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Abstract

Boundary element methods (BEM) have obtained a mature state in the last years so that
industrial applications are possible. However, to treat real world problems so-called fast
methods are necessary to reduce the original quadratic complexity to an almost linear order.
Essentially, two methods are popular, the so-called fast multipole method, which uses a
kernel expansion, and the algebraical approach based on H -matrices with the adaptive cross
approximation (ACA) to compress the matrix blocks. The latter is frequently used for
scalar-valued problems, but for vector-valued problems a modification of the pivot strategy
is required. It has been suggested to search for the largest singular value out of all minimal
singular values of the fundamental solution blocks. This strategy has been proposed by
Rjasanow and Weggler and is studied here for elastostatics and elastodynamics. It is shown
with numerical experiments that this strategy is mostly robust and results in an almost linear
complexity.
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1 Introduction

The boundary element method (BEM) is well developed for many problem classes in engineer-
ing. In the present work, this method is applied on the numerical solution of boundary value
problems in 3-d elastostatics and elastodynamics. The textbook such as Ref. [11] provides a
comprehensive review of BEM applications in elasticity. The first boundary integral formulation
for elastodynamics in Laplace or Fourier domain has been published by Cruse and Rizzo [15]
and Domínguez [16]. A detailed review on elastodynamic boundary element formulations can
be found in the articles of Beskos [7, 8] and Costabel [14]. For both, elastostatics and elas-
todynamics collocation based BE formulations are available (e.g. those referenced above) and
Galerkin based formulations as well, e.g. Ref. [9].

With the improved capabilities of computer systems, larger problems can be solved. How-
ever, by increasing the size of the problem, the effort of solving fully populated matrices scales
quadratically. Even though better computer hardware exists, the BEM reaches its limits. Hence,
fast methods have become popular in the field of applied mathematics and engineering in partic-
ular. The origins of such methods, i.e. asymptotically optimal approximations of fully populated
matrices, can be traced back to Rokhlin [38]. For the first time an algorithm was presented which
scales like O(N logN), where N is the number of degrees of freedom. Subsequently, the fast mul-
tipole method (FMM) has been developed in Ref. [22] for some large-scale N-body problems
and has been significantly improved in Ref. [23]. In the work of Of et al. [35] the FMM has
been applied to elastostatic problems based on a Galerkin BEM discretization. The extension
to elastodynamics in Fourier domain has been published in Ref. [12] based on a collocation
approach. A black box FMM approach for scalar-valued problems has been proposed by Fong
and Darve [18]. Other approaches are panel clustering (see Ref. [27]) and the wavelet based
BEM [1]. The latter method produces sparse matrices based on orthogonal systems of wavelet
like functions.

All these methodologies perform matrix-vector multiplications in almost linear complexity.
However, the only approach that enables all matrix operations (matrix-vector product, matrix-
matrix product, matrix-matrix addition, matrix inversion, LU decomposition, etc.) of almost
linear complexity are the so-called H -matrices introduced by Hackbusch [25]. They can be un-
derstood as algebraic structure reflecting a geometrically motivated partitioning into subblocks.
Each subblock is classified to be either admissible or not. A further development of the H -
matrices are the H 2-matrices [26].

After constructing an H -matrix, admissible blocks are approximated. All previously men-
tioned methods, such as FMM, panel clustering, and wavelet based methods approximate dis-
crete integral operators in a very specific way. They deal with the analytical decomposition of
integral kernels and, hence, the procedure becomes problem dependent. This fact holds also for
the coding of this class of methodologies. A second class are the so-called algebraic approxima-
tion methods. The singular value decomposition (SVD) leads to the optimal low-rank approx-
imation, however, with O(N3) complexity. Less expensive algorithms are the mosaic skeleton
method developed in Ref. [20] and the successively developed adaptive cross approximation
(ACA) [3]. In the present work, the application of the ACA to elastic problems is examined.
It has been applied by Bebendorf and Rjasanow [2, 5] to the approximation of BEM matrices
for the first time. The outstanding feature of ACA compared to SVD is that it requires only the
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evaluation of some original matrix entries and the approximation is still almost optimal. For this
reason, it can be used in a black box like manner. Its coding and adaptation to existing codes
is straightforward. The algorithm is robust and it is based on a stopping criterion depending on
a prescribed approximation accuracy ε. In elasticity, the ACA has been successfully applied to
the solution of mixed elastostatic boundary value problems by Bebendorf and Grzhibovskis [4].
In this work, an error estimate for approximated Galerkin matrices has been presented. Further-
more, an improved pivoting strategy is given, such that the ACA algorithm will not fail in some
special cases. To overcome such problems a variant called hybrid cross approximation (HCA)
has been developed by Börm and Grasedyck [10]. An engineering approach for the acceleration
of elastostatic problems has been presented in Ref. [31]. In Refs. [6] and [24], the approximation
of H -matrices generated by the ACA has been efficiently applied to crack problems in elastic
media solved by using a collocation boundary element formulation.

