
κ ◦ψC cM = 0
κ ◦ψH cM > 0

where Eq. (15) ensures that ψ maps onto the backward portion of the light cone only. We
introduce domψ := [0,2π)× [0,∞) (dom denotes the domain) and by construction ranψ =
χ−1(Ξ∩ ran χ) holds. This allows us to carry the integral Eq. (16) over to an integral in domψ

I =
∫
Θ

kx ◦ψ(ρ)wτ̂ ◦ψ(ρ)gψ(ρ)dρ (17)

with Θ := {ρ ∈ domψ : ψ(ρ) ∈ τ̂}= ψ−1(τ̂ ∩ ranψ) and

gψ(ρ) =
(

det
(〈

∂iψ(ρ),∂ jψ(ρ)
〉 )2

i, j=1

)1/2
.

In this context, we use the notation ψ−1 in a formal sense, since ψ is not injective on domψ

but only on the dense subset [0,2π)× (0,∞). The parametrization of the light cone in reference
coordinates is depicted in Section 3.3. Our goal is to employ numerical integration based on
Gaussian quadrature rules to approximate Eq. (17). Representation Eq. (17) is advantageous for
this purpose because the product of kernel function and transformation determinant defines a
smooth function.

ξ1

ξ2

ξ3

ρ1

ρ2

0 2π

0
domψ

Θ

Λ

ψ

τ̂

ranψ

ψ(Θ)

Figure 2: Sketch of the parametrization of the light cone in reference coordinates of a tetrahedral
boundary element.

Lemma 3.3. For any ρ ∈ domψ it holds

gψ(ρ) =

{
−λ1ρ2gC(ρ) cM = 0
cM sinhρ2 coshρ2gH(ρ) cM > 0

where gC,gH : domψ → R are smooth and 0 < (λ2λ3)
−1/2 ≤ gH(ρ) < gC(ρ). Moreover, let

dx(y) = ‖x− y‖ for any x,y ∈ R3. For any ρ ∈ domψ

dx ◦ |xχ ◦ψ(ρ) =

{√
−λ1ρ2 fC(ρ) cM = 0
√

cM coshρ2 fH(ρ) cM > 0

12
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where fC, fH : domψ → R are smooth and bounded from below by a positive constant.
The proof is given in Appendix A.

Theorem 3.2. Let ki, i = 1,2,3 be the functions as in Eq. (9). For any x ∈ R3 the function
k∗i (ρ) = ki(x, ·)◦|xχ ◦ψ(ρ)gψ(ρ) can be extended to C∞ (R× [0,∞)).

Proof. As discussed in Section 3.2 it holds J>x n= 0. From Lemma 3.2 we have cM = 〈n,x− x0〉2
and for any ξ ∈ R3

〈n,x−|xχ(ξ )〉2 = 〈n,x− x0− Jxξ 〉2 = 〈n,x− x0〉2 = cM

follows. For any ρ ∈ R× [0,∞) the map ψ is well-defined and takes values in ranψ due to
periodicity in the first component. Consider the functions k∗i : R× [0,∞)→ R defined by k∗i :
ρ 7→ ki(x, ·)◦|xχ ◦ψ(ρ)gψ(ρ), where ki, i = 1,2,3 is as in Eq. (9) apart from the division by 4π .
There hold the representations for cM = 0

k∗1(ρ) =
√
−λ1

gC(ρ)

fC(ρ)
, k∗2(ρ) = 0, k∗3(ρ) = 0

and for cM > 0 with sx := sgn
〈
n,x− x0

〉
6= 0

k∗1(ρ) =
√

cM sinhρ2
gH(ρ)

fH(ρ)
, k∗2(ρ) = sx

tanhρ2

coshρ2

gH(ρ)

f 3
H(ρ)

, k∗3(ρ) = sx
√

cM tanhρ2
gH(ρ)

f 2
H(ρ)

with fX ,gX for X ∈ {C,H} as in Lemma 3.3. The smoothness of above functions is an immediate
consequence of Lemma 3.3 which concludes the proof.

Theorem 3.2 conveys that the transformation induced by ψ regularizes the potentially weakly
singular integral Eq. (16), which is a decisive advantage of representation Eq. (17). To enable
the application of existing numerical integration techniques, we recast Θ to an implicitly defined
set. The reference tetrahedron τ̂ is the intersection of four open half spaces. Let di : R3→R for
i = 1, . . . ,4 be the signed distance function of the plane that defines the ith half space. With the
continuous function

φτ̂ : R3→ R, ξ 7→ max
i=1,...,4

{di(ξ )}

we can provide the equivalent definition

Θ = {ρ ∈ domψ : φτ̂ ◦ψ(ρ)< 0}. (18)

There exist several methods for approximating the integral Eq. (17) with the implicitly defined
set Eq. (18). Prominent approaches are based on (high-order) approximations of the implicitly
defined set [38, 23, 24], moment-fitting techniques [49], and local parametrizations [67]. Al-
though these procedures can yield reliable results for Eq. (17), we shall provide an approach
tailored to the situation at hand.
Remark 1. Although this work deals with stationary boundaries, several results can indeed be
generalized to instationary ones. Under the assumption that the normal velocity of the boundary
element is lower than the speed of wave propagation, similar versions of Lemmas 3.1 and 3.2
hold true, implying that the hyperconic section Ξ∩ ran χ remains a cone/hyperboloid. We do not
provide these results here, as the focus of this paper lies on the space-time methodology itself
rather than instationary domains.

