
AM
: B
M

Graz University of Technology
Institute of Applied Mechanics

Preprint No 03/2017



Code Verification examples based on the
Method of Manufactured Solutions for

Kirchhoff-Love and Reissner-Mindlin shell
analysis

Michael Gfrerer, Martin Schanz
Institute of Applied Mechanics, Graz University of Technology

Published in Engineering with Computers 31(4), 775-785, 2018

DOI: 10.1007/s00366-017-0572-4

Latest revision: December 4, 2017

Abstract

We propose code verification examples based on the Method of Manufactured
Solutions(MMS) for Kirchhoff-Love and Reissner-Mindlin shell analysis. In order to
ensure the credibility of numerical simulations reliable software has to be provided.
Code verification is the process of ensuring that there are no coding mistakes in
the implementation and that the algorithms work properly. The MMS is an elegant
method to derive exact solutions to boundary value problems which can be used for
rigorous order of accuracy tests within the code verification process. We apply the
proposed tests to an in-house developed finite element research code implementing
elements for Kirchhoff-Love and Reissner-Mindlin shell analysis.
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1 Introduction

In order to ensure the reliability of complex computational models, verification and vali-
dation (V&V ) are unavoidable tasks [1, 2]. In the present paper, we follow the concepts
on V&V of The American Society of Mechanical Engineers guideline [3]. The process of
validation determines how accurate the model represents the real situation. The aim of
verification is to show that the simulation results are able to represent accurately the
solution of the underlying mathematical model. Thus, one is interested in the numeri-
cal error, which is the difference between the simulation results and the exact solution
of the mathematical model. The comparison of simulation results with experimental
data is only feasible if the results are not significantly influenced by the numerical error.
Therefore, the process of verification has to precede the validation process. Verification
activities can be split into code verification and calculation verification. Code verification
represents the process of demonstrating that the governing equations, as implemented in
the code, are solved consistently. Calculation verification is the assessment (estimation)
of the numerical error in situations where no exact solution is known [4].

According to [5], the most rigorous tests for code verification are the order-of-accuracy
tests. For any discretization method, we expect that the discretization error decreases
as the mesh is refined. Within an order-of-accuracy test, the observed rate of decrease
in the discretization error is compared with the theoretical rate. In order to evaluate the
discretization error exact solutions are needed. These exact solutions can be constructed
by the Method of Manufactured Solutions (MMS) [1, 5, 6, 7, 8]. Its central idea is to
prescribe a solution and to determine an artificial source term which is added to the
governing equations, such that the modified equations are fulfilled for the prescribed
solution. The MMS can be applied to a wide range of problems. It has been applied to
Reynolds-Averaged Navier Stokes solvers [9], nonlinear membrane elements [10], within
fluid structure interaction [11, 12], conjugate heat transfer solvers [13], Cahn–Hilliard
equation [14], and others.

Within shell analysis, the task is to predict the mechanical response of a thin curved
structure. A structure is characterized as thin if one space dimension has a much smaller
extension than the other two. Within this geometric setting, a direct solution of the
three dimensional problem is difficult. Therefore, many different shell models exist (see
[15] for an overview). In a number of recent papers [16, 17, 18, 19, 20, 21] advanced
numerical approaches for shell analysis have been developed. In these contributions,
order-of-accuracy tests were presented only for special cases. For more general cases,
benchmark examples from the shell obstacle course [22] were used. This set of problems
consists of the Scordelis-Lo roof problem, the pinched cylinder with a diaphragm, and
the hemispherical shell problem. This problem set was introduced in order to compare
the performance of different finite elements with respect to locking and accurate rep-
resentation of rigid body motions. Using this set for code verification one shortcoming
is the lack of generality in geometry, since only cylindrical and spherical geometries
are taken into consideration. Another drawback is that there are only reference dis-
placement values available, which are obtained by numerical simulation. Therefore, no
order-of-accuracy tests are possible.
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In the present paper, we investigate code verification of finite element codes for shell
analysis based on the MMS. Thus, an exact solution is available and an order of accu-
racy test can be applied. We propose a series of verification examples with increasing
complexity. We apply each test to a research code, which implements high order finite
elements for Kirchhoff-Love and Reissner-Mindlin shells.

2 Shell Models and Finite Element Method

In this section, the Kirchhoff-Love and the Reissner-Mindlin shell theory is recalled and
the Finite Element formulation is given briefly.

