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Abstract

We present high order surface finite element methods for the linear analysis of seven-
parameter shells. The special feature of these methods is that they work with the exact
geometry of the shell reference surface which can be given parametrically by a global map
or implicitly as the zero level-set of a level set function. Furthermore, a special treatment of
singular parametrizations is proposed. For the approximation of the shell displacement pa-
rameters we have implemented arbitrary order hierarchical shape functions on quadrilateral
and triangular meshes. The methods are verified by a convergence analysis in numerical
experiments.
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1 Introduction

Due to their efficient load-carrying capabilities, shell structures enjoy widespread use in a variety
of engineering applications. Therefore, a huge amount of research work has been devoted to the
development of shell models (e.g. [15, 11]), their formal justification (e.g. [12, 14, 13]), as well
as to the realization of numerical methods (e.g. [7, 9]). It is well known that shell structures are
sensitive to geometric imperfections [30]. Even worse, the approximation of the geometry leads
to wrong solutions in some situations, see the plate paradox investigated e.g. in [2]. Further-
more, e.g., in contact problems an exact description of smooth geometries is of interest. Among
others, these examples motivated us to develop shell finite element methods based on the exact
geometry. Therefore, the literature review concentrates on geometry representation.

Usually, the exact geometry is approximated. In the simplest case, planar facet elements are
deployed. However, those elements can only poorly represent curved structures and are not re-
liable due to a missing bending-stretching coupling on the element level. In order to represent
the geometry more accurately high order (often quadratic) shape functions are used. To our
best knowledge, exact geometry methods for shell analysis are restricted to the case where the
exact geometry is parametrically defined. A finite element method which allows for arbitrary
parametrizations is described in [1]. Therein, the field approximation based on Lagrange el-
ements is applied to a seven-parameter shell theory considering geometrical nonlinearities and
functionally graded shells. However, the actual computation of the arising integrals is carried out
by symbolic algebra subroutines written in MAPLE. In [31], an exact geometry method based
on the blending function method is presented. Furthermore, in the work [29] a finite element
method for geometrically nonlinear problems is developed. Therein, the exact geometry of the
shell is captured by an initial deformation of a flat reference configuration. However, since most
CAD systems use NURBS functions, it is reasonable to restrict the input parametrizations for
the shell analysis to NURBS [10]. This has the advantage that the parametrization is given as a
product of basis functions and coefficients. Thus, derivatives are easily computed if the deriva-
tives of the basis functions are known. Following the concept of Isogemetric Analysis, shell
finite elements based on different shell models were proposed in [24, 5, 23, 28] among others.
Therein, the reference surface is described by NURBS, just as the field approximation.

Shell problems can also be seen as one application of the more general concept of partial
differential equations defined on surfaces. We mention [17] for an overview of related finite ele-
ment methods. To our best knowledge the first exact geometry method for the Laplace-Beltrami
operator on implicitly defined surfaces was presented in [16]. Therein, the exact geometry of
closed smooth surfaces is parametrized over a space triangulation by means of the closest point
projection. Recently, a directional mapping based on predefined search directions was consid-
ered to construct high order geometry approximations [25, 20]. In [22], the search direction has
been tailored such that the exact geometry of smooth surfaces with boundaries is available in the
finite element analysis.

In the present paper we consider shells with parametrically and implicitly defined reference
surfaces. For both cases exact geometry finite element methods are presented. For implicitly
defined shells the reference surface is parametrized over a space triangulation following the de-
velopments presented in [22]. Thus, the implicit setting is reformulated to the parametrized
setting. The curvature of the reference surface is necessary within the considered variational
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formulation, and so are the second order partial derivatives of the parametrization. In the case of
a parametrically defined surface they are obtained by automatic differentiation based on hyper-
dual numbers [19]. For the case of an implicitly defined surface, we derive a formula such
that only the second order derivatives of the level-set function φ are needed. As a shell model
we use a displacement based seven-parameter model accounting for stretching, bending, shear
deformations, and through-the-thickness stretching (see [1, 8, 15]). We restrict ourselves to
a linear elastic analysis, i.e. small displacements, small rotations, small strains, and Hooke’s
law. The discretization of the shell deformation is done by means of high order hierarchical
H1-conforming shape functions. Our implementation allows for arbitrary polynomial orders.
Since our formulation is displacement based, various locking phenomena (membrane, shear and
thickness locking) occur, which can be seen in the examples in Section 4. Therefore, the low
order methods are very inefficient. Albeit the presence of locking effects, the proposed methods
converge to correct solutions. Using high order shape functions reduces the locking effects and
offers high convergence rates. Nevertheless, in many practical examples this approach might be
not very efficient, see e.g. [29] for a quadratic element with a efficient displacement based for-
mulation. As a further novelty, we propose a strategy for the modification of the shape functions
to tackle singular parametrizations where the determinant of the metric vanishes on some part
of the geometry. Following a similar strategy developed in the context of Isogeometric Analysis
[33], we modify the ansatz space by combining and skipping basis functions.