This listing suggests that ACA based BE formulations are readily available for applications.
However, a crucial point remains to be discussed for vector-valued problems. To use ACA ef-
ficiently with respect to CPU time, a partially-pivoted algorithm must be used. The choice of
the pivot element is not obvious for vector-valued problems like elasticity. The ACA algorithm
assumes that the approximated function is smooth, which is not true if the matrix entries for the
different directions are considered. For each direction it would hold and, therefore, in Ref. [34]
the overall matrix has been partitioned in each coordinate direction. This pivot strategy is sub-
optimal. An improved strategy is to find a suitable pivot element consisting of all entries of the
fundamental solution. This has been proposed and discussed by Rjasanow and Weggler [37] for
electromagnetic problems and later used in Ref. [13] for elastodynamics.

This work is dedicated towards applying the improved pivot strategy of the partially-pivoted
ACA to elastostatics and elastodynamics. As well, the studies concerning the accuracy in rela-
tion to efficiency are shown. In the following, a collocation approach is used as this is the most
common approach in engineering.

2 Governing Equations

The principal objective in this section is to formulate the basic equations of three-dimensional
elastic waves, its static specialisation, and the corresponding boundary integral and algebraic
equations. To obtain the elastodynamic equation Cauchy’s first law of motion and the theory of
linear elasticity is used.

2.1 Problem setting

Consider a continuous homogeneous isotropic elastic body Ω ⊂ R3 with a Lipschitz boundary
Γ := ∂Ω. Throughout this paper, we treat the elastodynamic wave propagation in the Laplace-
domain in the absence of body forces. Assuming vanishing initial condition, the elastodynamic
wave equation for the unknown displacement field u(x) is the Lamé-Navier equation

µ∆u(x,s)+(λ+µ)graddivu(x,s)−ρs2u(x,s) = 0 x ∈Ω (1)

with the Laplace parameter s ∈ C satisfying ℜ(s)> 0. The mass density of the body is denoted
by ρ, and λ and µ are the Lamé constants that are related to the elasticity modulus E and the
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Poisson ratio ν of the material

λ =
Eν

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

. (2)

In engineering, the elastodynamic equation in frequency-domain is more frequently employed
by using a Fourier transform instead of Laplace transform. We gain the displacement equation
of motion for time-harmonic problems by replacing s in (1) with iω, where ω is the angular
frequency.

On the boundary we take given displacement data gD on ΓD and traction data gN on ΓN ,
respectively, sucht that Γ = ΓD∪ΓN and ΓD∩ΓN = /0. Thus, the boundary conditions are given
by

u(x) = gD(x) x ∈ ΓD, (3)

t(x) := Tx u(x) = gN(x) x ∈ ΓN . (4)

The Neumann trace for elastodynamic problems is described by the traction operator

(Tx u)(x) = λdivu(x)n(x)+2µ
∂

∂n
u(x)+µn(x)× curlu(x). (5)

If the inertia term in (1) vanishes, the equation reduces to the displacement equation of elasto-
statics

µ∆u(x)+(λ+µ)graddivu(x) = 0 x ∈Ω. (6)

2.2 Boundary integral formulations

The unknown displacements in the domain are related to the boundary data by the representation
formula, also known as the Somigliana identity

u(x̃) =
∫
Γ

U(x̃,y)t(y)dsy−
∫
Γ

(TyU)(x̃,y)u(y)dsy x̃ ∈Ω . (7)

The displacement and traction fundamental solution are denoted with U(x̃,y) and (TyU)(x̃,y),
respectively, and can be found, e.g. in Refs. [15] or [19]. Applying the Dirichlet trace to the
representation formula (7) and using the operator notation we obtain the first boundary integral
equation

C (x)u(x) = (V t)(x)− (K u)(x) x ∈ Γ. (8)

The introduced operators are the single layer operator V , the double layer operator K and the
integral-free term C . Aside from the direct boundary integral equation (8) where the integral
operators acts directly on the boundary data, the so-called indirect approach exists. For this
approach, the same integral operators are applied to more or less arbitrary density functions.