2.1 The 3D shell problem

We start with the statement of the 3D shell problem, which is a 3D problem of linearized
elasticity on special domains Ω.

Find ũ : Ω ⊂ R3 → R3:

∇ · (σ̃σσ) + b̃ = 0 in Ω,

σ̃σσ = C̃ : ε̃εε in Ω,

ε̃εε =
1

2

(
grad(ũ) + grad(ũ)>

)
in Ω,

ũ = ũD on ΓD,

t̃ = t̃N on ΓN .

(1)

We assume that the domain Ω is defined through a parametrization g of a reference
surface Ω̄

g : Ū ⊂ R2 → Ω̄ ⊂ R3

(θ1, θ2) 7→ g(θ1, θ2).
(2)

In the present paper, we restrict us to the case of rectangular parameter domains Ω̄.
Then the parametrization of Ω is given by

g : (Ū × T ) ⊂ R3 → Ω ⊂ R3

(θ1, θ2)× θ3 7→ g(θ1, θ2, θ3) = g(θ1, θ2) + θ3 n,
(3)

with the unit normal vector n and the thickness interval T = [−t/2, t/2], where t is the
thickness of the shell. In the rest of the paper, Latin indices i, j, ... take the values
1, 2, 3 whereas Greek indices α, β take the values 1, 2. Furthermore, Einstein summation
convention applies. In the following, we need the covariant base vectors Gα = ∂ḡ

∂θα ,

Gα = ∂g
∂θα , the covariant coefficients of the metric Gαβ = Gα · Gβ, Gij = Gi · Gj ,

the contravariant coefficients of the metric G
αβ

= [Gαβ]−1, Gαβ = [Gαβ]−1 and the

contravariant base vectors G
α

= G
αβ

Gβ, Gi = GijGj . Note that all quantities with a
bar are defined on the reference surface and are, therefore, independent of θ3. Whereas
quantities with no bar are defined on the three-dimensional shell volume. Instead of
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Figure 1: Parametrization of the shell. The parameter space on the left is mapped to
the physical space on the right. The reference surface (red) is parametrized by
ḡ, whereas the shell volume is parametrized by g.

solving for ũ(x),x ∈ Ω, we seek the displacement field u(θ1, θ2, θ3) = ũ(g(θ1, θ2, θ3))
defined on the parametric space. We assume that the bodyforce b is given with respect
to a fixed Cartesian frame ei. Thus, b = biei holds. Then, the balance of momentum in
(1) in parametric coordinates reads(

σjl,j + σklΓ j
kj + σjkΓ l

kj

)
J il + bi = 0, (4)

with the contravariant components of the stress tensor σσσ = σij Gi ⊗Gj , the Christoffel
symbols of second kind Γ k

ij = Gk
,i ·Gj and J il = Gl · ei. Here and in the following the

notation (),j = ∂()
∂θi

applies. In the present paper, we employ a linear isotropic material

law, where the contravariant components of the elasticity tensor C = Cijkl Gi ⊗Gj ⊗
Gk ⊗Gl are given by

Cαβγϕ = λGαβGγϕ + µ
(

GαγGβϕ + GαϕGβγ
)
,

Cαβ33 = C33αβ = λGαβ,

C3α3β = C3αβ3 = Cα33β = Cα3β3 = µGαβ,

C3αβγ = Cα3βγ = Cαβ3γ = Cαβγ3 = 0,

C333α = C33α3 = C3α33 = Cα333 = 0,

C3333 = λ+ 2µ,

(5)

with λ and µ denoting the Lamé constants. For a given displacement field u the covariant
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components of the linearized strain εεε = εij G
i ⊗Gj are

εαβ =
1

2

(
µςαGς ·

∂u(θj)

∂θβ
+ µςβGς ·

∂u(θj)

∂θα

)
,

εα3 =
1

2

(
µςαGς ·

∂u(θj)

∂θ3
+ n · ∂u(θj)

∂θα

)
,

ε33 =
∂u(θj)

∂θ3
· n,

(6)

with the components of the shifter tensor µβα =
(
δβα − θ3hβα

)
, where hβα = Gβγ Gα,γ · n.