13
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3.4 A quadrature scheme for I

In the following paragraphs a numerical integration technique for evaluating Eq. (17) is devised.
The integral I is recast into a sum of integrals over a simple reference interval, which are treated
by standard Gaussian quadrature. For ease of notation we abbreviate the integrand

kψ(ρ) = kx ◦ψ(ρ)wτ̂ ◦ψ(ρ)gψ(ρ), ρ ∈Θ

and introduce the integrated kernel

k+ψ (ρ1,ρ2) =

ρ2∫
0

kψ(ρ1,r)dr = ρ2

1∫
0

kψ(ρ1,ρ2r)dr, (ρ1,ρ2) ∈Θ. (19)

Note that Eq. (19) is well-defined only if there exists a suitable extension of kψ outside of Θ. By
Theorem 3.2, the product of kx ◦ψ and gψ defines a smooth function in domψ . A straightfor-
ward computation confirms that ∇(φ ◦ χτ)◦ψ is smooth and in conjunction with Lemma 3.1 it
follows that ρ 7→ ‖∇(φ ◦χτ)◦ψ(ρ)‖−1 is a smooth function in domψ as well. In practical com-
putations w|τ ◦ χ is a polynomial basis function, for which the extension to an entire function is
obvious. Hence, we may assume that Eq. (19) is well-defined and its integrand is smooth. As a
consequence, we may apply the divergence theorem, which yields

I =
∫

∂Θ

k+ψ (ρ)n
Θ
2 (ρ)dS(ρ) =

∫
Λ

k+ψ (ρ)n
Θ
2 (ρ)dS(ρ) (20)

where nΘ
2 denotes the ρ2-component of the unit outward normal vector field to Θ and

Λ := {ρ ∈ domψ : φτ̂ ◦ψ(ρ) = 0}= ψ
−1(∂ τ̂ ∩ ranψ)⊆ ∂Θ.

Although Λ can be a subset of ∂Θ, the second equality in Eq. (20) holds since integrals on
{0,2π}× [0,∞) and [0,2π)×{0} vanish, as either nΘ

2 or k+ψ vanishes. In a certain sense, Eq. (20)
reduces I to an integral along the curve Λ, as only a parametrization of Λ is necessary to enable
the application of standard quadrature schemes. We employ piecewise smooth parametrizations
as discussed in [39], a closely related approach is proposed in [26]. The technique is reiterated
here for the sake of completeness. Assume that we are given a piecewise affine interpolation
Λ1 of Λ. Each line σ ∈ Λ1 is defined by its two end points ρA

σ ,ρ
B
σ ∈ Λ and parametrized by the

affine map `σ : (0,1)→ σ . For some fixed width ε > 0 let Θε := {ρ ∈ domψ : dist(ρ,Λ)≤ ε}
be a strip around Λ. As in [39] we consider the transformation ι : Θε → Λ defined by

ι(ρ) = ρ +d(ρ)s(ρ) (21)

with search direction field s : Θε → R2 and the the function d : Θε → R. We use s(ρ) = ∇(φτ̂ ◦
ψ(ρ)) and d(ρ) is the solution with smallest absolute value of

d(ρ) ∈ R : φτ̂ ◦ψ(ρ +d(ρ)s(ρ)) = 0, ρ ∈Θε . (22)

This transformation mimics the closest point projection, cf. [17, 26]. A parametrization of a
subset of Λ is obtained by ισ := ι ◦ `σ for σ ∈ Λ1. Note that Eq. (21) is well-defined only if

14
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ε is sufficiently small. To ensure that the line σ lies in Θε it has to be sufficiently close to Λ,
which implies that Λ1 has to be sufficiently close to Λ. The construction of Λ1 is discussed in
Appendix B. Here, we assume that

Λ =
⋃

σ∈Λ1
ran ισ ∧ ran ισ ∩ ran ιµ =∅,σ 6= µ ∈ Λ1

and that ισ is injective for all σ ∈ Λ1. This gives rise to the transformed integral

I = ∑
σ∈Λ1

1∫
0

k+ψ ◦ ισ (r)nΘ
2 ◦ ισ (r)‖ι ′σ (r)‖dr. (23)

By Eqs. (19) and (23) the evaluation of Eq. (17) is performed only by computation of integrals in
the interval (0,1). The integrands are smooth if ισ is smooth and we suggest to approximate the
integral by Gaussian quadrature rules. Notice that the integrand in Eq. (19) is (in general) not
analytic everywhere. Although this lack of analyticity prevents Gaussian quadrature schemes
from reaching their optimal convergence properties, they still yield acceptable approximations.

In our implementation of the algorithm, the integrals Eqs. (19) and (23) are approximated by
Gauss-Legendre quadrature rules with nG ∈ N integration points. The interval of integration in
Eq. (19) is set to (α,ρ2) with a suitable α ≥ 0, instead of (0,ρ2). Moreover, the non-linear
equation Eq. (22) is solved by Newton’s method [39, 26, 55] with initial guess d(ρ) = 0. In
the examples reported in Section 4 at most 10 iterations in Newton’s method were necessary to
satisfy Eq. (22) up to machine precision.