Given an arbitrary density function w and v we define the single layer potential (SLP)

u(x̃) =
(

Ṽ w
)
(x̃) =

∫
Γ

U(x̃,y)w(y)dsy x̃ ∈Ω (9)
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and the double layer potential (DLP)

u(x̃) =
(

K̃ v
)
(x̃) =

∫
Γ

(TyU)(x̃,y)v(y)dsy x̃ ∈Ω . (10)

Taking the Dirichlet trace γ0 of (9) for x ∈ Γ results in the weakly singular boundary integral
operator

(V w)(x) := γ0

(
Ṽ w

)
(x) =

∫
Γ

U(x,y)w(y)dsy x ∈ Γ. (11)

By applying the Dirichlet trace operator to the double layer potential (10) we have the represen-
tation

γ0

(
K̃ v
)
(x) = (−I+C (x))v(x)+(K v)(x) x ∈ Γ (12)

with the double layer operator

(K v)(x) := lim
ε→0

∫
y∈Γ:y−x≥ε

(TyU)(x,y)v(y)dsy x ∈ Γ. (13)

The computation of the integral free term C is given in detail in the work of Mantič [32] or
Hartmann [29]. The above sketched formulations are formally equivalent for elastodynamics
and elastostatics but different fundamental solutions have to be used. Clearly, in the latter case
there is no dependency on the Laplace parameter s.

2.3 Spatial discretization

The governing equations are discussed in Laplace domain, therefore only a spatial discretization
has to be considered. To solve the boundary integral equation the boundary is decomposed in a
finite number of triangles

Γ≈ Γh =
NE⋃

k=1

τk, (14)

where NE denotes the total number of elements. We approximate the traction field t and the
density w by constant discontinuous functions ϕ0

t(x)≈ th(x) =
Ne

∑
j=1

ϕ
0
j(x)t j, w(x)≈ wh(x) =

Ne

∑
j=1

ϕ
0
j(x)w j, (15)

and the displacement field u and the density v by linear continuous functions ϕ1

u(x)≈ uh(x) =
Nn

∑
j=1

ϕ
1
j(x)u j, v(x)≈ vh(x) =

Nn

∑
j=1

ϕ
1
j(x)v j. (16)

In order to get a fully discrete representation of the boundary integral equation, we make use
of the collocation method. For the unknown tractions we take the collocation point xi at the
center of the element and for the unknown displacements we collocate at the element nodes.
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Therefore, Ne is the number of elements and Nn the number of vertices. Consequently, the
discretized integral equation of the direct representation formula (8) is

C (xi)u(xi) =
Ne

∑
j=1

∫
supp(ϕ0

j)

U(xi,y)ϕ0
j(y)dsyt j−

Nn

∑
j=1

−
∫

supp(ϕ1
j)

(TyU)(xi,y)ϕ1
j(y)dsyu j . (17)

The integral over the traction fundamental solution exists only in the sense of a Cauchy principal
value because of its strong singularity and is denoted by the symbol−∫ . Note that the displace-
ment and surface traction field are vector fields and, therefore, u j, t j ∈ K3. If we consider an
elastostatic problem the entries are real-valued, i.e. K=R and in the case of elastodynamics the
field variables are complex-valued, meaning K= C.

Regarding the indirect approach the discrete version of the SLP is

u(xi) =
Ne

∑
j=1

∫
supp(ϕ0

j)

U(xi,y)ϕ0
j(y)dsyw j , (18)

and that of the DLP reads as

u(xi) =
Nn

∑
j=1

−
∫

supp(ϕ1
j)

(TyU)(xi,y)ϕ1
j(y)dsyv j +(C (xi)− I)v(xi) . (19)

Accordingly, the discretized single and double layer integral operator are defined by

Vi j :=
∫

supp(ϕ0
j)

U(xi,y)ϕ0
j(y)dsy (20)

and

Ki j := −
∫

supp(ϕ1
j)

(TyU)(xi,y)ϕ1
j(y)dsy , (21)

respectively. The fundamental solutions are three-by-three tensors and thus for each index i and
j the operators Vi j,Ki j ∈K3×3.