2 Differential geometry and shell model

In this section, we recall the differential geometry of thin-walled structures and introduce the
displacement based seven-parameter shell model. First, the geometry of the reference surface
is presented. Then, the reference surface is extended to the three-dimensional shell volume, for
which we present the geometric relations. In a next step, the three-dimensional shell problem is
introduced. Finally, the kinematics are restricted to a seven-parameter shell model. We remark
that the differential geometry in the context of thin-walled structures is exhaustively discussed
in [3] and [11], among others.

The underlying assumption in shell analysis is that the computational domain Ω ⊂ R3 has a
small extension in one coordinate compared to the two others. Thus, we assume that Ω is located
around a two-dimensional reference surface Ω̄.

2.1 Reference Surface

In the present paper, we consider shell reference surfaces which are given parametrically or
implicitly. In the former case we have a parametrization g : Ū ⊂ R2→ Ω̄ available with given
Ū . In the latter case, the reference surface is given as the zero-level set of a function φ : R3→R
inside a cuboid B

Ω̄ = {x ∈ B|φ(x) = 0}. (1)

For this setting, the normal vector to the surface is given by

ñ(x) =
∇φ(x)
||∇φ(x)||

. (2)
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In the numerical method, we will make use of a piecewise parametrization of the exact surface
over a space triangulation. Therefore, the implicit description of the reference surface is turned
into a parametric one. Thus, we consider the differential geometry of a parametrized surface in
the rest of this section.

Given the parametrization g, we can define the two covariant base vectors Gα := ∂g
∂θα , which

span the tangent plane to Ω̄. Here and in the following, Greek indices take the values 1 and 2
and Latin indices the values 1, 2, 3. With the base vectors we can define the unit normal vector

n =
G1×G2

||G1×G2||
, (3)

and the covariant coefficients of the metric Gαβ = Gα · Gβ. The contravariant coefficients of the

metric are given by [Gαβ
] = [Gαβ]

−1, where [Gαβ] is the coefficient matrix. The contravariant

base vectors can than be computed by Gα
= GαβGβ. Here, and in the following, the Einstein

summation convention applies. Whenever an index occurs once in an upper position and in a
lower position we sum over this index. Due to the definition of the normal vector as a unit vector,
we have n · n= 1. Taking the derivative with respect to θα, yields ∂

∂θα (n ·n) = n,α ·n+n ·n,α = 0.
Thus, the derivatives of the normal vector are in the tangent plane of the surface. Expressing the
derivatives of the normal vector trough a linear combination of the tangent vectors yields

n,α =−hβ

αGβ, (4)

with
hαβ =−Gα ·n,β and hβ

α = Gβγhαγ. (5)

These relations are known as the Weingarten equations, first established in [34]. The functions
hαβ = hβα are the coefficients of the second fundamental form. Furthermore, H = 1

2 hγ

γ is the
mean curvature and K = h1

1h2
2−h2

1h1
2 is the Gaussian curvature of the surface.

2.2 Geometry of the shell volume

In this section, we assume that we have a parametrization g of the reference surface Ω̄ available.
Then the parametrization of the shell volume Ω is given by

g : (Ū×T )⊂ R3→Ω⊂ R3

(θ1,θ2)×θ
3 7→ g(θ1,θ2,θ3) = g(θ1,θ2)+θ

3 n,
(6)

with the interval T = [−t/2, t/2], where t is the thickness of the shell. The geometric setting is
illustrated in Fig. 1. The first two base vectors in the shell volume are related to the base vectors
at the reference surface by

Gα = µβ

αGβ, (7)

where µβ

α =
(

δ
β

α−θ3hβ

α

)
are the components of the shifter tensor and δ

β

α is the Kronecker delta.
Furthermore, G3 = n. Thus, the covariant components of the metric are given by

Gαβ = µγ

α µϕ

β
Gγϕ = Gαβ−2 (θ3)hαβ +(θ3)2 hαγh

γ

β
,

Gα3 = G3α = 0, G33 = 1,
(8)
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Figure 1: Parametrization of the shell. The parameter space on the left is mapped to the physical
space on the right. The reference surface is parametrized by g, whereas the shell
volume is parametrized by g.

and the determinant of the metric is

dG = det([Gi j]) =
(
1−2(θ3)H +(θ3)2 K

)2
det([Gαβ]). (9)

The components of the contravariant metric are

[Gαβ] = [Gαβ]
−1 =

adj([Gαβ])−2 θ3 adj([hαβ])+(θ3)2adj([hαγh
γ

β
])

det([Gαβ]) (1−2Hθ3 +K(θ3)2)2

Gα3 = G3α = 0, G33 = 1,

(10)

where

adj([Gαβ]) =

[
G22 −G12
−G12 G11

]
(11)

is the adjugate matrix of [Gαβ].

