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Abstract

We propose a space-time boundary element method for the dynamic simulation of elastic
truss systems. The considered truss systems consist of several members, where in each
elastic rod the dynamic behaviour is governed by the 1D wave equation. The time domain
fundamental solution and boundary integral equations are used to establish the dynamic
Dirichlet-to-Neumann map for a single rod. Thus, we are able to reduce the problem to
the nodes of the truss system and therefore only a temporal discretization at the truss nodes
is necessary. We introduce a stepwise solution strategy with local step size which ensures
stability. Furthermore, the discretization within each of these time steps can be refined
adaptively to reduce the approximation error efficiently. The optimal convergence of the
method is demonstrated in numerical examples. Due to adaptive refinement, this optimal
convergence rate is retained even for non-smooth solutions. Finally, the method is applied
to study typical truss systems.
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1 Introduction

The study of truss and frame structures plays a central role in various fields of engineering.
Classical applications in structural engineering include the design of truss bridges and industrial
constructions. Recently, the interest in truss and frame structures has been re-sparked by contri-
butions towards modelling nano-structured materials, cf. [24, 20]. The case of elastostatic truss
problems is well-understood since direct stiffness methods yield exact solutions. However, the
study of elastodynamic truss structures is even today still an open field of research.

There are two fundamentally different approaches to studying the dynamics of mechanical
systems: time domain and frequency domain techniques. While frequency domain proce-
dures are well-suited for time harmonic cases, time domain approaches yield fully transient
dynamic responses. Most popular methods for time domain simulation employ domain-based
approaches for spatial discretization, e.g. finite element methods, in combination with time-
stepping schemes to discretize the time variable, cf. [12]. Approximations obtained by rep-
resentatives of such procedures typically feature oscillations or instabilities when it comes to
capturing non-smooth solutions, e.g. due to impact loads. Naturally, various contributions were
dedicated towards the development of methods capable of resolving such phenomena more accu-
rately, see e.g. [18, 30, 28]. Other promising techniques for discretizing wave equations, which
have not yet been applied to truss systems, are space-time methods. Due to the use of unstruc-
tured grids in space and time the approximation can be adapted to local features of the solution
in a natural fashion, cf. [19, 7] and the references therein. In contrast to domain-based tech-
niques, boundary integral equation (BIE) methods reduce the problem to the boundary, which
is given by the nodes in the case of truss systems. Thus, the discretization of these BIEs by
means of boundary element methods (BEM) does not need to introduce any spatial discretiza-
tion. Although the BIE method has already been successfully applied to studying elastodynamic
truss and frame structures, literature is scarce compared to more conventional approaches, see
e.g. [8, 11]. In [8], frequency domain fundamental solutions are employed and time domain
solutions are recovered via convolution quadrature. In [11], the fundamental solution of the re-
lated static differential equation is used and the inertia term is not shifted to the boundary by
means of integral equations but remains as domain integral. In contrast to these techniques, we
seek an approach based on time domain BIEs, using the fundamental solution of the hyperbolic
equation.

The mathematical aspects of time domain BIEs for the wave equation have first been studied
extensively in the pioneering work of Bamberger and Ha-Duong [9, 10], see [13] for an exhaus-
tive review. In more recent contributions Aimi and her collaborators introduced the so-called
energetic Galerkin BEM [2, 4, 6]. Their developed bilinear forms are closely related to those
analysed by Bamberger and Ha-Duong. The only difference is that the energetic bilinear forms
omit the prominent weighting function t 7→ e−2σt for some σ > 0. As stated in [16, 27] the es-
timates of the bilinear forms obtained by the Bamberger and Ha-Duong method do not pass to
the limit σ→ 0. In contrast, numerical experiments indicate that stable approximations can be
achieved even for σ= 0, see e.g. [17]. The time domain analysis in [2] shows that this weight can
indeed be dropped for the 1D wave equation, while retaining ellipticity of the standard bilinear
forms.

This work is dedicated towards applying the energetic BIE method to study elastodynamic
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truss systems. The proposed formulation is directly related to direct stiffness methods known
for elastostatic systems. The novelty of our approach lies in the application to dynamic prob-
lems. A great advantage of the proposed space-time BIE method over existing BIE formulations
is that it handles non-smooth solutions remarkably well. On the one hand the space-time varia-
tional formulations have rather low regularity assumptions about the right hand side, admitting
discontinuous functions. On the other hand non-uniform discretizations enable the accurate res-
olution of solutions with low regularity. As shown in Section 5, this advantage is even more
compelling when adaptive mesh refinement strategies are employed.

A truss structure is an assembly of bar members connected by hinges. In a static setting no
bending moments and transversal forces occur, if loads are applied only at the hinges. Thus
only longitudinal forces have to be considered. In the dynamic case, bending moments and
transversal forces occur due to inertia effects. However, in the present paper the physical model
is based on the following assumptions:

• Interior forces orthogonal to the axes of the bar members as well as bending moments are
neglected.

• Inertia terms induced by accelerations orthogonal to the axes of the bar members and
rotation of the bar members are omitted.

• The material is assumed to have no damping.

A justification or limitation of the applicability of the physical model is beyond the scope of the
present paper. However, under these assumptions, we can describe the dynamics of the truss
system by clear-cut time domain BIEs. As discussed in Section 5, the results of this approach
are satisfactory and an extension to models that are physically complete is worth striving for.

The outline of this paper is as follows. In Section 2, a single rod problem is reformulated in
terms of time domain BIEs. This concept is extended to truss structures by means of appropri-
ate kinematic and kinetic coupling conditions connecting the individual rods in Section 3. The
discretization of the variational formulation is addressed in Section 4. Finally, numerical exam-
ples are presented in Section 5 confirming the implementation and performance of the discussed
procedures.

2 BIEs for elastodynamic rods

We consider an elastic rod (also referred to as member) with length L > 0, Young’s modulus E >
0, cross-sectional area A > 0, and mass density ρ > 0. The wave speed is given by c =

√
E/ρ.

Moreover, let T > 0 be some fixed simulation end time. The space-time cylinder of this member
is the rectangle Q := (0,L)× (0,T ) and its lateral boundary is denoted Σ := {0,L}× (0,T ).
We are concerned with finding longitudinal displacement functions of the member um : Q→ R
satisfying the homogeneous 1D elastodynamic wave equation

c−2üm(x, t)−∂
2
xum(x, t) = 0, (x, t) ∈ Q (1)

and the homogeneous initial conditions

um(x,0) = u̇m(x,0) = 0, x ∈ (0,L) (2)
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Figure 1: The mechanical system modelled by the Robin initial boundary value problem (1)–(3).

where dots over functions denote derivatives with respect to the time variable, and ∂x denotes the
spatial derivative. The inner force function of the member is defined pm(x, t) := EA∂xum(x, t)
for (x, t) ∈ Q.

Within a BIE approach, we are especially interested in the Cauchy data of the solution. To
this extent, we define vector-valued functions for the Dirichlet data u(t) := [u0(t),uL(t)]> and
the Neumann data p(t) := [−p0(t), pL(t)]>. The subscript indicates the spatial coordinate, e.g.
u0(t) := um(0, t) and uL(t) := um(L, t) for t ∈ (0,T ). A useful model problem, which serves as
preparation for the truss system, is posed by the Robin boundary condition

p(t)+Ksu(t) = f (t), t ∈ (0,T ). (3)

Hereby, Ks = [k0,0;0,kL] is a stiffness matrix with spring stiffnesses k0,kL ≥ 0 and f (t) =
[ f0(t), fL(t)]> is the external loading function. An illustration of the mechanical system mod-
elled by (1)–(3) is provided in Figure 1. Throughout this work, we assume that all functions
in time are defined on the entire real line, however, they are supported only on the provided
interval, i.e. [0,T ]. In particular, this implies causality of all considered functions.