Finally, the discretization of the boundary integral equations lead in general to the linear
system of the form

A y = f , A ∈KN×N , y, f ∈KN , (22)

where N denotes the number of degrees of freedom (DOFs) and one finds N = 3Np, with Np

the number of collocation points. The discrete linear system of the direct approach is achieved
through rearranging the boundary data. The known data are assembled in f and the unknowns
in y. It may be noted that the double layer operator is regularized with partial integration.
This approach can be found for elastostatics in Ref. [28], which can be transferred directly
to elastodynamics as presented in Ref. [30]. As a result, weakly singular integral equations are
obtained. The weakly singular integrals are treated with the formulas of Erichsen and Sauter [17]
and all regular integrals with the standard Gauss quadrature. In the case of a mixed boundary
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value problem, one gains an equation as in (22) but then A is divided into parts that are related
to those of the SLP and those of the DLP. A Schur complement based solver is then used (see,
e.g. Ref. [30]). Nevertheless, the following discussion on ACA applies analogously to the
submatrices of A .

3 Adaptive Cross Approximation

As discussed in the previous section, the boundary element discretization of boundary value
problems leads to large fully populated matrices A ∈KN×N . Methods like fast multipole [22, 38]
or panel clustering [27] generates a low-rank approximation by replacing the kernel function of
the integral operator. In contrast to these methods the singular value decomposition (SVD) and
the adaptive cross approximation (ACA) [2, 5] operates purely algebraic. A low-rank approxi-
mation of matrix A ∈Km×n with rank k and k(m+n)� mn is defined to be

A≈ Sk = UVH with U ∈Km×k and V ∈Kn×k . (23)

Hence, the memory requirement is reduced from O(mn) to O(k(m+ n)). The ACA algorithm
uses only few of the original matrix entries to compute the low-rank matrix. Compared to the
SVD, which would find the lowest rank for a given accuracy, it is not necessary to compute
the whole matrix beforehand. The algorithm will detect adaptively which rows and columns
have to be computed. Incidentally, the computational complexity of order O(N3) makes the
SVD unattractive. In contrast, the ACA algorithm is less expensive and very powerful. The only
condition of the algorithm is that the discrete integral operators have sufficiently smooth kernels.

3.1 Clustering

The first step prior to approximate A by use of the adaptive cross approximation is to structure
the computational domain. For this purpose the hierarchical matrices or H -matrices are used.
We refer the reader to Refs. [3, 21, 25] for a deeper discussion of this subject. The concept basi-
cally is to decompose the matrix into subblocks first and then perform a low-rank approximation
to suitable subblocks. Relating to the first point, the partitioning of the matrix is conducted by a
recursive subdivision of the geometry. This implies a decomposition of the array of degrees of
freedom based on a certain strategy. The index set I0, e.g. I0 = {1, ....,Np}, is subdivided into
two son clusters based on the principal component analysis (PCA). Recursively performing this
procedure generates a balanced cluster tree. A son cluster is not further subdivided if it contains
at most a prescribed size bmin and is referred to as leaf. After creating the cluster tree, the block
cluster tree or the hierarchical structure of the matrix is constructed with the aid of the distance
criterion

min{diam(Clx),diam(Cly)} ≤ ηdist(Clx,Cly) (24)

with a given parameter η ∈ R+. The corresponding index set to cluster Clx is denoted by I and
to cluster Cly by J . In this way, the indices of the matrix are permuted in such a way that a hi-
erarchy of blocks arises, which are classified as far-field or near-field. A subblock of the matrix
A := AI × J is admissible and is called far-field if the criterion (24) is fulfilled. Subsequently,
we concentrate only on admissible blocks of the hierarchical matrix and approximate them by
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the ACA. If a cluster pair does not satisfy condition (24), then the entries of the correspond-
ing matrix block are computed by the standard boundary element method and stored without
approximation. In this case, the block is classified as near-field.