2.3 The 3D shell problem

We continue with the statement of the three-dimensional shell problem, which is considered in
the present paper to be a problem of linearized elasticity on shell-like domains Ω with boundary
Γ. The three-dimensional elasticity problem reads: Find ũ : Ω→ R3 such that

∇ · σ̃σσ+ b̃ = 0 in Ω,

σ̃σσ = C̃ : ε̃εε in Ω,

ε̃εε =
1
2

(
∇ũ+(∇ũ)>

)
in Ω,

ũ = ũD on ΓD,

t̃ = t̃N on ΓN .

(12)

5



Preprint No 02/2018 Institute of Applied Mechanics

Here, σ̃σσ is the stress tensor, b̃ the bodyforce, C̃ the elasticity tensor, ε̃εε the strain tensor, ũD

the given Dirichlet datum on ΓD, and t̃N the given Neumann datum on ΓN . We require that
Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = /0. Moreover, we assume that ΓD is a subset of the lateral part of
the boundary Γ. We remark that all quantities with a tilde over them are defined on Ω without
reference to a specific parametrization. Furthermore, we have the following coordinate-free
displacement-based variational formulation of (12): Find ũ ∈V such that∫

Ω

ε̃εε(ṽ) : C̃ : ε̃εε(ũ) dx =
∫
Ω

ṽ · b̃ dx+
∫

ΓN

ṽ · t̃N dsx ∀ ṽ ∈V0, (13)

with V = {ũ ∈ [H1(Ω)]3 | ũ = ũD on ΓD} and V0 = {ṽ ∈ [H1(Ω)]3 | ṽ = 0 on ΓD}.
In order to solve (13), we rewrite the problem in parametric coordinates. Instead of solving

for ũ(x),x ∈ Ω, we seek the displacement field u(θ1,θ2,θ3) = ũ(g(θ1,θ2,θ3)) defined on the
parametric space. This change of variables applies to all quantities analogously. In the present
paper, we employ a linear isotropic material law, where the contravariant components of the
elasticity tensor C= Ci jkl Gi⊗G j⊗Gk⊗Gl for a shell-like body are given by

Cαβγϕ = λGαβGγϕ +µ
(

GαγGβϕ +GαϕGβγ

)
,

Cαβ33 = C33αβ = λGαβ,

C3α3β = C3αβ3 = Cα33β = Cα3β3 = µGαβ,

C3αβγ = Cα3βγ = Cαβ3γ = Cαβγ3 = 0,

C333α = C33α3 = C3α33 = Cα333 = 0,

C3333 = λ+2µ.

(14)

The Lamé constants are denoted with λ and µ.

2.4 Seven-parameter shell model

Up to this point, no approximation of the three-dimensional problem has been introduced. In
this section, we introduce the seven-parameter shell model [1, 8, 15] by restricting the through-
the-thickness kinematics of the shell to be of the form

u(θ1,θ2,θ3) =Vb(θ
3)

(1)
ui (θ

1,θ2) ei +Vt(θ
3)

(2)
ui (θ

1,θ2) ei +Vn(θ
3)

(n)
u (θ1,θ2) n, (15)

where we made use of the following through-the-thickness functions

Vb(θ
3) =

t−2θ3

2 t
,

Vt(θ
3) =

t +2θ3

2 t
,

Vn(θ
3) = 1− 4(θ3)2

t2 .