The following outline of time domain BIEs for the 1D wave equation is based on [2, 4]. In
contrast to these works which focus on Dirichlet and Neumann boundary value problems, our
focus lies on the Robin boundary condition (3). For sufficiently smooth densities w,v : Σ→ R
the single layer potential

SL [w] (x, t) :=
c

2EA

∫ t− x
c

0
w0 (s)ds+

c
2EA

∫ t+ x−L
c

0
wL (s)ds, (x, t) ∈ Q

and the double layer potential

DL [v] (x, t) :=−1
2

v0

(
t− x

c

)
− 1

2
vL

(
t +

x−L
c

)
, (x, t) ∈ Q

define solutions of (1) and (2). These are retarded potentials, since the space-time coordinate
(x, t) occurs as shifted argument t± x

c . The single layer potential integrates over the part of the
lateral boundary that is lit by the backward light cone of (x, t), whereas the double layer potential
evaluates at the points of the lateral boundary that lie on that cone. Using these potentials the
usual representation formula holds

um(x, t) = SL [p] (x, t)−DL [u] (x, t), (x, t) ∈ Q (4)
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for any solution of (1) and (2). Since we are interested in solutions of the initial boundary value
problem, functions p and u have to be determined such that (3) holds. To compute the unknown
Cauchy data, the limits x→ 0 and x→ L are performed in (4), yielding the set of BIEs

c
EA

∫ t

0
p0 (s)ds+

c
EA

∫ t− L
c

0
pL (s)ds = u0(t)−uL

(
t− L

c

)
c

EA

∫ t− L
c

0
p0 (s)ds+

c
EA

∫ t

0
pL (s)ds =−u0

(
t− L

c

)
+uL (t)

for t ∈ (0,T ). For our purposes it is convenient to consider the time derivative of these BIEs,
leading to

c
EA

(A p)(t) = (B u̇)(t) , t ∈ (0,T ) (5)

with the operator matrices

A :=
[

I S
S I

]
, B :=

[
I −S
−S I

]
and the retarded shift operator S defined by its action on a suitable g : (0,T )→ R

(Sg)(t) := θ

(
t− L

c

)
g
(

t− L
c

)
, t ∈ (0,T ) (6)

where θ(t) denotes the Heaviside step function. We note that S : L2 (0,T )→ L2 (0,T ) as well as
S : H1

{0} (0,T )→ H1
{0} (0,T ) are bounded, where H1

{0} (0,T ) denotes the space of H1-functions
vanishing at t = 0. The functional framework outlined in [2, 4] considers Neumann data p be-
longing to the space L2 (Σ) :=L2 (0,T )×L2 (0,T ) and Dirichlet data u in H1

{0} (Σ) :=H1
{0} (0,T )×

H1
{0} (0,T ). In this setting, the representation formula (4) defines distributional solutions of (1)

and (2) in a subspace of H1 (Q) for any p ∈ L2 (Σ) and u ∈ H1
{0} (Σ).

As shown in [4], the operators A,B : L2 (Σ)→ L2 (Σ) are isomorphisms. Hence, for each
u ∈ H1

{0} (Σ) there exists a unique p ∈ L2 (Σ) that solves (5). As an immediate consequence, the
Dirichlet-to-Neumann map DtN : H1

{0} (Σ)→ L2 (Σ)

p = DtNu =
EA
c

A−1 B u̇ (7)

is well-defined. For convenience, we define the operator C := A−1 B where C : L2 (Σ)→ L2 (Σ)
is bounded and write DtNu = EA

c C u̇ for u ∈ H1
{0} (Σ). Via (7) the Dirichlet data of a given

solution of (1) and (2) are mapped onto the corresponding Neumann data. In other words, the
axial forces at the end points of the rod can be computed using only the displacement functions
at these points via this map.

To realize the Dirichlet-to-Neumann map within a computer simulation efficiently, an explicit
and computable representation of (7) is desirable. For the problem at hand, such an explicit
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representation can indeed be derived. We start by noting hat the inverse of the operator A :
L2 (Σ)→ L2 (Σ) is given by

A−1 =

[ (
I−S2)−1 −S

(
I−S2)−1

−S
(
I−S2)−1 (

I−S2)−1

]
(8)

if the inverse of I−S2 exists. The inverse exists and has the representation

(
I−S2)−1

=
∞

∑
j=0

S2 j

if the Neumann series converges. From (6) it can be concluded that S : L2 (0,T )→ L2 (0,T ) is
a nilpotent operator, in particular the iterated operator S j is zero for j ≥

⌈T c
L

⌉
. For convenience

of notation, define the number of nonzero double shifts n :=
⌈T c

2L

⌉
. Due to the nilpotency of the

shift operator the Neumann series coincides with its n-th partial sum for which the bound∥∥∥∥∥n−1

∑
j=0

S2 j

∥∥∥∥∥ ≤ n−1

∑
j=0

∥∥S2 j
∥∥ ≤ n−1

∑
j=0
‖S‖2 j ≤ n

holds by the triangle inequality and ‖S‖ ≤ 1. It follows that the inverse of I−S2 exists and has
the representation (

I−S2)−1
=

n−1

∑
j=0

S2 j . (9)

Insertion of (9) in (8) and (7) yields the explicit representation of the map DtN : u 7→ EA
c C u̇ with

the operator matrix

C := 2
n−1

∑
j=0

[
S2 j −S2 j+1

−S2 j+1 S2 j

]
− I . (10)

Remark 1. Instead of solving (5) for the Neumann data, it could also be solved for the Dirichlet
data. In particular, for each p ∈ L2 (Σ), there exists a unique u̇ ∈ L2 (Σ) that solves (5). By
integration, a unique u ∈ H1

{0} (Σ) that solves (5) and vanishes at t = 0 is obtained. This gives
rise to the Neumann-to-Dirichlet map NtD : L2 (Σ)→ H1

{0} (Σ)

u = NtD p =
c

EA
∂
−1
t B−1 A p

where the primitive ∂
−1
t : L2 (0,T )→ H1

{0} (0,T ) is defined by(
∂
−1
t g
)
(t) :=

∫ t

0
g(s)ds

and applied element-wise. Inspection of the involved operators confirms that DtN−1 = NtD
holds. Furthermore, we find the explicit representation NtD : p 7→ c

EA D∂
−1
t p where D = C−1

differs from C in (10) only in the sign of the off-diagonal terms. To derive this expression, we
used that the operators ∂

−1
t and S commute, consequently ∂

−1
t and D commute as well. Since

this work focuses on displacement-based formulations, the Neumann-to-Dirichlet map is not
considered any further.
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2.1 Energetic one-shot solution of single rod problems

Using (7) the Robin boundary condition (3) can be reformulated in terms of the Dirichlet data
only

(DtNu)(t)+Ksu(t) = f (t), t ∈ (0,T ). (11)

To find a viable variational formulation of (11), we use the same energy argument as in [2]. The
energy within the rod is defined by

E (um, t) :=
EA
2

∫ L

0

[(
c−1u̇m(x, t)

)2
+(∂xum(x, t))