3.5 Collocation method

To set up collocation equations of Eq. (7), we choose collocation points which are typically used
in boundary element methods for elliptic problems. For wh ∈ S0

h(ΣN) the set of centroids of all
elements C (ΣN) is employed as set of collocation nodes, leading to the discretized boundary
integral equation

wh ∈ S0
h(ΣN) : Vwh(t,x) = g(t,x), (t,x) ∈ C (ΣN). (24)

A problem somewhat similar to Eq. (24) is analyzed by Davies and Duncan [13]. In the cited
paper, it is assumed that Γ is flat and the employed trial functions are products of functions in
the spatial coordinates and functions in the time variable. The authors prove convergence of the
solution of the arising collocation equations for certain trial spaces. However, they indicate that
piecewise constant spatial basis functions yield unstable methods for a variety of mesh ratios.
Since the trial functions in our approach are either continuous or discontinuous in space-time,
we shall also consider approximations in S1

h(ΣN). For wh ∈ S1
h(ΣN) the set of vertices of the

mesh V (ΣN) is chosen as set of collocation points. For continuous solutions of Eqs. (1) to (3)
the Dirichlet data g has to be compatible with the initial data, in particular g = 0 on {0}×Γ has
to hold. If the continuous density wh can be continuously extended by zero for negative times it
follows wh = 0 on {0}×Γ. This gives rise to the subspace

S1
h,0(ΣN) := {v ∈ S1

h(ΣN) : v = 0 on {0}×Γ}
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and the subset of vertices which serve as collocation points

V0(ΣN) := {(t,x) ∈ V (ΣN) : t > 0}.

This yields a discretization of Eq. (7) based on continuous basis functions

wh ∈ S1
h,0(ΣN) : Vwh(t,x) = g(t,x), (t,x) ∈ V0(ΣN). (25)

To implement these boundary element discretizations, point-wise evaluations of retarded layer
operators acting on space-time trial functions are required. On the one hand, evaluations of
Vwh(t,x) for (t,x) ∈ Σ are necessary to set up the left hand sides in Eqs. (24) and (25). On the
other hand, approximate solutions of Eqs. (1) to (3) are obtained by evaluating SLwh(t,x) for
(t,x)∈Q+. Both of these evaluations are realized by means of the numerical integration scheme
introduced in Section 3.4.

Remark 2. The outlined collocation methods can be interpreted as a preparatory step for space-
time Galerkin discretizations. In this remark we provide an idea about the utilization of the
proposed scheme in the context of space-time Galerkin schemes. A variational formulation of
Eq. (7) is to find

w ∈ X : b(w,v) = `(v) ∀v ∈ X

where X is a Hilbert space, see [12, Th. 3], [66, Ch. 3.7]. The bilinear form reads

b(w,v) =
∫
Σ

ω(t)Vw(t,x)∂tv(t,x)dS(t,x)

and the functional
`(v) =

∫
Σ

ω(t)g(t,x)∂tv(t,x)dS(t,x)

where ω ∈ C1(0,T ) is a suitable weight function [36]. Let Xh ⊂ X be a space-time boundary
element space, e.g. S0

h(ΣN), with basis {ϕi}i. If g and ω are smooth the numerical evaluation of
`(ϕi) is straightforward. However, the matrix entry

Vi j = ∑
τ∈ΣN :τ⊂supp(ϕi)

∫
τ

ω(t)Vϕ j(t,x)∂tϕi(t,x)dS(t,x)

is quite challenging to compute. We suggest to employ a suitable numerical integration tech-
nique which computes an approximation of the form∫

τ

ω(t)Vϕ j(t,x)∂tϕi(t,x)dS(t,x)≈∑
nG

`=1 ω(t`)Vϕ j(t`,x`)∂tϕi(t`,x`)g` (26)

where (t`,x`) and g` for ` = 1, . . . ,nG are quadrature points and weights respectively. In this
context, the point-wise evaluation of the retarded potential integral operator

τ → R : (t,x) 7→ Vϕ j(t,x)

16



Preprint No 01/2019 Institute of Applied Mechanics

at the quadrature points can be performed accurately by the technique developed in Sections 3.3
and 3.4 without any modifications. Nevertheless, an accurate quadrature rule for Eq. (26) is re-
quired. In [70, Th. 1] a somewhat similar integral is analyzed, which arises in classical Galerkin
discretizations based on product-type trial spaces. It is shown that the integrand features certain
singularities. A similar behaviour is to be expected by the integrand in Eq. (26). The construc-
tion of an accurate quadrature scheme for Eq. (26) is, at least from our point of view, the pivotal
step towards a practical realization of genuine space-time Galerkin discretization methods for
RPBIEs.

4 Numerical experiments

In this section the proposed method is verified by investigating elementary examples. In partic-
ular, the performance of the numerical integration technique as well as the overall space-time
scheme is examined. To this end, we construct a simple, yet smooth solution of the wave equa-
tion. Consider a fixed source point yS ∈ Ω− and a sufficiently smooth signal µ : R → R with
supp µ ⊂ [0,∞). The spherical wave function f : R× (R3 \ yS)→ R

f (t,x) =
µ(t−‖x− yS‖)
‖x− yS‖

satisfies the wave equation subject to homogeneous initial conditions everywhere in its domain.
Consequently, the restriction u := f |Q+ solves Eqs. (1) and (2). We consider

µ(s) =

exp
((

s2

4 − s
)−1
)

s ∈ (0,4)

0 otherwise

which satisfies µ ∈ C∞(R). In all tests we use the source point yS = −( 1
10 ,

2
10 ,

3
10)
>, which is

suitable for all examined scenarios.