3.2 Matrix-valued ACA algorithm

The partial differential equations of elastostatics (6) or elastodynamics (1) are equations with
vector-valued unknowns. Therefore, the corresponding system matrix is constructed by subma-
trices of size 3× 3. Each pair of nodes on the mesh define one submatrix. To make use of the
ACA on this kind of problems the conventional algorithm has to be partially modified. In the
work of Messner and Schanz [34] the ACA has been applied to elastodynamics. In this study, the
matrix-valued problem has been decomposed in each direction. As a consequence, the system
matrix has been partitioned into nine subproblems and, afterwards, each subproblem has been
approximated with conventional ACA independently. Our intention is to extend the ACA algo-
rithm to avoid this reordering of the system matrix and to use the conventional ACA algorithm
straightforward. The essential component is to define a suitable pivot element.

Before we discuss the ACA algorithm for vector-valued problems in more detail we briefly
recap the conventional ACA introduced by Bebendorf and Rjasanow [2, 5]. In the literature
two different approaches of the algorithm are known, the fully-pivoted and the partially-pivoted
ACA. The first mentioned approach computes the approximation Sk and residual matrix Rk
at each iteration and defines the pivot as the largest entry in the residual matrix. The matrix
A ∈Km×n given by A = Sk+Rk at each iteration have first to be fully computed and afterwards
the residual matrix is minimized. Contrary to this, the partially-pivoted approach assembles only
one row A[ik, :] and one column A[:, jk] of the matrix A at each iteration. For k = 0,1,2, . . . the
rows and columns of the matrix approximant Sk =∑

k
m=1 umvH

m are computed by the steps given in
Algorithm 1. A full explanation of this algorithm can be found in Rjasanow and Steinbach [36].
The algorithm starts with an arbitrarily chosen row index ik. The pivot element γk+1 is defined

Algorithm 1 Conventional ACA
1: repeat

2: row of the residual rv := (A[ik, :])
H −

k
∑

m=1
(um)ik vm

3: find the column index jk := argmax
j
|(rv) j|

4: compute pivot γk+1 := (rv)
−1
jk

5: column of the residual ru := A[:, jk]−
k
∑

m=1
(vm) jk um

6: compute low-rank vectors uk+1 := ru vk+1 := γk+1rv

7: until stopping criterion (25) is fulfilled

by the inverse of (rv) jk , where the column index jk is selected as the maximum entry in modulus
of the residual row rv. Likewise, the row index for the next iteration is fixed by the maximum
entry in modulus of the residual column ru. The iteration of Algorithm 1 stops if the following
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criterion
‖uk+1‖F‖vk+1‖F ≤ εACA‖Sk+1‖F (25)

with a prescribed accuracy εACA is satisfied. The Frobenius norm of the approximation Sk+1 :=
Sk+uk+1vH

k+1 is defined by

‖Sk+1‖2
F = ‖Sk‖2

F +2ℜ〈Sk,uk+1⊗vk+1〉+‖uk+1‖2
F‖vk+1‖2

F . (26)

Finally, the approximant of A is given by

Sk =
k

∑
m=1

umvH
m (27)

and possess the low-rank order k. In this paper, only the partially-pivoted ACA is considered.
Now, let’s focus on the ACA algorithm for vector-valued problems. In section 2, we have

explained and in particular specified in (20) and (21) that the system matrix after discretization
of the boundary integral equation is essentially constructed as

A [i, j] =
∫

supp(ϕ j)

K(xi,y)ϕ j(y)dsy , (28)

where the kernel function K : Γ× Γ→ K3×3 generates a three-by-three matrix. The index i
corresponds to one collocation point and j to one basis function. As we mentioned above, the
crucial part of the extension of the algorithm is to define a suitable pivot element. The pivot
element is now a matrix of size 3× 3. From this point of view, the strategy has to ensure the
regularity of the pivot matrix. One possibility to choose the pivot matrix is to consider the
singular values of every 3× 3 block of the residual block row or residual block column. This
strategy has been discussed and elaborated in Refs. [37] and [13]. In Algorithm 2 the matrix-
valued ACA is outlined. We consider again an admissible block A ∈ Km×n, where m = 3|I |
and n = 3|J |, respectively. The cardinality of the row |I | or column |J | index set is designated
by the number of points in the corresponding cluster. Therefore, the row index i or column
index j actually corresponds to a block row index or block column index, respectively. As a
result, the row or column of the residual are not vectors anymore they are type of block row
vectors v ∈ K3×n or block column vectors u ∈ Km×3. The first block row index ik is chosen
again arbitrarily. The generation of the block row A[ik, :] is of size 3×n and the size of the block
column A[:, jk] is m×3. In addition, the approximants are: U is an (m×3k)-matrix and V is a
(3k×n)-matrix in K. The stopping criterion reads as