2
]

dx≥ 0,

which is the sum of kinetic and strain energy. Sufficiently smooth solutions um of the wave
equation satisfy the energy-flux relation

0 = u̇m
(
c−2üm−∂

2
xum
)
= ∂t

(
1
2

c−2u̇2
m +

1
2
(∂xum)

2
)
−∂x (u̇m∂xum)

which is integrated over Q yielding the energy identity at final time

E (um,T ) =
∫ T

0
[pm (L, t) u̇m (L, t)− pm (0, t) u̇m (0, t)]dt =

∫ T

0
p(t) · u̇(t)dt, (12)

since the energy at t = 0 vanishes due to (2). From these considerations, we infer that an ap-
propriate formulation might be achieved by projecting (11) onto time derivatives of admissible
displacements. The variational problem reads:
Given f ∈ L2 (Σ), find u ∈ H1

{0} (Σ) such that

(DtNu, v̇)L2(Σ)+(Ksu, v̇)L2(Σ) = ( f , v̇)L2(Σ) (13)

holds for all v∈H1
{0} (Σ). Despite of property (12), the bilinear form a : H1

{0} (Σ)×H1
{0} (Σ)→R

defined by

a(u,v) := (DtNu, v̇)L2(Σ) =
EA
c

(C u̇, v̇)L2(Σ) (14)

is not elliptic for T c> L. In particular there exists a non-trivial v∈H1
{0} (Σ) such that a(v,v) = 0.

An example for such a function is given by

v̇(t) = [ϕ(t) ,ϕ(t)]> ,

ϕ(t) = θ(t)−θ
(
t + L

c −T
)
+θ
(
t− L

c

)
for L < T c≤ 2L,

ϕ(t) = θ
(
t + 2L

c −T
)

for 2L < T c.

However, the energetic bilinear form is elliptic for T c ≤ L, since C = I in this case. Thus,
existence and uniqueness of a solution for any f ∈ L2 (Σ) is guaranteed by the Lax-Milgram
lemma. A similar result in a more general setting has already been shown in [1]. By solving
(13) one obtains the solution in the entire time interval [0,T ] at once. That is why we call
this type of solution strategy “one-shot” solution, see also [2, Rem. 3]. However, one could
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Figure 2: Decomposition of Σ into four space-time slabs of length at most L
c .

also decompose [0,T ] into subintervals, such that a set of smaller problems instead of one large
problem has to be solved. By causality these subproblems can be solved in sequence, which
is why this approach is called “stepwise” solution. This strategy is explored in the following
subsection.

2.2 Stepwise solution of single rod problems

In addition to solving in one shot for the entire space-time boundary, we provide an approach
that decomposes (13) into a set of variational problems posed on subintervals of [0,T ]. The
idea of this procedure is based on the finite speed of propagation of the underlying hyperbolic
equation, i.e. signals emitted at time t from one end of the rod are perceived at the other end at
t + L

c . Hence, the lateral boundary Σ is decomposed into a fixed number of so-called space-time
slabs. The number of slabs is defined ns :=

⌈T c
L

⌉
and the slabs are given by

Σ j :=

{
{0,L}×

(
( j−1) L

c , j L
c

]
j = 1, . . . ,ns−1,

{0,L}×
(
( j−1) L

c ,T
)

j = ns.

Such a decomposition of Σ into space-time slabs is illustrated in Figure 2. To keep notation
simple, for j = 1, . . . ,ns the function ũ j : Σ→R is defined as extension of a function on the slab
u j : Σ j→ R to the entire space-time boundary

ũ j (x, t) :=


u j (x, t) (x, t) ∈ Σ j,

u j
(
x, j L

c

)
(x, t) ∈ {0,L}×

(
j L

c ,T
)
,

0 (x, t) ∈ {0,L}×
(
0,( j−1) L

c

]
,

(15)

i.e. the function is extended trivially to the past and continuously constant to the future. Assume
now that the solutions u` for ` = 1, . . . , j− 1 have already been computed, and we wish to find
the solution at the currently observed slab j. To this extent, the solution up to slab j is split
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into the extensions of an unknown solution on the current slab and the known solutions on the
previous slabs

u(x, t) = ũ j (x, t)+
j−1

∑
`=1

ũ` (x, t) , (x, t) ∈
j⋃

`=1

Σ` . (16)

Note that due to (15) expression (16) defines a function in H1
{0} (Σ) when u` ∈H1

{0} (Σ`) holds for
all `= 1, . . . , j. By plugging (16) into (13) while considering the L2 scalar product only on Σ j a
modified formulation is obtained at the space-time slab. The action of the Dirichlet-to-Neumann
map on the unknown part reduces to DtN ũ j =

EA
c u̇ j in Σ j. The variational problem at the j-th

slab reads:
Given f ∈ L2 (Σ) and (ũ`)`=1,..., j−1, find u j ∈ H1

{0} (Σ j) such that

b j (u j,v j) = ( f , v̇ j)L2(Σ j)−
j−1

∑
`=1

(Ksũ`, v̇ j)L2(Σ j)−
j−1

∑
`=1

(DtN ũ`, v̇ j)L2(Σ j) (17)

holds for all v j ∈ H1
{0} (Σ j). The bilinear form b j : H1

{0} (Σ j)×H1
{0} (Σ j)→ R is defined by

b j (u j,v j) :=
EA
c

(u̇ j, v̇ j)L2(Σ j) +(Ksu j, v̇ j)L2(Σ j) . (18)

After solving (17) sequentially for j = 1, . . . ,ns the desired solution u : Σ→ R is given by (16)
with j = ns. The bilinear form (18) is elliptic, ensuring unique solvability of the problem for
each j = 1, . . . ,ns. Moreover, the solution is stable, i.e. it depends continuously on the given
data. However, the solution on slab j depends on the solution of all previous slabs, and thus
the stability constant occurring in the Lax-Milgram lemma grows significantly with ns. We
emphasize that solving (17) sequentially for all j = 1, . . . ,ns and inserting the solutions into (16)
is equivalent to solving (13). Note that within an implementation it is sufficient to store only the
sum in (16) instead of keeping track of all summands individually.

We emphasise that the idea of solving hyperbolic partial differential equations in space-time
by such a stepwise approach is not new. Our sequential approach, and its inherent constraint on
the size of the space-time slabs, is quite similar to more general finite element methods proposed
in the early contributions [26, 21]. The interested reader is also referred to the recent work [15]
and the references therein for an overview of these procedures, especially in the context of
space-time discontinuous Galerkin methods.

3 BIEs for elastodynamic truss structures

A truss is a mechanical assembly of rod elements (members), forming a structure in d-dimensional
space, where d = 2,3. The individual members are connected to each other via hinges at their
end points. Thus, the relative rotation of the rods connected by a hinge is not constrained. At
least d of these nodes are supported, restraining their movement. Each unsupported node has to
have at least d members linked to it, which is necessary to prevent the occurrence of kinematic
chains in the structure. External loads are applied only at the nodes of the structure. More-
over, we assume that there are no lumped masses at the joints. All displacements considered

9
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m1 m2

m3 m4

m5

m6

m7

fk2

fk5

fk4

k1 k2 k3

k4 k5

Figure 3: Sketch of a typical truss structure. In this case T = {m1, . . . ,m7} and NT =
{k1, . . . ,k5}. Nonzero external forces are applied to nodes k2, k4, and k5. Examples of
the defined sets are given by NS = {k1,k3}, βk2 = {m1,m2,m4,m5}, and κm6 = {k3,k5}.

in this section are interpreted as (sufficiently small) displacements relative to a static state of
equilibrium that is due to the self-weight of the members.