(16)
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In (15), we have introduced the seven parameters
(1)
ui (θ

1,θ2),
(2)
ui (θ

1,θ2), and
(n)
u (θ1,θ2), which

depend only on the position on the reference surface. While
(1)
ui physically represent the Cartesian

components of the displacement vector at the bottom surface (at θ3 = −t/2),
(2)
ui represent the

Cartesian components of the displacement vector at the top surface (at θ3 = t/2). The seventh

parameter
(n)
u (θ1,θ2) is included in order to circumvent Poisson thickness locking [6]. Inserting

(15) into the kinematic relations for the linearized strain tensor εεε = εi j Gi⊗G j yields

εαβ =
1
2

Ji
ς

(
µς

α

(
Vb

(1)
ui,β +Vt

(2)
ui,β

)
+µς

β

(
Vb

(1)
ui,α +Vt

(2)
ui,α

))
−µς

αhςβVn
(n)
u ,

εα3 = ε3α =
1
2

(
1
t

µς

αJi
ς

(
(2)
ui −

(1)
ui

)
+ Ji

3

(
Vb

(1)
ui,α +Vt

(2)
ui,α

)
+Vn

(n)
u,α

)
,

ε33 =
1
t

Ji
3

(
(2)
ui −

(1)
ui

)
− 8(θ3)

t2

(n)
u ,

(17)

with Ji
l = Gl · ei. From the expression of ε33 we see that the model can represent constant and

linear normal strain states through the thickness.

3 Finite Element Method

In this section, we describe the developed finite element methods. The methods used for para-
metrically and implicitly defined shells differ from each other. However, in both cases, we em-
ploy the reference element technique for the construction of hierarchical H1-conforming shape
functions of arbitrary degree [32]. These element shape functions are pieced together to FEM ba-
sis functions by establishing a connection between local and global degrees of freedom. Further-
more, we use tensor-product (degenerated for triangles) Gauss-Legendre quadrature rules on the
reference element for the integral evaluation. For shape functions of degree p, (p+1)2 in-plane
quadrature points are used on each element, whereas three quadrature points for the integration
across the thickness are employed. In the following, Φe denotes the local linear element map-

ping. The discretization of the seven parameters
{

(1)
ui ,

(2)
ui ,

(n)
u
}
∈ [H1(Ū)]3× [H1(Ū)]3×H1(Ū)

introduced in (15) is done by means of{
(1)
ui ,

(2)
ui ,

(n)
u
}
≈
{

(1)
uh|i,

(2)
uh|i,

(n)
uh

}
=

nS

∑
l=1

{
(1)
uil,

(2)
uil,

(n)
ul

}
Nl(θ

1,θ2), (18)

where
{

(1)
uil,

(2)
uil,

(n)
ul

}
are 7nS unknown coefficients and Nl are the FEM basis functions.

3.1 FEM for shells defined by singular parametrizations

In this section, we describe the finite element method for the case where the parametrization g of
the reference surface is explicitly available. The geometry mappings for this method are depicted
in Fig. 2. We use a quadrilateralization of the parametric plane Ū . In (13), the derivatives of

7
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ξ

η Φe

θ1

θ2

g

e1

e2
e3

Figure 2: Mappings for the parametric shell

g up to second order show up. In the present work we use an automatic differentiation schema
based on an augmented algebra. To this end, a hyper-dual number class has been implemented
providing operator overloading [19].

Special care has to be taken of singular parametrizations, where the determinant of the metric
vanishes on some part of the geometry. In particular, we focus on the case where one side of the
boundary is mapped to a single point in the real space. In this case, the stiffness matrix does not
need to exist. We modify the ansatz space by combining and skipping basis functions. In the
framework of Isogeometric Analysis, a similar strategy was considered in [33]. For presenta-
tional purposes, we assume that the boundary at the line θ1 = 0 in the parameter space is mapped
to a single point P0 in the real space,

g(0,θ2) = P0. (19)

Obviously,
G2 = 0 for θ

1 = 0, (20)

and the determinant of the metric is zero at the whole line θ1 = 0. We assume that apart from
the line θ1 = 0 the parametrization is regular. Furthermore, it is assumed that G11 > 0 and that

the Laurent expansion of G22
√〈

Gαβ

〉
about θ1 = 0 is of the form

G22
√〈

Gαβ

〉
=

a−1(θ
2)

θ1 +
∞

∑
i=0

(θ1)iai(θ
2). (21)

Investigation on the existence of∫
Ω̄

∇vh ·∇vh dx =
∫
Ū

((vh,1)
2G11 +2vh,1vh,2G12 +(vh,2)

2G22)
√〈

Gαβ

〉
dθ (22)

leads to the following modifications of the shape functions:

1. All vertex-based shape functions related to the vertices on θ1 = 0 are added up to one
single shape function.

8
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2. All edge-based shape functions related to the edges on θ1 = 0 are removed, i.e. the respec-
tive degrees of freedom are constrained to zero in the implementation.