4.1 Verification of the quadrature technique

The first test is intended to verify the numerical integration procedure for retarded potentials.
As computational domain we consider the unit cube Ω− =

(
−1

2 ,
1
2

)3 with T = 5. Our goal is to
evaluate

ũ(t,x) :=

{
D̃Lγ

+
0 u(t,x)− S̃Lγ

+
1 u(t,x) (t,x) ∈ Q+

σ(x)γ+0 u(t,x)+ K̃γ
+
0 u(t,x)− Ṽγ

+
1 u(t,x) (t,x) ∈ Σ

(27)

which is Kirchhoff’s formula Eq. (6) for (t,x) ∈Q+ or its trace for (t,x) ∈ Σ. The tildes over the
integral operators should indicate that they are approximated by numerical integration. Since a
mesh is necessary to run the integration algorithm we employ a uniform decomposition of Σ into
180 tetrahedrons (h ≈ 1.732). However, the exact Cauchy data (γ+0 u,γ+1 u) are used in Eq. (27)
rather than mere approximations of them. The fact that we input the exact Cauchy data into
the representation formula implies that the use of a mesh does not constitute an approximation.
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The only approximation is due to the numerical integration in the retarded potentials by an order
nG ∈ N quadrature scheme as devised in Section 3.4. The error is measured by computing

en =
|u(T,x)− ũ(T,x)|
|u(T,x)|

at the sampling point
x :=

(1
2 ,

1
2 ,

1
2

)>
+ r (1,0,0)>

where 0≤ r = dist(x,Γ). The results for different values of r are depicted in Fig. 3a. It can be ob-
served that the quadrature error decays rapidly as the number of integration points is increased.
Convergence ceases at en ≈ 10−14 since this value is already quite close to the employed ma-
chine precision. Furthermore, there is little dependence on the distance of the evaluation point
to the boundary. In particular, the case r = 0, in which integral operators with weakly singular
kernels are evaluated, is handled as well as the cases with positive distance. This is due to the
parametrization introduced in Section 3.3, which regularizes the integrand, see Theorem 3.2. We
note that the stated observations are quite comparable to numerical results provided in the liter-
ature. In [61, Fig. 3] and [63, Fig. 3.3] an integral with smooth (but not analytic) kernel, which
arises in a Galerkin discretization of RPBIEs, is approximated by Gaussian quadrature. The
quadrature errors observed in the cited references feature a similar behaviour to our experiment.

0 10 20 30 40
10−17

10−13

10−9

10−5

10−1

nG

e n

r = 3.0

r = 1.0

r = 0.1

r = 0.0

(a) evaluation at a single point

0 10 20 30 40 50
10−13

10−10

10−7

10−4

10−1

nG

e n
,m

cube, m = 72

sphere, m = 244

(b) average of m points on Σ

Figure 3: Convergence study of Eq. (27) for increasing quadrature order. Left: Evaluation of
Kirchhoff’s formula (r > 0) or the weakly singular boundary integral equation (r = 0)
at a single point. Right: Weakly singular boundary integral equation, average of m
evaluation points located on Σ.

In the previous example the space-time mesh is fixed and the convergence with respect to the
number of quadrature points is examined. In the second test we study the reverse scenario: The
number of quadrature points is fixed and the mesh is refined successively. Figure 4a exhibits
the observed errors for r = 1 and Fig. 4b for r = 0. Note that in the algorithm devised in
this work the total number of quadrature points does not scale rigidly with mesh refinement.
Nevertheless, roughly second-order convergence with respect to h is observed. This indicates
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(a) point evaluation at r = 1
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(b) point evaluation at r = 0

Figure 4: Convergence study of Eq. (27) for a sequence of successively refined uniform meshes.

that for sufficiently large nG the error is dominated by mesh refinement, see [26, Fig. 5] for
similar results.

We consider a further example to support the viability of the developed quadrature scheme
for weakly singular kernel functions. Again Eq. (27) is evaluated, however, evaluation points
exclusively on the boundary are of interest in this test. We fix a set of points {(ti,xi)}m

i=1 with
(ti,xi) ∈ Σ, i = 1, . . . ,m for m ∈ N. The error measure

en,m =
∑

m
i=1 |u(ti,xi)− ũ(ti,xi)|

∑
m
i=1 |u(ti,xi)|

is computed. We set T = 5 and study the two scenarios:

• Cube: Let Ω− =
(
−1

2 ,
1
2

)3 be decomposed into a mesh of 288 elements (h≈ 1.546). The
error is evaluated at the m = 72 vertices of the mesh.

• Sphere: We consider Ω− = {x ∈ R3 : ‖x‖ < 1}, however, the employed mesh consisting
of 5490 elements (h≈ 0.674) does not represent an exact sphere, but a polyhedral approx-
imation of it. The error is computed at the m = 244 centroids of the elements with time
coordinate t > T − h/3. This condition is used to ensure that the number of evaluation
points is similar to the cube.