Since the nodes may perform arbitrary (but sufficiently small) motions in d-dimensional
space, lateral accelerations of the connected members are going to be of the same magnitude
as the longitudinal ones. Due to these accelerations, transversal forces and bending moments
are necessary in order to satisfy dynamic equilibrium at each point in each member. As already
mentioned in the introduction, these effects are neglected. It is assumed that truss members only
transmit axial forces, but neither transversal forces nor bending moments. Moreover, lateral and
rotational inertia effects are neglected. To stay in line with Section 2, we assume that there is no
material damping. From a mechanical point of view, this poses a severe restriction of the model,
however, enables a thorough study of the performance of time domain BIEs for this simplified
model. We shall comment on the incorporation of these effects at the end of this section.

To come up with a systematic description of the truss system, we denote the set of truss
members T and the set of truss nodes NT . The set of supported nodes is denoted NS ( NT .
The set of free nodes is the relative complement NF = NT \NS. Each node k ∈ NT has a
set of attached truss members βk ⊂ T . Moreover, every member m ∈ T has precisely two
nodes connected to it, collected in the set {km0,kmL} =: κm ⊂ NT . An illustration of a typical
truss structure is provided in Figure 3. We denote by rm the unit tangential vector and n`

m for
` = 1, . . . ,d− 1 the unit normal vectors of each member m. Note that the vector rm is defined
to point from km0 to kmL. Furthermore, each member m is associated with individual parameters
Lm, Em, Am, and cm as defined in Section 2. For convenience of notation we introduce the Rd×d

matrices

Mm :=
EmAm

cm
rm⊗ rm , Jk := ∑

m∈βk

Mm

which can be interpreted as instantaneous stiffness matrices of member m ∈ T and node k ∈NT

10
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respectively. Throughout this work, we assume that Jk : Rd→Rd is surjective for every k ∈NF .
This assumption will guarantee that there exists a solution, i.e. a state of equilibrium, to the
problems discussed in this section. The determinant of the matrix Jk is nonzero if and only if
there are d linearly independent vectors rm for m ∈ βk. In this case the symmetric matrix Jk
is positive definite. For d = 2 this condition implies that the tangential vectors of at least two
members in βk are not collinear. In the case d = 3 it is equivalent to the tangential vectors of all
members in βk not lying on the same plane. These criteria for the topology of the truss system
are well-known from the static case and apply to our dynamic model as well due to the limitation
to axial interior forces only.

The space-time skeleton of the truss is defined ΣT := NT × (0,T ). The displacement function
on the skeleton u : ΣT → Rd describes the movement of all nodes of the truss. By restriction, a
nodal displacement function u|k : (0,T )→ Rd is obtained for each k ∈ NT . Due to the motion
of the nodes, the connected bars are deformed. Thus, each member m ∈ T has an associated
displacement function um : Qm→ Rd , where Qm := (0,Lm)× (0,T ). It is suitable to decompose
the vector-valued displacement function um into a longitudinal displacement function um : Qm→
R and transversal displacement functions wm,` : Qm → R, where ` = 1, . . . ,d − 1. Thus, the
displacement function is represented by its components via

um (x, t) = um (x, t)rm +
d−1

∑
`=1

wm,` (x, t)n`
m, (x, t) ∈ Qm. (19)

Since we assume linear elastic material behaviour and small deformations, the axial displace-
ment function um is governed by (1) and (2) for every m ∈ T . Therefore, the function um

can be represented by means of (4). Note that the transversal displacement functions wm,` for
`= 1, . . . ,d−1 can be obtained by projecting u|k onto n`

m for each k ∈ κm and linear interpola-
tion of these nodal displacement values along the rod. This is justified by the fact, that due to
the absence of bending moments, the curvature of each rod has to vanish. In the setting of small
deformations this is achieved only by displacement functions linear in the spatial variable.

Moreover, each truss member is equipped with an inner force function pm : Qm→Rd . Due to
the simplification of the mechanical model to account for axial forces only, this function reduces
to pm (x, t) = pm (x, t)rm where pm (x, t) = EmAm ∂xum (x, t) for (x, t) ∈ Qm is the longitudinal
force component. To keep the exposition as close to Section 2 as possible, we define the traces
of this force function by

pm|k (t) :=

{
−pm (0, t)rm k = km0

pm (Lm, t)rm k = kmL
, t ∈ (0,T ) . (20)

To avoid the occurrence of gaps in between the node k and the connected members βk, the dis-
placement function of every member m ∈ T has to satisfy the kinematic compatibility condition

um|k (t) = u|k (t) , t ∈ (0,T ) (21)

for each k ∈ κm. Here um|k denotes the trace of the function um : Qm→ Rd to the end point at
node k. Additionally, the nodal equilibrium

− ∑
m∈βk

pm|k (t)+ fk (t) = 0, t ∈ (0,T ) (22)

11
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has to hold for every k ∈ NF , where fk : (0,T )→ Rd is the external nodal load. Note that the
negative sign in (22) is due to definition (20). The axial force component pm : Qm → R can
be represented by a properly defined Dirichlet-to-Neumann map, which takes the parameters of
member m into account. Hence, we define the number of shifts nm :=

⌈T cm
2Lm

⌉
and the operator Sm

as in (6) but with parameters Lm and cm for every member m ∈ T . Consequently, we obtain the
explicit representation of the Dirichlet-to-Neumann map

DtNm : u 7→ EmAm

cm
Cm u̇ with Cm := 2

nm−1

∑
j=0

[
S2 j

m −S2 j+1
m

−S2 j+1
m S2 j

m

]
− I (23)

for each member m ∈ T . As a result, the nodal equilibrium condition can be rewritten in terms
of displacements

− ∑
m∈βk

([DtNm um|κm ]|k rm)(t)+ fk (t) = 0, t ∈ (0,T )

for each k ∈NF . Utilizing (21) and decomposition (19) we can define the nodal force operator
Pk by its action

Pk : u 7→ ∑
m∈βk

[DtNm (u|κm · rm)]|k rm. (24)

The dot product in (24) is, in a slight abuse of notation, defined by

u|κm · rm := [u|km0 · rm,u|kmL · rm]
> .

The operator (24) acts in the following way: it restricts the displacement function on the skeleton
to longitudinal displacement at the end points of an attached member, applies its Dirichlet-to-
Neumann map to compute axial forces, and sets up the nodal force vector via restriction. By
summing over all connected rods, the resulting force function at node k is obtained. Hence, the
truss problem in strong form boils down to finding u : ΣT → Rd which vanishes at t = 0 and
u|k = 0 for all k ∈NS such that

(Pk u)(t) = fk (t) , t ∈ (0,T ) (25)

holds for each k ∈NF .

3.1 Energetic one-shot solution of truss problems

To obtain a variational formulation similar to (13), we want to project (25) onto time derivatives
of suitable test functions. To do so, the energy space of the truss is defined

HT :=

{
v ∈×

k∈NT

H1
{0} (0,T ) : v|k = 0,k ∈NS

}
. (26)

Note that the nodal force operator Pk : HT → L2 (0,T ) is bounded for all k ∈NT . A variational
formulation of (25) is obtained by performing the Euclidean scalar product with the nodal re-
striction v̇|k of a displacement test function v ∈HT , integration in time, and summation over all

12
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nodes k ∈NF . The variational problem reads:
Given nodal forces fk ∈ L2 (0,T ) for k ∈NF , find u ∈HT such that

aT (u,v) = fT (v) (27)

holds for all v ∈HT with the bilinear form aT : HT ×HT → R

aT (u,v) := ∑
k∈NF

(Pk u, v̇|k)L2(0,T ) (28)

and the functional fT : HT → R

fT (v) := ∑
k∈NF

(fk, v̇|k)L2(0,T ) .