3. No modification of the cell-based shape functions is made.

The problematic term is

(vh,2)
2 G22

√〈
Gαβ

〉
= (vh,2)

2 a−1(θ
2)

θ1 +higher order terms. (23)

We remark that vh are polynomials. The integral (22) exists if vh,2 = 0 holds, i.e. vh has to be
constant with respect to θ2 or vh = 0 on θ1 = 0. Writing

vh,2 =
p

∑
i=0

p

∑
j=0

ai j (θ
1)i (θ2) j, (24)

the integral does not exist if any a0 j 6= 0. The non-vanishing functions on θ1 = 0 are related to
the nodes and edges there. All cell-based shape functions vanish on the boundary. A function vh
which is constant with respect to θ2 can be constructed summing up all node-based functions.
This gives one new shape function. The edge-based shape functions are of higher order with
respect to θ2 on θ1 = 0, they are thus eliminated.

3.2 FEM for implicitly defined shells

In the case of an implicitly defined reference surface, the parametrization g over a flat parameter
domain is not explicitly available. Therefore, the exact geometry is parametrized over a space
triangulation Th. To this end, we follow the strategy developed in [22]. The geometric concept is
illustrated for the example of a sphere in Fig. 3. As a starting point we assume that a triangulation
in space Th close to the exact surface is available. For each triangle τe ∈ Th we have the standard
affine mapping Φe which maps the reference triangle τR to τe. We denote the piecewise flat
surface defined by the triangulation by Ω̄h. In order to lift a point x ∈ Ω̄h to the exact surface we
introduce the mapping a in the following implicit way

a : Ω̄h → Ω̄

x 7→ a(x) = x+ r(x) s(x) such that φ(a(x)) = 0.
(25)

Here, s(x) are predefined search directions. The mapping a is implicitly defined because r(x) is
not explicitly known and has to be computed in each evaluation of a such that φ(a(x)) = 0. We
specify the search directions in (25) as follows. Let V denote the set of all vertices of Th. We
set

s̃v(x) =
∇φ(x)
||∇φ(x)||

for x ∈ V , (26)

where ∇φ is the usual gradient of the level-set function φ in R3. To preserve the exact geometry,
we apply a modification at the vertices on the boundary of B. Thus, we set

sv(x) =

{
s̃v(x)− (s̃v(x) ·n∂B(x))n∂B(x) for x ∈ V ∩∂B
s̃v(x) else

, (27)

9
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θ1

θ2

(0,0) (1,0)

(0,1)

τR

Φe ge

a

τe a(τe)

Figure 3: Mappings Φe, a, and ge = a◦Φe between the reference triangle τR, the element τe ∈ Th,
and a(τe)

where n∂B are the normal vectors to ∂B. Then the search direction field s(x) defined on Ω̄h is
obtained by linear interpolation of sv(x). Thus, the search direction field s is given as a linear
finite element function. We remark that the mapping (25) requires the solution of a non-linear
root finding problem, which is numerically realized with the Newton-Raphson method. We
obtain an element-wise parametrization ge of Ω̄ over the reference element τR by

ge : τ
R → Ω̄

(θ1,θ2) 7→ a(Φe(θ
1,θ2)).

(28)

The evaluation of the integrals in (13) requires x = ge(θ1,θ2), the base vectors Gα and the
coefficients of the second fundamental form hαβ. All other geometric quantities can be computed
from them by algebraic operations. The formula

Gα = Φ
e
,α−

Φe
,α ·n+ r s,α ·n

s ·n
s+ r s,α (29)

for the computation of the base vectors can be found in [22]. Taking into account the dependen-
cies

ñ(x) = ñ(ge(θ1,θ2)) = n(θ1,θ2). (30)

the chain rule results in
n,β = ∇ñ ·Gβ . (31)

10
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Together with (5) the coefficients of the second fundamental form can be computed by

hαβ =−Gα · (∇ñ ·Gβ) . (32)

For the gradient of the normal vector we have

∇ñ =
∇∇φ

||∇φ||
− ∇φ⊗∇φ

||∇φ||3
=

∇∇φ− ñ⊗ ñ
||∇φ||

. (33)

Thus, we have to provide the second order derivatives of the level-set function φ in the imple-
mentation.

In order to clarify the explanations on the implicit method, we remark that the space trian-
gulation represents an intermediate step in the method and does not define the geometry. The
key ingredient of the implicit method is the mapping a defined in (25), which maps the space
triangulation to the exact geometry. However, this mapping is only implicitly defined and a one
dimensional root finding problem has to be solved for the evaluation. This is no problem because
the integrals are approximated by quadrature. Thus, only a point-wise evaluation is necessary.