‖u‖F‖v‖F ≤ εACA‖Sk+1‖F (29)

with the Frobenius norm of the current approximation

‖Sk+1‖2
F = ‖Sk +uv‖2

F = ‖Sk‖2
F +2ℜ〈Sk,uv〉F +‖u‖2

F‖v‖2
F . (30)

The pivot position is determined by computing the minimal singular value minσ(ṽ[:, j]) of every
block of the residual row ṽ and then taking the maximum of it

jk = argmax
j
{minσ(ṽ[:, j])} . (31)
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Algorithm 2 matrix-valued ACA
1: Initialization
2: repeat
3: row of the residual ṽ := A[ik, :]−U[ik, :] V

4: pivot position jk := PivotPosition(ṽ)

5: column of the residual u := A[:, jk]−U V[:, jk]

6: update
v := (A[ik, jk])

−1 ṽ

U :=
[
U,u

]
, V :=

[
V
v

]

7: until stopping criterion (29) is fulfilled

The singular values of a matrix Q are the square roots of the eigenvalues of the Hermitian and
positive semidefinite matrix QHQ and, therefore, the singular values are real and non-negative.
The same strategy is used to define the next block row index. The low-rank approximation of
the matrix A with order K = 3k is now given by

A≈ SK = UV . (32)

Finally, a compressed matrix block is obtained by applying this introduced matrix-valued ACA
until the stopping criterion is fulfilled. The low-rank approximation of all admissible blocks then
gives the approximation of the H -matrix of the considered problem.

4 Numerical examples

In this section, we present numerical experiments to validate the proposed partially-pivoted
matrix-valued ACA algorithm. First, the indirect SLP and DLP approach of a Dirichlet bound-
ary value problem and, secondly, the direct approach of a mixed problem for elastostatics (6)
and elastodynamics (1) are analyzed. All computations were executed with material parameters

E = 1N/m2 , ν = 0.2 (33)

in terms of elastostatic problems and with

E = 1N/m2 , ν = 0 , ρ = 1kg/m3 (34)

relating to elastodynamic problems. The latter yields to a compression wave velocity of cP =
1m/s and to a shear wave velocity of cS =

√
1/2m/s. Moreover, the complex frequency is

chosen to be s = (1+ i)s−1. For a study on the behavior with respect to frequency see Ref. [13].
The admissibility parameter η of the distance criterion (24) is set to η = 0.8 in all examples. For
the leaf size of the clusters the value of bmin = 40 is used.

All numerical examples have been computed with HyENA, a C++ based BEM-library devel-
oped at the Institute of Applied Mechanics at Graz University of Technology [33].
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4.1 Computational domains

For the convergence results, the considered computational domains are on the one hand the unit
cube and on the other hand the unit sphere. Both are centered at the origin. Furthermore, a
sequence of triangulations by uniform refinement of the initial mesh (level ` = 0) is generated.
The discretization of the geometries at different refinement levels ` are shown in Fig. 1 and Fig. 2.

0.5

0

-0.50.5

0

0.4

0.5

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.5

(a) `= 0

0.5

0

-0.50.5

0

0.5

0

-0.5

-0.5

(b) `= 2

Figure 1: Discretizations of the unit cube (N=12) and its refinement (N=192)
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Figure 2: Discretizations of the unit sphere (N=122) and its refinement (N=1952)

One final note, the resulting linear system is solved by GMRES with a specified accuracy of
εGMRES = 10−8.