We define the energy of the truss system as sum of energies of all members

ET (u, t) := ∑
m∈T

E (um, t)≥ 0.

The sum in (28) can be extended to all k ∈ NT since contributions of nodes in NS vanish for
functions in HT . By changing order of summation we obtain

aT (u,u) = ∑
k∈NT

∑
m∈βk

(pm|k, u̇m|k)L2(0,T ) = ∑
m∈T

∑
k∈κm

(pm|k, u̇m|k)L2(0,T )

= ∑
m∈T

(pm|κm , u̇m|κm)L2(0,T )×L2(0,T ) = ET (u,T )

for any u ∈HT , which is the desired energy identity at final time. Assuming that

T ≤ min
m∈T

Lm

cm
(29)

holds, we have Cm = I for every m ∈ T . Hence, the Dirichlet-to-Neumann map of each rod acts
as scaled time derivative and we obtain for any u ∈HT

ET (u,T ) = ∑
m∈T

EmAm
cm
‖u̇m|κm‖

2
L2(0,T ) = ∑

k∈NF

∑
m∈βk

EmAm
cm
‖u̇|k · rm‖2

L2(0,T )

= ∑
k∈NF

(Jku̇|k, u̇|k)L2(0,T ) & ∑
k∈NF

‖u̇|k‖2
L2(0,T ) = ‖u̇‖

2
L2(ΣT )

where we used the positive definiteness of Jk for each k ∈ NF . We conclude that the energetic
bilinear form (28) is elliptic if (29) holds. Similarly to Section 2.1 formulation (27) solves for
the unknown displacement functions of all truss nodes in [0,T ] in one shot. In the following
subsection we develop an equivalent approach that decomposes (27) into a set of simpler varia-
tional formulations posed on subintervals. This is an extension of the ideas of Section 2.2 from
single rod problems to truss systems.

13
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Remark 2. Our notation only accounts for mechanical supports that prevent the displacement of
a node in any direction. However, Figure 3 indicates a support that prevents only vertical move-
ment of node k3. Although the notation cannot account for such conditions, our implementation
is indeed capable of doing so. In order to account for such systems, the equilibrium condition
(22) has to be considered only in the unsupported directions while the truss space (26) has to
enforce zero displacements only in the supported directions. We resort to the simplified notation,
since the essential concepts we wish to convey are fully covered by it, and an excess of technical
intricacies is avoided.

3.2 Stepwise solution of truss problems

To come up with a stepwise approach for solving (27), we first study the action of the nodal
force operator (24) in more detail. We restrict our attention to one observed node k ∈ NF for
now. For each member m ∈ βk we introduce χm,k := κm \ k, which is the one node connected
to member m that is not the observed node k. By careful inspection of (23) we find the explicit
representation

Pk u = Jku̇|k +2 ∑
m∈βk

Mm

nm−1

∑
j=1

S2 j
m u̇|k−2 ∑

m∈βk

Mm

nm−1

∑
j=0

S2 j+1
m u̇|χm,k . (30)

Insertion of (30) into (25) leads us to the conclusion that a time local solution can be found
easily, if the shift operators act only on parts of the solution that are already known. In that case
only Jk acts on the yet unknown part of the solution. Thus, the main idea of this subsection is
to decompose the solution u ∈HT similarly to Section 2.2, which enables a sequential solution
approach. To achieve this, a suitable partitioning of the skeleton ΣT into subdomains has to be
found. Since each node may be connected to members of different length and propagation speed,
the size of these segments has to be the shortest travel time of all attached members. Therefore,
a decomposition of ΣT into space-time slabs is not desirable, however, the time interval [0,T ]
has to be subdivided independently for each truss node. Hence, the interval length

∆tk := min
m∈βk

Lm

cm

and the number of time steps

nk :=
⌈

T
∆tk

⌉
are defined for each k ∈ NT . Note that one could actually choose any ∆tk smaller than above
definition and all of the following derivations would still be valid. Here, we use the largest
interval length such that the short-time ellipticity discussed in Section 3.1 carries over to the
local variational problems. By introducing the time steps

tk, j :=

{
j∆tk j = 0, . . . ,nk−1,
T j = nk

an appropriate decomposition of the time interval [0,T ] is given by

14
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ϒk, j :=
[
tk, j−1, tk, j

]
, j = 1, . . . ,nk

for each k ∈NT . Using this partitioning the extension of a nodal time local displacement func-
tion uk, j : ϒk, j→ Rd to ũk, j : (0,T )→ Rd is defined similarly to the single rod case

ũk, j (t) :=


uk, j (t) t ∈ ϒk, j,

uk, j
(
tk, j
)

t ∈
(
tk, j,T

]
,

0 t ∈
[
0, tk, j−1

)
.

Consequently, we obtain the decomposition of the displacement function

u|k (t) =
`

∑
j=1

ũk, j (t) , t ∈
⋃̀
j=1

ϒk, j (31)

for each node k. The local components of the nodal solution uk, j are computed by solving a time
local variational formulation of the nodal equilibrium. This form is obtained by projecting (25)
onto the time derivative of a suitable displacement test function defined on ϒk, j. In this context,
representation (30) in conjunction with (31) is employed. The local problem at node k ∈NF for
j ∈ {1, . . . ,nk} reads:
Find uk, j ∈H1

{0}
(
ϒk, j
)

such that

bk, j
T
(
uk, j,v j

)
= (fk, v̇ j)L2(ϒk, j)−gk, j

T (v j) (32)

holds for all v j ∈ H1
{0}
(
ϒk, j
)
. The bilinear form bk, j

T : H1
{0}
(
ϒk, j
)
×H1

{0}
(
ϒk, j
)
→ R is defined

by
bk, j

T
(
uk, j,v j

)
:=
(
Jku̇k, j, v̇ j

)
L2(ϒk, j)

(33)

and the functional gk, j
T : H1

{0}
(
ϒk, j
)
→ R reads

gk, j
T (v j) := 2 ∑

m∈βk

nm−1

∑
`=1

(
Mm S2`

m u̇|k, v̇ j

)
L2(ϒk, j)

−

2 ∑
m∈βk

nm−1

∑
`=0

(
Mm S2`+1

m u̇|χm,k , v̇ j

)
L2(ϒk, j)

(34)

which represents the interactions with the solution on previous time steps. Due to these inter-
plays, above procedure has a sequential nature. In particular, the first term in (34) is determined
by the past of the observed node k, while the second one results from the past of all adjacent
nodes. Consequently, for a fixed k ∈ NF one cannot just advance the local index j from 1 to
nk, since the required parts of the solution of the neighbouring nodes will be missing. In that
case, one has to proceed to a different node in NF where all interactions in (34) are known. Rep-
etition of this procedure leads to a solution approach that is sequential in both the considered
node k ∈ NF as well as the considered time interval j ∈ {1, . . . ,nk}. The positive definiteness
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of Jk ensures ellipticity of the bilinear form (33), and consequently existence and uniqueness of
the solution of (32). Furthermore, any conforming discretization of the variational problem is
stable.