From the results exhibited in Fig. 3b one can infer that the error decays swiftly, especially
in the pre-asymptotic regime. As expected by the lack of analyticity of the integrand, the error
does however not decay at an exponential rate, cf. [63]. For the spherical domain we observe
divergence at en,m ≈ 10−12 since roundoff errors are dominating the overall error. The sphere
is composed of significantly more boundary elements than the cube. Therefore, the sphere
uses many more integration points than the cube (for the same value of nG) to compute the
integral operators along its space-time boundary. That is why the error for the spherical domain
is considerably smaller. Still, it decays substantially faster than conjectured.
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These observations support the conclusion that the proposed numerical integration technique
is indeed capable of computing accurate point-wise evaluations of retarded potential integral
operators in the context of space-time meshes.

4.2 Verification of collocation schemes

In the following experiments the space-time collocation methods Eqs. (24) and (25) are tested.

4.2.1 Accuracy of linear systems

The discussed methods lead to a linear system of equations with matrix V ∈Rm×m where m ∈N
is the number of degrees of freedom. Prior to testing the actual methods it seems reasonable to
investigate what quadrature orders are necessary to achieve accurate approximations of V . To
this end, we compute collocation matrices Vn where n ∈ N is the order of quadrature used to
approximate the retarded potential integral operator. We consider the unit cube Ω− = (−1

2 ,
1
2)

3

with T = 5. The matrices of both methods Eqs. (24) and (25) are set up for two meshes, com-
posed of 504 (h≈ 1.229) and 4032 (h≈ 0.615) elements respectively. As reference, we employ
extraordinarily many quadrature points to set up the matrix Vn. The two error measures

eF
n =
‖Vn−Vn‖F

‖Vn‖F
, eS

n =
‖Vn−Vn‖2

‖Vn‖2

are computed, where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖2 the spectral norm. All tests
are performed for n = 31 and n = 61, however, the results are indistinguishable. Consequently,
only the results for n = 61 are exhibited in Fig. 5a for method Eq. (24) and Fig. 5b for approach
Eq. (25). The error decays rapidly in both norms and for both methods. Moreover, the error
is virtually the same for both examined meshes. These findings suggest that the quadrature
scheme is capable of computing accurate approximations of the system matrices with relatively
few quadrature points. For nG = 11 the error in all examples is already below 10−10, which is
why we set nG = 11 for all subsequent experiments.

0 2 4 6 8 10 12 14 16

10−14

10−11

10−8

10−5

10−2

nG

e∗ n

eFn , h ≈ 1.229

eSn, h ≈ 1.229

eFn , h ≈ 0.615

eSn, h ≈ 0.615

(a) matrix of method Eq. (24) based on S0
h
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10−9
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10−3

nG

e∗ n

eFn , h ≈ 1.229

eSn, h ≈ 1.229

eFn , h ≈ 0.615

eSn, h ≈ 0.615

(b) matrix of method Eq. (25) based on S1
h

Figure 5: Accuracy of system matrices for varying orders of quadrature.

20



Preprint No 01/2019 Institute of Applied Mechanics

4.2.2 Convergence study on a cube

Let Ω− = (−1
2 ,

1
2)

3 be the unit cube. In order to study the effect of the simulation end time
several values of T are considered. To measure the error, the difference of u and SLwh is
examined, where wh is the solution of Eq. (24) or Eq. (25). In particular, we compute

eQ
h =

∑
m
i=1 |u(T,xi)−SLwh(T,xi)|

∑
m
i=1 |u(T,xi)|

for m = 488 points xi ∈ Ω+ spaced equally on the boundary of the cube (−3
5 ,

3
5)

3. The conver-
gence study is depicted in Section 4.2.2. On the one hand, it can be observed that for sufficiently
small T both methods seem to converge (roughly) linearly with respect to the mesh size h. On
the other hand, for T ≥ 3 approach Eq. (25) fails to converge at all. Although method Eq. (24)
seems to converge in the examined case it yields considerable errors for T = 5. Moreover, we
conducted the same study on a different mesh and procedure Eq. (24) failed similarly to method
Eq. (25) in the presented test. This might indicate that these methods are not stable for arbitrary
values of T . It is well-known that certain bilinear forms of RPBIEs are positive definite iff T
is sufficiently small, see [36]. For the unit cube T < 1 is sufficient for positive definiteness as
stated in [36, Prop. 3.4.]. Nevertheless, the “naive” collocation approaches Eqs. (24) and (25)
are expected to tend more towards instability than the variational formulations employed in the
cited reference. To the best of our knowledge, no theoretical results for collocation methods for
RPBIEs on polyhedral boundaries are available (especially in the context of space-time meshes
as used in this work).
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Figure 6: Convergence study of the collocation methods for a sequence of uniform meshes of
the unit cube. Since the errors for T = 5 are extraordinarily large they are multiplied
by 10−2.
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4.2.3 Convergence study on a sphere

In case Ω− is the unit sphere, the density w satisfying Eq. (7) is known for certain right hand
sides g, see [62]. We choose

g(t,x) =

{
t4 exp(−2t) t > 0
0 t ≤ 0

for (t,x) ∈ Σ

which is constant with respect to the spatial component. The corresponding density w follows
from [62, Eq. 4.11]. Both collocation approaches Eqs. (24) and (25) are used to obtain ap-
proximations wh for a sequence of quasi-uniform meshes. Again, each mesh ΣN is a polyhedral
approximation of the surface of the unit sphere. The error

eΣ
h =
‖w−wh‖L2(ΣN)

‖w‖L2(ΣN)

is shown in Section 4.2.3. We see that method Eq. (24) converges linearly, while approach
Eq. (25) converges quadratically in h for all examined simulation end times. Note that for this
scenario [36, Prop. 3.4.] implies that T < 2 is sufficient for positive definiteness of a bilinear
form associated to Eq. (7). The fact that the methods converge in all investigated cases suggests
that the smoothness of the domain plays a crucial role when it comes to the stability of standard
collocation schemes.
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Figure 7: Convergence study of the collocation methods for a sequence of meshes of the unit
sphere.