4 Numerical Results

In this section, we demonstrate the correct implementation of the developed methods and their
capabilities. The verification examples are based on the method of manufactured solutions in
order to have exact solutions to compare with. As an error measure we use

eu =

√√√√∑

∫
Ω̄

({
(1)
ui ,

(2)
ui ,

(n)
u
}

M
−
{

(1)
ui ,

(2)
ui ,

(n)
u
}

h

)2

dx, (34)

where
{

(1)
ui ,

(2)
ui ,

(n)
u
}

M
is the exact manufactured solution and

{
(1)
ui ,

(2)
ui ,

(n)
u
}

h
the numerical solu-

tion. In (34), the sum has to be understood over the seven shell model parameters.

4.1 Verification example for a parametrically defined shell

In order to verify the implementation, we employ the method of manufactured solutions, which
has been demonstrated in [21] for parametrically defined surfaces. In this example, we use the
reference surface defined by the parametrization

x =
2θ1θ2 +2θ1−θ2

3
,

y =
−θ1θ2 +2θ1 +2θ2

3
,

z =
2θ1θ2−θ1 +2θ2

3
,

(35)

and (θ1,θ2) ∈ [0,0.56]× [0,0.65], see Fig. 4. The shell has the thickness t = 0.01. The Young’s
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Figure 4: Geometry and bodyforce at the mid-surface of the verifiction example for the paramet-
rically defined shell

modulus is E = 8 · 104, whereas Poisson’s ration is ν = 0.25. We study the convergence of
the method under uniform mesh refinement. We remark that we have checked the convergence

for different displacement fields. Here, we present the results for the prescribed solution
(1)
u1 =

cos(20θ1),
(1)
u2 = 0,

(1)
u3 = sin(10θ2),

(2)
u1 = sin(10θ1 θ2),

(2)
u2 = 0,

(2)
u3 = 0, and

(n)
u = sin(10θ1 θ2).

A regular mesh obtained by uniform subdivision of the parameter space into 2×2 = 4 elements
represents refinement level 0. We get the subsequent refinement levels by uniform subdivision
of the previous level. The results of the convergence study are depicted in Fig. 5. We observe
optimal convergence rates, i.e. O(hp+1)-convergence, where h is a characteristic element length.

4.2 Verification example for an implicitly defined shell

The implementation of the FEM for an implicitly defined shell is verified. To this end, we
consider a manufactured solution on a torus. The geometry of the considered surface is defined
by the zero level-set of the function

φ(x,y,z) = d(x,y,z) =
√

(
√

x2 + z2−R)2 + y2− r, r = 0.4, R = 0.8, (36)

and B = [−1.5,0.3]× [−0.5,0.5]× [0,1.1]. The problem geometry is illustrated in Fig. 6. As an
important feature, we remark that d is the signed distance function of the torus. In order to come
up with a manufactured solution, we construct a displacement field with respect to Cartesian
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Figure 5: Convergence results for the parametrically defined shell

coordinates. This displacement field should fulfill the kinematic assumptions introduced in (15).
We note that the closest point projection

x = x̃−d ∇d (37)

is explicitly available, which maps x̃ ∈ R3 to a point x ∈ Ω̄ on the reference surface. Thus, a
point x̃ has the decomposition (x,d). This allows us to adapt (15) to

ũ(x̃) =Vb(d)
(1)
ui (x) ei +Vt(d)

(2)
ui (x) ei +Vn(d)

(n)
u (x) ∇d, (38)

since n = ∇d. With the displacement field given in (38), the source terms follow easily from the
relations in (12). We remark that we have checked the convergence for different displacement
fields. Here, we present the results for the prescribed solution

(2)
u1 =

(1)
u1 = (0.3− x)z(1.1− z). (39)

Again, we study the convergence rates under uniform mesh refinement. We remark that, because
of the mapping of Ω̄h to Ω̄ used in the method, it is sufficient to subdivide the triangles of Th in
a refinement step. Thus, for all refinement levels Ω̄h is the one and the same surface. The results
of the convergence study are given in Fig. 7. We observe optimal convergence rates.