The reader might notice that our approach, especially in the stepwise representation (32)–
(34), strongly resembles the method of Digital Waveguide Meshes, see e.g. [31, 23]. Within
this procedure a discretization in space and time is introduced, facilitating a system of delay
lines for each rod (or acoustic string in the case of the cited references). Using this discretiza-
tion the method mimics the characteristics of the wave equation in a discrete sense. Moreover,
certain coupling conditions at the hinges (or junctions) ensure the physical compatibility of the
connected waveguide elements. As our approach based on retarded potentials always constructs
exact solutions of the wave equation, one can also clearly observe its characteristics within the
algorithm. The main difference is that the time domain BIE method does not need to discretize
the rods but only the coupling junctions.

3.3 On the extension of the model

To account for transversal accelerations, transversal inner forces, and bending moments, the
incorporation of dynamic Timoshenko beam theory seems viable. However, its time domain
fundamental solution is substantially more involved when compared to the wave equation [25,
Ex. 3.5.4 and 4.1.6]. To enable a formulation similar to the one proposed in this section, an oper-
ator that maps the kinematic quantities (transversal deflection and rotation at Σ) to the associated
kinetic ones (bending moment and transversal force at Σ) is necessary. For the Timoshenko beam
a relation comparable to (5) can indeed be derived. However, to the best of our knowledge, an
exact representation of this map like (10) is not known. The simplest way to circumvent this
issue, is to replace the exact map by an approximate one. This idea is explained in, e.g. [29, Ch.
12.3 and 12.4] for elliptic boundary value problems.

For contributions that consider time-domain BIEs of damped rods in one-dimensional space
the reader is referred to [5, 3]. Again, it appears more practical to approximate the Dirichlet-to-
Neumann map in this case rather than attempting to find an exact representation.

4 Space-time discretization

The first step in the discretization phase is to decompose the time interval [0,T ] into N ∈ N
subintervals. To do so, consider N + 1 time steps with 0 = t0 < t1 < t2 < · · · < tN−1 < tN = T .
This gives rise to N elements τ` := [t`−1, t`] for ` = 1, . . . ,N. The union of elements is the line
mesh IN :=

⋃N
`=1 τ`. We particularly emphasize that these elements need not be uniform, i.e. |τ`|

does not need to equal |τm| for ` 6= m. This condition is necessary for enabling adaptive mesh
refinement as described below.

As observed in the previous sections an H1-conforming finite element space is required to
reach a proper Galerkin discretization of the variational problems. In this paper, only the basic
finite element space of continuous piecewise linear functions

S1 (IN) :=
{

ϕ ∈C (0,T ) : ϕ|τ ∈ P1 (τ) ,τ ∈ IN
}

16



Preprint No 04/2017 Institute of Applied Mechanics

solve estimate mark refine

repeat until desired accuracy is reached

Figure 4: Depiction of the adaptive refinement strategy.

is considered. Since derivatives of functions in this space are piecewise constant, a remarkably
efficient realization of the discussed bilinear forms is possible. Note that the integrals associated
with external loading functions are approximated by standard Gauss-Legendre quadrature rules.

Transient solutions to problems of wave propagation may be especially difficult to approxi-
mate, and thus it is desirable to design a method that can adapt automatically and locally to the
solution. A usual approach to adaptivity is to compute an error indicator measuring the quality
of the approximation for each element of the current mesh. Based on these indicators, a set of
elements is chosen (marked) for further refinement. Finally, the marked elements are refined,
leading to a new mesh, on which the subsequent simulation is carried out. This process, which
is repeated until a certain quality of approximation is reached, is depicted in Figure 4. In the
following, the choice of a suitable error indicator is discussed for both the Robin problem and
the truss problem. The employed strategies for marking and refining are addressed at the end of
this section.

4.1 Discretization of Robin single rod problems

The two time intervals of Σ are decomposed independently, i.e. GN := {0}× IN0 ∪{L}× INL ,
where N := N0+NL is the number of elements at both end points. To obtain a conforming space,
the initial condition has to be passed onto the finite element space, leading to the N-dimensional
trial space UN :=

(
S1 (IN0)×S1 (INL)

)
∩H1

{0} (Σ). The discrete problem is to find uN ∈UN such
that

a(uN ,vN)+(KsuN , v̇N)L2(Σ) = ( f , v̇N)L2(Σ)

holds for all vN ∈ UN . The discretization of the stepwise solution procedure (17) follows the
same concept.

As mentioned previously, some measure that indicates the error for each element is needed
to come up with an adaptive scheme. The chosen error indicator is based on the following
observation. Due to the conformity of the trial space, any uN ∈UN satisfies (1) and (2) for any
chosen mesh. The only condition which (in general) is not satisfied exactly is the boundary
condition (3). Thus, it seems natural to measure the quality of an approximation by considering
the residual of this very equality. Consequently, we define the error indicator

ητ := ‖DtNuN +KsuN− f‖L2(τ)

for each element τ ∈ GN . Note that the same error indicator is used for the sequential solution
approach by space-time slabs. In this case, the indicators are computed only on the slab currently
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under consideration. Furthermore, the function uN is split up as in (16).

4.2 Discretization of truss problems

The time interval is decomposed separately for each truss node. Hence, we consider meshes INk ,
where Nk is the number of elements at node k, and define the total number of elements N :=
∑k∈NT

Nk. A Galerkin discretization of (27) is achieved by restriction to the finite-dimensional

trial space UN :=
(
×k∈NT

S1 (INk)
)
∩HT . The discrete problem is to find uN ∈ UN such that

aT (uN ,vN) = fT (vN)

holds for all vN ∈ UN . By construction, the only approximation error occurs in the nodal equi-
librium equation (22). Thus, the chosen error indicator

ητ := ‖Pk uN− fk‖L2(τ)

for each element τ ∈ INk and each k ∈NF seems to suggest itself. Again, the stepwise solution
approach (32) is treated in the same fashion, i.e. above techniques are just applied to the currently
observed time step.

At this point, it is worth mentioning that a uniform decomposition of the time interval could
significantly reduce the computational costs. If the time steps were uniform for every truss node
the interaction matrices realizing (34) could be precomputed once for every member. In partic-
ular, it would be sufficient to compute the discrete versions of Sk

m for k = 0, . . . ,nm tested only
at the last element. The operators tested on previous elements could be obtained by truncating
the sum and shifting the indices of the involved elements. This approach has the great advantage
of reducing the original quadratic complexity O(T 2) of the algorithm to a mere linear one O(T )
in the simulation end time. However, we lay a focus on a method capable of capturing local
features and non-smooth solutions with high accuracy. That is why we do not use the simplifi-
cation of a uniform mesh and choose to work with arbitrary decompositions of the time interval
instead. It shall be noted that in both cases the algorithm has linear complexity in the discretiza-
tion parameter O(N). This is due to the fact that for each element there is a maximum number
of nonzero shifts that is independent of N.

4.3 Adaptive mesh refinement

Once the error indicators ητ are computed for each element τ, the next step is to mark a set of
elements based on these indicators. There are many different strategies for element marking. We
restrict our considerations to a straightforward approach, which yields promising results. This
scheme was introduced by Dörfler [14] and is often referred to as Dörfler marking. Within this
procedure, the set of marked elements M ⊆ GN is the smallest set such that

∑
τ∈M

η
2
τ ≥ γ ∑

τ∈GN

η
2
τ

holds with some γ ∈ (0,1).
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The final ingredient of an adaptive procedure is the actual refinement strategy for marked
elements. In our case of line segments we resort to the simplest approach of dividing each
marked element into two subintervals of equal size.