4.3 Comparison to a classical approach

The experiments of Section 4.2 show that the proposed space-time collocation methods do not
necessarily converge. To put this observation into perspective we shall compare the space-time
method to a classical approach based on semi-discretization. The employed method is based on
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a decomposition of Γ into a mesh Γh consisting of triangular elements. We denote the lengths
of the longest and shortest edge by h and hmin respectively. The interval [0,T ] is partitioned into
m∈N time steps of constant size ∆t = T/m. We use continuous piecewise linear basis functions
(hat functions) in both space and time, i.e. the trial space is the product S1

∆t(0,T )×S1
h(Γh). To

obtain approximations of Eq. (7) the equation is collocated at the time steps {i∆t}m
i=1 and the

vertices of the mesh Γh. This procedure can already be found in [47] for two spatial dimensions.
The method “S1T1” in [13], which is analyzed for flat Γ, is also quite similar to the described
approach. Finally, the retarded single layer operator is computed accurately by use of polar
coordinates [28] and a quadrature rule with 11 integration points.
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Figure 8: Convergence study of a classical method based on S1
∆t(0,T )×S1

h(Γh) for the unit cube
(left, ∆t = h =

√
2hmin) and the unit sphere (right, ∆t ≈ 0.85h≈ 1.41hmin).

Since we compare this classical method to the space-time method Eq. (25) based on S1
h(ΣN)

the meshes are chosen such that the number of degrees of freedom coincides for both approaches.
The results for the experiments of Sections 4.2.2 and 4.2.3 are shown in Figs. 8a and 8b respec-
tively, which resemble the results of the space-time procedure remarkably. On the one hand,
comparing Fig. 8a to Fig. 6b we observe that the classical method seems to fail in a similar
fashion as our space-time approach. On the other hand, Fig. 8b shows that the classical method
converges immaculately for the spherical domain, according with the results of Fig. 7b.

To conclude this section, we endow the following interpretation to the findings of the pre-
sented experiments: Discretization schemes for RPBIEs based on unstructured space-time meshes
are technically feasible and the obtained numerical results indicate their great potential. Having
said that, the discussed space-time collocation methods appear to have similar stability issues
as classical approaches. The success of the space-time methodology hinges on finding stable
formulations in general settings.

5 Concluding remarks

In this paper, a space-time boundary element method for the wave equation in 3+1 dimensions
is proposed. Its key feature are basis functions that do not distinguish between space and time
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coordinates but are based on unstructured meshes of the lateral boundary of the space-time cylin-
der. An explicit representation of retarded potential integral operators which genuinely conforms
to the space-time setting is derived and a numerical integration scheme is developed. Numerical
experiments confirm that space-time discretization schemes for integral equations of hyperbolic
problems are technically feasible and can yield promising results. However, the stability of the
underlying collocation schemes is open. Numerical tests indicate that the proposed space-time
collocation methods encounter similar stability issues as classical schemes. Further research is
necessary to reveal correct formulations.

The major drawback of the presented approach is its increased demand in terms of compu-
tational resources compared to classical methods. This issue might spark further research on
space-time discretization schemes. On the one hand, the proposed quadrature technique as well
as its implementation could be improved. On the other hand, the development of fast methods,
well-established in boundary element methods for elliptic problems, is a topic of research that
seems to present itself.

Ultimately, one might consider the collocation method discussed in this work as a precursor to
more involved Galerkin discretizations. However, their favourable properties in terms of stability
come at the price of more intricate integrals in the computation of the Galerkin matrix entries.
Nevertheless, our work presents a strong indication that space-time discretizations of boundary
integral equations of hyperbolic problems have great potential.

A Proofs of the lemmas

Proof of Lemma 3.1. By the chain rule ∇(φ ◦ χτ(ξ )) = J>τ (ξ )∇φ ◦ χτ(ξ ) holds when φ is dif-
ferentiable at χτ(ξ ). Since φ is Lipschitz continuous it is differentiable almost everywhere by
Rademacher’s theorem, in particular for (ζ ,y) = χτ(ξ ) it holds

∇φ(ζ ,y) =
[

1
− x−y
‖x−y‖

]
, ‖∇φ(ζ ,y)‖2 = 2

when x 6= y. For simplicity of notation we set q := ∇φ(ζ ,y) and omit the argument lists as
well as the subscript τ . Let z := q−〈q,ν〉ν where span{ν} = kerJ> and ‖ν‖ = 1. It holds
‖z‖2 = ‖q‖2−〈q,ν〉2 = 2−〈q,ν〉2. From ν> =

(
0 n>

)
and the Cauchy-Schwarz inequality

| 〈q,ν〉 |= ‖x− y‖−1| 〈x− y,n〉 | ≤ 1 follows. We conclude

‖z‖2 = 2−〈q,ν〉2 ≥ 1. (28)

Let β1 = 0 < β2 ≤ β3 ≤ β4 be the eigenvalues of the (symmetric) matrix JJ>. This enables
the decomposition JJ> = VCV> with C := diag(βi)