4.3 Pinched hemisphere

In this example, we consider the pinched hemisphere problem in order to test the suggestion
how to handle a singular parametrization. This example is taken from the popular shell obstacle
course [4]. The reference surface is described by

x = cosθ
1 cosθ

2,

y = sinθ
1 cosθ

2,

z = sinθ
2,

(40)

13
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Figure 6: Triangulations for the deformed torus example: the base triangulation (upper left), the
mapped triangulation (upper right), side view (lower left), and top view (lower right)

and (θ1,θ2) ∈ [0,2π]× [0,π/2]. This parametrization fulfills the assumptions in Section 3.1.
The material properties and the general problem setup are shown in Fig. 8. The edge of the
hemisphere is unconstrained and the four radial forces have alternating signs such that the sum
of the applied forces is zero. We investigate the radial displacement at the loaded points. In [4],
the reference displacement of ur = 0.0924 is given. Our results are given in Table 1. Obviously,
the low order methods underestimate the displacement significantly for the considered meshes.
This is expected as the low order elements (linear, quadratic, cubic) can only poorly represent
rigid body rotations and are affected by locking. However, the high order methods (quartic and
higher) converge quickly. We further investigate the ability to represent rigid body motions by
inspection of the eigenvalues of the stiffness matrix. The three rigid body translations can be
represented exactly by the elements, resulting in three zero (up to numerical round-off errors)
eigenvalues. As the rigid body rotations are only approximated the next three eigenvalues are

14
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Figure 7: Convergence results for the implicitly defined shell. Refinement level 0 is the base
triangulation.

Number of elements 16 64 256

Linear 0.0000039 0.0000112 0.0000373
Quadratic 0.0000215 0.0001765 0.0026473

Cubic 0.0001254 0.0203645 0.0823567
Quartic 0.0344561 0.0868342 0.0921721
Quintic 0.0591080 0.0919079 0.0924264
Sextic 0.0915553 0.0923272 0.0924901
Septic 0.0917929 0.0924269 0.0925234
Octic 0.0923605 0.0924707 0.0925471

Table 1: Radial displacement at the loaded points of the pinched hemisphere

nonzero. The sixth smallest eigenvalues for different meshes and polynomial orders are given in
Table 2. As expected they decrease rapidly with increasing polynomial order.

Furthermore, we have solved the pinched hemisphere with the implicit formulation. The
triangulations shown in Fig. 9 have been used. As an input we have given the four element
triangulation where all vertices are on the reference surface. All other meshes have been obtained
by uniform refinement. In contrast to a classical method, there is no need to better approximate
the geometry by these triangulations, since they are mapped to the exact geometry within the
method. In Table 3 the computed radial displacements at the loaded points are given. These
results are similar to the results obtained by the parametric method given in Table 1.

4.4 Scordelis-Lo roof

We consider the Scordelis-Lo roof problem, which is also an example from the shell obstacle
course [4]. It is a popular benchmark test to assess the performance of finite elements regarding
complex membrane strain states. The cylindrical roof (radius r = 25) is supported by rigid
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E = 6.825 ·107

ν = 0.3

R = 10

t = 0.04

F = 2

Figure 8: Problem description of the pinched hemisphere problem

Number of elements 16 64 256

Linear 1.4e+05 1.5e+04 1.1e+03
Quadratic 1.1e+03 2.2e+01 3.8e-01

Cubic 1.8e+01 1.5e-01 1.0e-03
Quartic 1.7e-01 2.2e-04 2.4e-07
Quintic 1.0e-03 2.7e-07 3.9e-08
Sextic 1.1e-05 4.7e-07 1.8e-07
Septic 8.8e-07 6.5e-07 8.8e-08
Octic 7.6e-06 8.9e-08 4.4e-08

Table 2: Sixth smallest eigenvalue of the stiffness matrix of the pinched hemisphere

diaphragms at the ends (x = 0 and x = 50), i.e. uy = uz = 0. All other surfaces are free. The
geometry and the material parameters are depicted in Fig. 10. The structure is subjected to
gravity loading with b =−ez 360. For the parametrization of the reference surface, we use

x = 50κ(θ2),

y = 25sin
(

40πκ(θ1)

180

)
,

z = 25cos
(

40πκ(θ1)

180

)
,

(41)

with the function

κ(τ) = τ
(
(3−2τ)τ+b(1−3τ+2τ

2)
)

with b =
1

100
. (42)

We use the function κ in order to capture the boundary layer. It has the properties κ(0) = 0,
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(a) 4 elements (b) 16 elements (c) 64 elements (d) 256 elements

Figure 9: Triangulations for the implicit pinched hemisphere problem

Number of elements 4 16 64 256

Linear 0.0000011 0.0000035 0.0000134 0.0000526
Quadratic 0.0000062 0.0000398 0.0005833 0.0075576

Cubic 0.0000322 0.0011217 0.0262481 0.0877841
Quartic 0.0002854 0.0125512 0.0878863 0.0923755
Quintic 0.0016276 0.0607160 0.0922467 0.0924516
Sextic 0.0058856 0.0894647 0.0924056 0.0924764
Septic 0.0224888 0.0920513 0.0924452 0.0924957
Octic 0.0572128 0.0923485 0.0924647 0.0925141

Table 3: Radial displacement at the loaded points of the pinched hemisphere

κ(1) = 1, κ′(0) = κ′(1) = b and is illustrated in Fig. 11. The parameter space is given by
θ1 ∈ [0,1] and θ2 ∈ [0,1]. In Fig. 10, a 16×16 = 256 element mesh mapped to the real space is
illustrated.