5 Numerical examples

In this section, we present numerical examples verifying the implementation and the adaptive
mesh refinement of the proposed method for a single rod. To test the implementation for truss
systems, we shall experimentally investigate the convergence of a set of solutions obtained by
the adaptive strategy towards a high-resolution reference solution. In the final example, a typical
truss girder of a small bridge is examined.

The arising sparse linear systems of equations are solved by the MATLAB backslash operator
[22].

5.1 Numerical examples for the Robin problem

We consider a rod of unit length and unit material parameters. Moreover, we set T = 6, and thus
the number of summands in the operator C of the Dirichlet-to-Neumann map is n = 3. Hence,
this configuration helps confirm the correctness of the explicit representation of this operator.

I. Convergence study. To confirm the convergence of the proposed methods we first inves-
tigate a problem with a sufficiently smooth solution. To this extent, we consider the solution

u(x, t) =
1

100
(
t−
∣∣x− 3

2

∣∣)3
θ
(
t−
∣∣x− 3

2

∣∣) , (x, t) ∈ R2

which is illustrated in Figure 5a. Furthermore, the non-smooth solution

u(x, t) =
∣∣sin

(
t−
∣∣x− 4

3

∣∣)∣∣θ(t− ∣∣x− 4
3

∣∣) , (x, t) ∈ R2

is intended to support the discussed error indicator and the strategy for adaptive mesh refinement.
This function is depicted in Figure 5b. The corresponding Robin data of these solutions are
computed via (3) and provided as right hand side for the approximation. The forcing functions
inducing the smooth solution are

f0 (t) =
3

100

[
−
(
t− 3

2

)2
+
(
t− 3

2

)3
]

θ
(
t− 3

2

)
,

f1 (t) =
3

100

[(
t− 1

2

)2
+
(
t− 1

2

)3
]

θ
(
t− 1

2

)
,

which are provided here to make the concept of manufactured solution more comprehensible.
In the following three procedures are examined. The solution is approximated by both the

one-shot and the stepwise solution approaches using uniform mesh refinement. Additionally,
the solution is approximated by the one-shot approach employing adaptive mesh refinement
with γ = 0.4. The error is measured in the energy norm ‖u̇− u̇N‖L2(Σ) and compared to the
discretization parameter N.
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(a) Smooth solution.
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(b) Non-smooth solution.

Figure 5: I. Convergence study. Illustrations of the employed d’Alembert solutions.

In Figure 6a, the results are depicted for the smooth solution. It can be observed that all
examined methods reach the optimal linear convergence rate in the energy norm well-known
for the employed space of hat functions. In particular, the one-shot and the stepwise approach
compute the same approximation on the same grid, thus their respective errors coincide.

The situation changes when the non-smooth solution is considered, see Figure 6b. The ob-
served rates of convergence for uniform mesh refinement break down to 1/2, due to the low
regularity of the solution. Again, both methods yield the same approximations and errors, un-
derlining their equivalence in the case of non-adaptive mesh refinement. Moreover, it can be
observed that the employed strategy for adaptive mesh refinement is indeed capable of restoring
the optimal linear convergence in the number of unknowns for the examined solution.

Figure 7 provides an illustration of the behaviour of the adaptive mesh refinement. The so-
lution is approximated by the stepwise approach using the discussed error indicator. Each slab
is initially discretized by two elements per side and refined using γ = 0.4 and ten steps of re-
finement. It can be observed that in those slabs with two kinks in the solution, e.g. at x = L
and t ∈ [1,2], the refinement is highly concentrated at these two points. In the other slabs the
refinement also focuses on the apex of the function, since the second derivative takes its largest
value at this location.

We wish to emphasize that the presented results are quite similar to results provided in the
literature. In [32], the Dirichlet problem of the 1D wave equation is discretized by the energetic
BEM. An error indicator based on Calderón identities is proposed and its performance is inves-
tigated by means of numerical experiments. These examples are analogous to those displayed in
this section, and their obtained results feature a high degree of similarity to our findings. Hence,
for the examined solutions our proposed error indicator for the Robin problem performs quite
similar to more complicated error estimators based on deeper knowledge of the BIE formulation.

II. Impact load. A frequently used benchmark for linear elastodynamics is a rod excited
by impact load, see e.g. [18, 30, 28]. Unlike the cited references, we do not consider a bar
which is fixed at one end. However, the examined solution depicted in Figure 8 has a similar
shape and poses the same difficulties in terms of approximation. Again, this function is used
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Figure 6: I. Convergence study. Error plots for the Robin single rod problem.
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Figure 7: I. Convergence study. Adaptively refined mesh obtained by ten steps of refinement
per slab with γ = 0.4. The markers indicate the time steps.
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Figure 8: II. Impact load. Typical solution arising for impact loads.

as a manufactured solution. The approximations are computed by the stepwise approach and
two examples are examined. In the first scenario, the kinks of the solution are aligned with the
borders of the space-time slabs, while in the second case they are not aligned.

In Figure 9a, the results of the aligned mesh are provided. Each slab is discretized by two
elements and the exact solution is obtained (apart form errors due to finite precision arithmetic).
Hence, by application of the Dirichlet-to-Neumann map, we are able to recover the exact Neu-
mann data as illustrated in Figure 9c. This feature is lost if the time steps do not align with the
kinks of the solution as shown in Figure 9b. Five steps of adaptive refinement with γ = 0.1 are
performed to show that the chosen error indicator can indeed improve the quality of the numer-
ical solution by steering refinement towards its kinks. As a result, a reasonable approximation
of the solution can be achieved using very few elements. It shall be especially noted that the
approximate Neumann data pN = DtNuN displayed in Figure 9d are still an excellent approx-
imation in this case. We emphasize that there are no overshoots in the approximation of the
axial force, which are typically encountered within many classical methods, see e.g. [28]. Con-
ventional approaches have to employ sophisticated finite element technology to approximate the
discontinuities of the force function in space and time properly. In contrast, the mapping proper-
ties of the retarded layer potentials and the Dirichlet-to-Neumann map deal with this space-time
discontinuity naturally. Hence, traditional discretization techniques can be employed for the
arising BIEs and still convincing accuracy is achieved for such pulse-type loading scenarios.

5.2 Numerical examples for the truss problem

III. Tripod. As first model truss system we consider a three-dimensional tripod structure as
depicted in Figure 10. The coordinates of the truss nodes with respect to the canonical basis
{e1,e2,e3} in R3 are

xk1 = (0,0,0)> , xk2 = (3,0,0)> , xk3 = (0,3,0)> , xk4 = (1,2,3)> .

The material parameters of all members are set to unit values. At the top node, which is the only
free node, the pulse loading
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(a) Aligned mesh, uN ≡ u.
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(b) Non-aligned refined mesh, uN ≈ u.
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(c) Aligned mesh, pN ≡ p.
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(d) Non-aligned refined mesh, pN ≈ p.

Figure 9: II. Impact load. Cauchy data at x = L for the solution due to impact load. The
light grey lines indicate the exact solution. The first row shows the Dirichlet data
uN and below the corresponding Neumann data pN are displayed. The time steps are
represented by the markers.
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Figure 10: III. Tripod. Sketch of the considered tripod system.

fk4 (t) :=− 1
20

[θ(t)−θ(t−1)]e3

is applied. The simulation end time is fixed to T = 30 and the one-shot solution strategy is
employed for solving this problem. In the following we examine the displacement of the free
node k4.