4.2 Indirect problems

The accuracy of the approximate solution uh(x) is measured by the relative pointwise error at
some sampling points. We choose as analytic solution the fundamental solution u(x) = U(x,y∗)

11



Preprint No 01/2018 Institute of Applied Mechanics

with the source point located at y∗ = (1,1,1)>. Accordingly, the error measure is defined as

err`rel =

√
Npts

∑
i=1

(u(xi)−uh`(xi))
2

√
Npts

∑
i=1

u2(xi)

, (35)

with the number of interior points Npts uniformly distributed close to the origin. The verification
of the matrix-valued ACA is done by comparing the relative error with the computation without
any low-rank approximation (dense) on the one hand and by comparing the compression rate
with the SVD on the other hand. The compression is defined as the ratio of the amount of
memory consumed for the low rank approximation to the amount of memory required for a dense
matrix. One of the essential parameters is the low-rank accuracy εACA. In a first comparison,
the relative error and the compression rate of the indirect SLP approach in elastostatics are
presented in Fig. 3. The chosen geometry here is the unit cube. The expected result can be
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Figure 3: Indirect SLP approach for elastostatic on the unit cube while keeping the low-rank
accuracy constant

observed. Up to a certain error level the ACA based computation has the same error as the
dense computation, i.e. the discretization error is greater than the matrix approximation error.
However, from a distinct point the low-rank approximation error dominates and the relative error
stagnates. Fig. 3b clearly shows that the lower the approximation quality is chosen, the better
the compression can be. Nevertheless, a remarkable compression can be achieved even at low
error levels.

Certainly, the low-rank accuracy can be adjusted in each spatial refinement level such that
the discretization error is dominating, i.e. the order of convergence of the dense computation is
maintained. Such a study is provided in Fig. 4.

In this paper, the approximation of the ACA next to the SVD is considered. The low-rank
accuracy for the SVD is denoted with εSVD. The necessary accuracies are listed in the table
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3 2304 1e-4 1e-4
4 9216 1e-5 1e-5
5 36864 1e-6 1e-6
6 147456 1e-7 1e-7

Figure 4: Error for the indirect SLP approach on the unit cube with prescribed accuracy of
ACA/SVD

in Fig. 4 on the right side. As expected, it is necessary to increase the low-rank accuracy with
the refinement of the spatial meshes. However, the error shown on the left side of Fig. 4 is
then the same for the dense computation and for the computation with either ACA or SVD
approximation. In the right table solely the accuracies of the refinement levels are illustrated
in which compression was achieved. At each level, the accuracy of SVD and ACA was chosen
identically.

Since the SVD leads to the best low-rank approximation, we compare the compression rate
of the matrix-valued ACA with it. Examples of the compression rates of the indirect SLP are
depicted in Fig. 5. In these examples the problem of elastostatics and elastodynamics for the
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Figure 5: Compression of the indirect SLP approach for the unit sphere
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unit sphere are examined. The results indicate that the ACA attains a sufficiently good low-rank
order. At the finest refinement level the compression is well below 10%. Because of this, we are
able to compute one more refinement compared to the dense computation. Analogous results
are observed in all other examples.

Even though these results are very promising, the matrix-valued ACA Algorithm 2 has limits.
The approximation of a block fails if all three-by-three matrix entries in v are singular. In
particular, the double layer operator of elastostatics fails for the unit cube. In essence, the main
diagonal of the DLP kernel has a normal derivative of the distance vector. Therefore, the traction
fundamental solution (TyU)(x,y) becomes singular, if the points x and y are on the same plane.
If this happens for all entries in v the algorithm will fail (see also the respective remark in
Ref. [13]). Nevertheless, it is evident and presented in Fig. 6 that the approximation of the DLP
for the unit sphere by the matrix-valued ACA performs well.
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Figure 6: Compression of the indirect DLP approach for the unit sphere

The compression rates presented for the DLP in Fig. 6 are comparable to the results shown
above and for the finest mesh below 10%. It should be noted that also in this study the low-rank
approximation is adjusted to the refinement levels so that the relative inner pointwise error of
the dense computation is maintained. For engineering computations an error level of 10−8 as in
the tests above is usually not necessary. Hence, much better compression rates can be obtained
by decreasing the low-rank accuracy.

A different representation of the efficiency of an ACA based BEM results from the considera-
tion of the absolute storage values. In Fig. 7, the storage requirements against the number of dofs
are plotted. As example the SLP for the unit sphere is taken, i.e. the storage requirements from
the test presented in Fig. 5 are shown. Obviously, the storage requirement of the dense com-
putation grows with the expected quadratic order. On the contrary, the presented ACA based
computation shows an almost linear behavior, i.e. approximately the order O

(
N log4(N)

)
. The

logarithmic term can also be observed for scalar-valued problems but not with a power of four.
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Figure 7: Storage requirements of the indirect SLP approach for the unit sphere

However, also FMM formulations for vector-valued problems show this logarithmic term in the
complexity. The interpolation based FMM for elastodynamics have, e.g. a power of six on the
logarithmic term [39]. It may be remarked that in other studies a lower order of the logarithmic
term is reported. In these cases, the low-rank accuracy is kept constant during refinement.