4
i=1 and V> = V−1 contains the normalized

eigenvectors {ν ,e2,e3,e4}. Since q− z = 〈q,ν〉ν ∈ kerJ> it holds CV>(q− z) = 0 and we
obtain

‖J>q‖2 =
〈

JJ>q,q
〉
=
〈

CV>q,V>q
〉

=
〈

CV>z,V>q
〉
=
〈

V>z,CV>q
〉
=
〈

CV>z,V>z
〉
.
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Using the basis spanned by the eigenvectors in conjunction with Eq. (28) the lower bound

‖J>q‖2 =
〈

CV>z,V>z
〉
= ∑

4
i=2 βi 〈z,ei〉2 ≥ β2 ∑

4
i=2 〈z,ei〉2 = β2‖z‖2 ≥ β2

follows, where the last equality is due to ‖z‖2 = ∑
4
i=2 〈z,ei〉2 + 〈z,ν〉2 and 〈z,ν〉 = 0. The upper

bound is due to the operator norm ‖J>q‖2 ≤ ‖J>‖2‖q‖2 = 2β4.

Proof of Lemma 3.2. The matrix A is of the form A= J>J−2 jt j>t with jt ∈R3. From rankJ = 3
it follows that J>J is positive definite, hence A can have at most one non-positive eigenvalue [31,
p. 325], implying 0 < λ2 ≤ λ3. We have

λ1 < 0 ⇔ ∃x ∈ R3 : 〈Ax,x〉 = 〈MJx,Jx〉 < 0 ⇔ ∃y ∈ ranJ : 〈My,y〉 < 0.

The vector y ∈ R4 is in ranJ iff 0 = 〈y,ν〉 = ytνt + 〈yx,νx〉, since kerJ> = span{ν}. Using
νt = 0 it follows

λ1 < 0 ⇔ ∃y ∈ R4 : 〈yx,νx〉 = 0 ∧ 〈My,y〉 = ‖yx‖2− y2
t < 0.

Choosing y = (α,0,0,0)>, i.e. yt = α ∈ R \ {0} and yx = 0 satisfies above condition. This
proves λ1 < 0 and the invertibility of A. Consequently, ξO is the unique solution of AξO = −b
or by using A = J>MJ and b =−J>Mz0

J>MJξO = J>Mz0 ⇔ J>M(JξO− z0) = 0.

It follows M(JξO− z0) ∈ kerJ> or equivalently

∃β ∈ R : JξO− z0 = βMν ⇔ JξO = z0 +βMν (29)

where we used M = M−1. A solution to Eq. (29) exists iff the right hand side z0 + βMν is
orthogonal to kerJ>. Since the solution of Eq. (29) is equivalent to the unique solution of AξO =
−b the condition 〈z0 +βMν ,ν〉 = 0 must hold and from 〈Mν ,ν〉 = 1 follows β = −〈z0,ν〉.
Insertion into cM = c0 + 〈b,ξO〉 with c0 = 〈Mz0,z0〉 yields

cM = 〈Mz0,z0〉 −
〈

J>Mz0,ξO

〉
= 〈Mz0,z0− JξO〉 =−β 〈Mz0,Mν〉 = 〈z0,ν〉2

which proves the assertion.

Proof of Lemma 3.3. For any ρ ∈ domψ the transformation determinant reads

gψ(ρ) =
(
‖∂1ψ(ρ)‖2‖∂2ψ(ρ)‖2−〈∂1ψ(ρ),∂2ψ(ρ)〉2

)1/2
.

Set X =C for cM = 0 or X = H for cM > 0. The chain rule in conjunction with the orthogonality
of the eigenvectors of A, i.e. E> = E−1 yields〈

∂iψ(ρ),∂ jψ(ρ)
〉
=
〈
E∂iψX(ρ),E∂ jψX(ρ)

〉
=
〈
∂iψX(ρ),∂ jψX(ρ)

〉
, i, j = 1,2.
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The asserted representations of gψ follow by computing the partial derivatives of ψC and ψH

respectively with

gC(ρ) =
[(

sin2
ρ1

λ2
+ cos2 ρ1

λ3

)(
1
−λ1

+ cos2 ρ1
λ2

+ sin2
ρ1

λ3

)
− (λ3−λ2)

2

λ 2
2 λ 2

3
sin2

ρ1 cos2
ρ1

]1/2

=
[

1
−λ1

(
sin2

ρ1
λ2

+ cos2 ρ1
λ3

)
+ 1

λ2λ3

]1/2
,

gH(ρ) =
[(

sin2
ρ1

λ2
+ cos2 ρ1

λ3

)(
tanh2

ρ2
−λ1

+ cos2 ρ1
λ2

+ sin2
ρ1

λ3

)
− (λ3−λ2)

2

λ 2
2 λ 2

3
sin2

ρ1 cos2
ρ1

]1/2

=
[

tanh2
ρ2

−λ1

(
sin2

ρ1
λ2

+ cos2 ρ1
λ3

)
+ 1

λ2λ3

]1/2
.

As we direct our attention towards the second part of the theorem set

η := ψX(ρ) , ξ := κ(η) = κ ◦ψX(ρ) ,

(
ζ

y

)
:=
(
|t χ(ξ )
|xχ(ξ )

)
= χ(ξ ) = χ ◦κ ◦ψX(ρ).