First, we consider a mesh with N = 5000 time steps of uniform size. The result is shown
in Figure 11 and one can see that the sharp features of the components of the displacement
vector u|k4 are resolved quite accurately. This approximation shall act as reference solution for
the following considerations. To confirm the proposed error indicator, we simulate the same
problem using an initial mesh with N = 10 uniform time steps and employ 120 steps of adaptive
refinement with γ = 0.05. Since γ is chosen quite small, we expect that the adaptive refinement
will be focused towards the critical points. The obtained solution and the refined mesh, which
has N = 129 elements, are depicted in Figure 12a. Indeed refinement concentrates on the kinks of
the displacement function, similar to the single rod case studied previously. To put this result into
perspective, Figure 12b illustrates the approximation obtained by a uniform mesh with N = 150
elements. One can observe that the kinks of the solution are not resolved in the desired fashion.
To get a quantitative comparison of these two approximations, we compute their distance to the
reference solution. The relative distance in the energy norm is defined

dN (ti) :=
‖u̇5000|k4− u̇N |k4‖

2
L2(ti−1,ti)

‖u̇5000|k4‖
2
L2(0,T )

, i = 1, . . . ,5000 (35)

where the time steps ti are taken from the mesh of the reference solution. Moreover, the function
dN : [0,T ]→R is defined as linear interpolation of (35) to provide better readability. The regions
where the values of dN are large represent locations where the approximation is poor. The result
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Figure 11: III. Tripod. Reference solution, displacement of free node u5000|k4 . The indices
1,2,3 represent the component of the displacement vector.

for the adaptively refined mesh is shown in Figure 12c, whereas the coarse uniform mesh is
depicted in Figure 12d. We observe that the distance of the adaptively steered solution is on
the one hand substantially smaller and on the other hand its peaks are significantly narrower.
The relative distance of the solution on the uniform mesh is roughly 6.2% while the adaptively
refined solution enjoys a relative distance of only 1.6%. Although the latter is obtained by fewer
elements, its distance is nearly four times smaller.

From an engineering point of view, interior forces play an important role in the design of
structures. Consequently, we should also compare the axial forces obtained by the three consid-
ered approximations. In the following, we examine the longitudinal force in the middle of rod
m3, which connects nodes k3 and k4. The results are exhibited in Figure 13. One can clearly
see that even the reference solution, depicted in Figure 13a is not flawless, however, it is still
a reasonable approximation. On the one hand, Figure 13c illustrates that the coarse uniform
mesh produces an rather crude force function that gets significantly worse as time progresses.
On the other hand, the adaptively refined solution shown in Figure 13b has, at least from a vi-
sual inspection, the same quality as the reference. Furthermore, this result demonstrates that the
overshoots observed on the uniform mesh can be removed by careful refinement.

All in all, these findings strongly advocate the use of adaptive mesh refinement for simulat-
ing wave phenomena in elastic truss structures, especially in the context of pulse-type loading
scenarios. Moreover, the proposed error indicator performs reasonably well in the examined
situations.

IV. Bridge. In the final example, we direct our attention towards a traditional problem
encountered in structural engineering. We consider a short bridge, whose main girder is illus-
trated in Figure 14. It shall serve as typical example for steel railway bridges. All members are
equipped with the same material parameters usual for structural steel

E = 200×109 Pa, ρ = 7850kgm−3, A = 0.01m2
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(a) Adaptively refined mesh, N = 129.
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(b) Coarse uniform mesh, N = 150.
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Figure 12: III. Tripod. Displacement of free node uN |k4 . The markers in the plots of the first row
indicate the time steps. The second row shows the relative distance to the reference
solution as a function in time.
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Figure 13: III. Tripod. Axial force function in the middle of of member m3.

kO

9m 9m 9m 9m

8m

Figure 14: IV. Bridge. Sketch of the main girder of the railway bridge. The vertical displace-
ment of the central node kO is examined in Figure 17.
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Figure 15: IV. Bridge. Configuration of the model train.

and consequently the wave velocity in each member is c≈ 5047.5ms−1. Our goal is to simulate
the crossing of a small freight train. The configuration of the considered model train is depicted
in Figure 15. Each wagon is assumed to have a mass of mw = 20×103 kg. Hence, the force at
each wheel which is defined by

fw :=−mwg
4

e2

has a magnitude of 50×103 N, where we used the gravitational acceleration g = 10ms−2 com-
mon in structural engineering. The train moves at a constant velocity of 25ms−1. The rails are
founded on a deck which is assumed to be rigid, such that the load of each wheel is distributed
linearly by distance to the (at most) two neighbouring truss nodes.

In the considered simulation, we fix T = 3s and limit the train to three wagons. Due to this
choice, the rear axis of the last wagon leaves the truss shortly after the simulation ends and a
complete passage of the train is observed. We employ the stepwise solution approach with two
elements per time slab. This discretization is refined by five iterations of adaptive refinement
with γ = 0.05 for each time slab.

Figure 16 depicts the deformed truss structure at three distinct points in time. Apart from the
obvious vertical displacement of the truss nodes, the horizontal movement of the rightmost node
is clearly visible. Furthermore, Figure 17 exhibits the vertical displacement of the central node
kO. The peak amplitude is roughly 0.8 mm, which is a reasonable value for the examined case.
One can observe that the displacement increases steadily as the train enters the bridge, while
there is a state of almost harmonic oscillation afterwards. Finally, the displacement goes back
to zero as the train leaves the structure. However, there exists no mechanism of damping in this
system. Consequently, waves propagate at constant amplitude throughout the members, facili-
tating the build-up of oscillations as time progresses. We conclude that these results obtained by
our approach based on retarded potentials are plausible and exceptionally competitive with data
acquired by most classical time domain simulation methods.

6 Conclusion

We propose a new method for simulating elastodynamic truss structures by means of time do-
main boundary integral equations. In the employed mechanical model, transversal forces are
neglected. Under this assumption a clear-cut framework, based on explicit knowledge of the
dynamic Dirichlet-to-Neumann map, is established. The space-time formulation is built on con-
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(a) Deformed configuration at t = 0.5s.

(b) Deformed configuration at t = 1.4s.

(c) Deformed configuration at t = 2.6s.

Figure 16: IV. Bridge. Illustrations of deformed configurations (exaggerated) of the truss bridge.
The position of the train is indicated by the force vectors of the wheels. The initial
position of the right supported node is located at the grey disc.
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Figure 17: IV. Bridge. Vertical displacement of the central node kO.

siderations related to the energy of the mechanical system. Moreover, a stepwise solution proce-
dure is presented, which guarantees stable discretizations by exploiting the short-time ellipticity
of the energy expression.

Numerical examples support the viability of the discussed procedures. Especially when deal-
ing with solutions due to impact loads, the proposed formulations possess inherent advantages
over many existing approaches. Furthermore, we provide an uncomplicated error indicator
which enables adaptive mesh refinement and accurate resolution of local features.

By striving for an accessible formulation, we sacrificed generality in terms of the mechani-
cal behaviour of the truss structure. At this point, the incorporation of transversal forces and
inertia effects by means of Timoshenko beam theory is the missing component in developing
a mechanically consistent framework for simulating elastodynamic truss systems. From an ap-
plied engineering point of view, integrating more complicated material behaviour, e.g. damping,
seems desirable as well. Nevertheless, this work demonstrates that time domain boundary in-
tegral equations are a potent approach to simulating elastodynamic truss structures, with great
advantages in many challenging loading scenarios.
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