We study the vertical displacement of point A, which is located in the middle of one free edge
and on the mid-surface. We remark that the vertical displacement varies considerably trough-the-
thickness. The results for different ansatz orders and meshes are given in Table 4. It is evident
that the low order methods are affected by locking. The results obtained with linear ansatz
functions are far from the converged solution uz = −0.3014. Raising the ansatz order reduces
the locking phenomena. Without resorting to other techniques to reduce the locking, we advise
to use at least quartic ansatz functions. In [27], a reference value uz = −0.3024 for the vertical
displacement at point A is reported. For a shell model based on equivalent seven-parameter
kinematics, uz =−0.3008 is computed in [18]. Therefore, our results are in accordance with the
values found in literature.

4.5 Gyroid

In this example, we consider the deformation of a shell structure where the reference surface is
part of a gyroid, see Fig. 12. An approximation of a gyroid is given by the level-set function

φ(x,y,z) = sin(x)cos(y)+ sin(y)cos(z)+ sin(z)cos(x). (43)

17
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E = 4.32 ·108

ν = 0

R = 25

L = 50

t = 0.25

Figure 10: Problem description of the Scordelis-Lo roof problem

The considered shell lies in B = [0,2]× [−0.5,0.5]× [−0.5,0.5]. The shell structure is fixed at
the plane x = 0. We assume a thickness t = 0.03.

We study the static deformation due to a volume load b = ez 107. To this end, we use three
different surface meshes, which are depicted in Fig. 13. The coarsest mesh is obtained by
the Marching Cubes Algorithm [26] and mesh smoothing. The other two meshes are obtained
by uniform refinement of the coarsest mesh. We remark that, in the analysis, each mesh is
mapped to the exact surface by means of (28). Table 5 illustrates the convergence of the vertical
displacement uz at the point [2,0.5,−0.25]. Obviously, the results obtained by linear ansatz
functions underestimate the deformation tremendously for the considered meshes. The use of
quadratic ansatz functions reduces the locking considerably. In view of the results obtained by
the octic ansatz functions, we can accept a converged value of uz = 1.8812.

5 Conclusion

In this paper, high order finite element methods for shell analysis have been presented. The
underlying shell model is a displacement based seven-parameter model. As a special feature,
the methods incorporate the exact geometry of parametrically and implicitly defined reference
surfaces. We have shown the capabilities of the methods in five examples. In order to assess the
convergence behavior, the method of manufactured solutions has been utilized. In all numerical
experiments, we observe optimal convergence rates in the asymptotic range.

In the present work we used a purely displacement based formulation. Thus, various locking
phenomena reduce the efficiency of the method when using low order approximations. In order
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Figure 11: The function κ for capturing the boundary layer

Number of elements 4 16 64 256

Linear -0.0026073 -0.0016144 -0.0044508 -0.0126987
Quadratic -0.0019732 -0.0305159 -0.1354229 -0.2741197

Cubic -0.0301026 -0.2470338 -0.2968267 -0.3012622
Quartic -0.1675085 -0.2967069 -0.3012862 -0.3014015
Quintic -0.2888778 -0.3012049 -0.3013835 -0.3014021
Sextic -0.2979929 -0.3013161 -0.3014014 -0.3014026
Septic -0.3014056 -0.3013603 -0.3014014 -0.3014026
Octic -0.3012498 -0.3013926 -0.3014021 -0.3014026

Table 4: Vertical displacement at point A of the Scordelis-Lo roof

to reduce locking phenomena, we have resorted to high order shape functions (our implemen-
tation allows for arbitrary high order). As this might be not very efficient in many examples, it
would be interesting to develop low order locking-free elements based on the exact geometry in
future work.

Moreover, the use of a seven-parameter shell model allowed us to use H1-conforming ansatz
and test spaces. This might not be appropriate for other shell models like Kirchhoff-Love type
models or Reissner-Mindlin type models. In the former, typically, H2-conforming elements are
needed, whereas in the latter elements are necessary providing a vector field tangential to the
surface. The development of such elements for implicitly defined shells should receive further
attention.
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