Using (ζ ,y) ∈ Ξ and the explicit representations of the affine maps χ and κ it follows

dx(y) = ‖x− y‖ = t−ζ = t− t0− j>t ξ = t− t0− j>t ξO− j>t Eη .

By Eq. (29) there exists a β ∈ R such that t− t0− j>t ξO = βνt . From νt = 0 it follows dx(y) =
− j>t Eη = −∑

3
i=1 〈 jt ,ei〉ηi. Insertion of η = ψC(ρ) for cM = 0 and η = ψH(ρ) for cM > 0

yields the asserted representations with

fC(ρ) =− 〈e1, jt〉√
−λ1
− 〈e2, jt〉√

λ2
cosρ1− 〈e3, jt〉√

λ3
sinρ1 ,

fH(ρ) =− 〈e1, jt〉√
−λ1
− tanhρ2

(
〈e2, jt〉√

λ2
cosρ1 +

〈e3, jt〉√
λ3

sinρ1

)
.

Using minx∈R

(
− 〈e2, jt〉√

λ2
cosx− 〈e3, jt〉√

λ3
sinx

)
=−

(
〈e2, jt〉2

λ2
+
〈e3, jt〉2

λ3

)1/2
we obtain

fX(ρ)≥− 〈e1, jt〉√
−λ1
−
(
〈e2, jt〉2

λ2
+
〈e3, jt〉2

λ3

)1/2
. (30)

The matrix A can be rewritten A = J>x Jx− jt j>t with dimkerJx = 1. Let v ∈ kerJx be such that
〈v, jt〉 = −1. Note that v exists, since jt ⊥ kerJx would imply kerA 6= {0} which contradicts
Lemma 3.2. Moreover, Av = J>x Jxv−〈v, jt〉 jt = jt , i.e. v is the unique solution of Av = jt . With
the diagonalization A = EDE> we obtain

−1 = 〈v, jt〉 =
〈
A−1 jt , jt

〉
=
〈

D−1E> jt ,E> jt
〉
= ∑

3
i=1
〈ei, jt〉2

λi

and 〈e1, jt〉2
−λ1

= 1+∑
3
i=2
〈ei, jt〉2

λi
. From estimate Eq. (30) in conjunction with 〈e1, jt〉 < 0

fX(ρ)≥
(

1+ 〈e2, jt〉2
λ2

+
〈e3, jt〉2

λ3

)1/2
−
(
〈e2, jt〉2

λ2
+
〈e3, jt〉2

λ3

)1/2
> 0

follows, which completes the proof.
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B Construction of Λ1

A crucial component of the integration scheme proposed in Section 3.4 is a first-order approx-
imation Λ1 sufficiently close to Λ = ψ−1(∂ τ̂ ∩ ranψ). Let F = { fi}4

i=1 be the set of four
triangular faces of the reference tetrahedron τ̂ , then

∂ τ̂ ∩ ranψ =
⋃

f∈F f ∩ ranψ.

Moreover, let Pf ⊃ f be the plane in which f ∈F lies. As discussed in Section 3.3 ranψ is
either a cone or one sheet of a two-sheeted hyperboloid. Consequently, Pf ∩ ranψ is a planar
section through a cone/hyperboloid and a bijective parametrization ω f : domω f → Pf ∩ ranψ

with domω f ⊆R is available. The set I f = ω
−1
f ( f ∩ ranψ) is obtained via following procedure.

Let {ri}n f
i=1 = ω

−1
f (∂ f ∩ ranψ) be the set of parameter points where the boundary of the triangle

f (composed of three lines) intersects the quadric ranψ . Assume that ri < ri+1, i = 1, . . . ,n f −1,
then

I f =
⋃

i=1,...,n f−1:ω f ( 1
2 (ri+ri+1))∈ f

(ri,ri+1). (31)

Note that, since ∂ f is composed of line segments, computing ∂ f ∩ ranψ amounts to solving
quadratic equations in one variable.

Our goal is to employ the parametrization ω f to build the line elements of Λ1. To this end,
consider the set of start points {sA

i }
m f
i=1 and end points {sB

i }
m f
i=1 such that

I f =
⋃m f

i=1
[sA

i ,s
B
i ]

with the number of segments m f ∈ N. These points are due to a uniform partitioning of the
intervals in Eq. (31). The set of line elements Λ

f
1 = {σi}m f

i=1 is obtained via

domψ 3 ρ
∗
σi
= ψ

−1 ◦ω f (s∗i ), i = 1, . . . ,m f ,∗ ∈ {A,B}

and using ρA
σi

as start points and ρB
σi

as end points. As already indicated, each line element has
to be sufficiently close to Λ. To quantify proximity, we use the condition

diamσi ≤ cK inf
s∈(sA

i ,s
B
i )

1∣∣κΛ(ψ−1 ◦ω f (s))
∣∣ (32)

where κΛ(ρ) is the curvature of Λ at ρ ∈ Λ and cK ∈ (0,1). If σi does not satisfy Eq. (32) it is
refined by adding the point 1

2(s
A
i +sB

i ) to the list of start and end points, until the criterion is met.
In our implementation the infimum in Eq. (32) is not computed exactly, but the minimum of a
fixed number of equally spaced sampling points is used. To compensate this, we use cK = 1/2
in all of the conducted tests. Finally, the set Λ1 is obtained by collecting the line elements of
each face, i.e. Λ1 =

⋃
f∈F Λ

f
1 .
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