Finally, the computation time of a matrix-vector product of the low-rank approximated matrix
is compared to the standard BEM matrix, see Fig. 8. The data for indirect SLP approach for
the unit sphere are used. From about 104 number of dofs on, the multiplication of the low-
rank approximation becomes much faster. Certainly, the total CPU-time depends heavily on
programming, compiler, hardware, etc., but the tendency will be the same. This acceleration of
the matrix-vector product of the ACA based BEM has a tremendous impact in the solution time
due to the repeated application in an iterative solver like GMRES.

4.3 Mixed problem

To show the behavior for mixed boundary value problems, the unit sphere is considered as com-
putational domain. Dirichlet boundary conditions are imposed on one hemisphere and Neumann
boundary conditions on the other. As before, the Dirichlet data are given by the displacement
fundamental solution with a source point outside of the domain. Accordingly, the Neumann data
are attained by applying the traction operator on the displacement fundamental solution. The er-
ror of both, the displacement and the traction field, is measured in the L2-norm on the boundary.
This means that the displacement error is given by

err`L2
(u) = ‖u−uh`‖L2(Γ) =




Nn

∑
i=1

∫
supp(ϕ1

i )

(
u(x)−u`(xi)ϕ

1
i (x)

)2
dsx




1
2
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Figure 8: Computation time of a matrix-vector product (SLP)

and the traction error is determined by

err`L2
(t) = ‖t− th`‖L2(Γ) =




Ne

∑
i=1

∫
supp(ϕ0

i )

(
t(x)− t`(xi)ϕ

0
i (x)

)2
dsx




1
2

.

For mixed problems, the low-rank approximation is examined only by the ACA. The admissi-
bility parameter η for the distance criterion is as well chosen to be 0.8, and the low-rank accuracy
εACA is set such that the convergence order in the L2-norm is comparable to the dense computa-
tion. As with the indirect approach, this setting results in an increasing of the low-rank accuracy
at each refinement step. The cluster parameter bmin was set to 40 as before in all examples.

Fig. 9 shows the order of convergence. As anticipated, the Dirichlet data exhibit a quadratic
order and the Neumann data a linear order.

The findings of the compressions of both problems, elastostatics and elastodynamics, are
displayed in Fig. 10.

Again, the matrix-valued ACA obtains an excellent compression rate while maintaining the
quality of the solution. Essentially, there are no differences to the indirect approach.
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Figure 9: L2-error of the mixed problem for the unit sphere
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Figure 10: Compression of mixed boundary value problems for the unit sphere

5 Conclusions

The boundary element method for elastostatics and its dynamic counterpart is well established.
In the beginning of the paper the respective partial differential equations and their related inte-
gral equations have been recalled. The fully populated system matrices of the discrete integral
operators result in an overall quadratic complexity with respect to storage and computing time.
To reduce this complexity so-called fast methods have been developed. Here, the adaptive cross
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approximation (ACA) is used to obtain an almost linear complexity. The essential point of ACA
is to find a suitable pivot strategy, where for vector-valued problems like elastostatics and elasto-
dynamics this pivot element is a three-by-three matrix resulting from the fundamental solutions.
Following a suggestion of Rjasanow and Weggler the singular values of these three-by-three
matrices are considered. The smallest singular value of each block of fundamental solutions
are compared and their maximal value determines the pivot three-by-three matrix. Using this
strategy, a robust algorithm can be defined. Numerical studies have shown that the algorithm
preserves the rate of convergence of a classical (dense) formulation. The obtained compression
rates are satisfactory. In the presented examples the compression has been smaller than 10%
in spite of a required precision of 10−8. For real world engineering applications much lower
low-rank accuracies are acceptable due to the errors introduced from the mechanical model and
thus, much better compression rates are possible.

It should be noted that the algorithm has difficulties with the double layer operator for large
plane surfaces. If all corresponding points are on the same plane whitin an admissible block, the
determination of the pivot element may fail.

Fortunately, this situation is in real world applications very rare. However, the problem may
be overcome by certain cluster strategies which avoid this specific case.
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