One common assumption in shell theories is that strait fibers normal to the mid-
surface remain strait after deformation. Therefore, we assume a displacement field of
the form

ū(θ1, θ2, θ3) = ui(θ1, θ2)ei + θ3vα(θ1, θ2)Gα. (7)

2.2 Kirchhoff-Love model

In the Kirchhoff-Love model vα(θ1, θ2) are no independent parameters. The assumption
that normals to the undeformed surface remain normal to the deformed surface and
remain unstreched leads to

vα = −Gαγu,γ · n (8)

and
ū(θ1, θ2, θ3) = ui(θ1, θ2)ei − θ3G

αγ
(u,γ · n)Gα. (9)

Therefore, the components of the consistent strain tensor (6) can be computed

ε11 = µς1u
i
,1J ςi − θ3µς1(ui,ς1J3i − ui,ςJβih

β
1 − u

i
,γJ3iΓ

γ
1ς ),

2ε12 = µς2u
i
,1J ςi + µς1u

i
,2J ςi − θ3µς2(ui,ς1J3i − ui,ςJβih

β
1 − u

i
,γJ3iΓ

γ
1ς )

− θ3µς1(ui,ς2J3i − ui,ςJβih
β
2 − u

i
,γJ3iΓ

γ
2ς ),

ε22 = µς2u
i
,2J ςi − θ3µς2(ui,ς2J3i − ui,ςJβih

β
2 − u

i
,γJ3iΓ

γ
2ς ),

εα3 = 0,

ε33 = 0.

(10)

In order to avoid Poisson thickness locking the zero transverse normal stress assumption
(σ33 = 0) has to be included. Enforcing the condition leads to the expression

ε33 =
λ

λ+ 2µ

(
G11ε11 + 2G12ε12 + G22ε22

)
(11)

for the modified transverse normal strain. Within the finite element code this results in
a modification in the material law, i.e. in all equations λ has to be replaced with 2µλ

2µ+λ .
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2.3 Reissner-Mindlin model

In the Reissner-Mindlin model vα(θ1, θ2) are two additional independent unknown fields.
The components of the strain tensor (6) are now

ε11 = µς1J ςiu
i
,1 + θ3µς1

(
vγ,1Gςγ + vγΓγ1ς

)
,

2ε12 = µς1J ςiu
i
,2 + µς2J ςiu

i
,1 + θ3µς1

(
vγ,2Gςγ + vγΓγ2ς

)
+ θ3µς2

(
vγ,1Gςγ + vγΓγ1ς

)
,

ε22 = µς2J ςiu
i
,2 + θ3µς2

(
vγ,2Gςγ + vγΓγ2ς

)
,

2εα3 = µςαGςγv
γ + ui,αJ3i + vγhγα,

ε33 = 0.

(12)

Again the zero transverse normal stress condition has to be enforced in order to avoid
Poisson thickness locking.

2.4 Finite Element Method

In this section, we describe the used finite element approach briefly. We have the fol-
lowing variational formulation of (1):

Find ũ ∈ V such that∫
Ω

ε̃εε(ṽ) : C̃ : ε̃εε(ũ) dx =

∫
Ω

ṽ · b̃ dx +

∫
ΓN

ṽ · t̃ dsx ∀ ṽ ∈ V0. (13)

Here, V = {ũ ∈ [H1(Ω)]3 | ũ = ũ on ΓD} and V0 = {ũ ∈ [H1(Ω)]3 | ũ = 0 on ΓD}. We
consider the change of variables according to u(θ1, θ2, θ3) = ũ(g(θ1, θ2, θ3)) for all quanti-
ties in (13). Thus, the integrals in (13) are evaluated on the parametric domain utilizing
a quadrature rule. In particular, we use a tensor product quadrature rule composed of
one-dimensional Gauss-Legendre quadratures for the volume integrals. Therefore, we
have for a generic integrand A(θ1, θ2, θ3) = Ã(x),∫

Ω

Ã(x) dx =

∫
Ū×T

A(θ1, θ2, θ3)(1− θ32H + (θ3)2K)
√

det Ḡαβ dθ1 dθ2 dθ3

≈
n1∑
i=1

n2∑
j=1

n3∑
k=1

A(θ1
i , θ

2
j , θ

3
k)(1− θ3

k 2H + (θ3
k)

2K)
√

det Ḡαβ ωiωjωk.

(14)

where H = 1/2(hαα) is the mean curvature and K = det(hβα) is the Gaussian curvature.
For a = 1, 2, 3, na is the number of quadrature points θai and quadrature weights ωi.

In order to discretize the sought field u we apply two steps. First, we resolve the
trough-the-thickness variation (the dependency on θ3) of u either by the Kirchhoff-
Love kinematics (9) or the Reissner-Mindlin kinematics (7). The model decision has
great impact on the subsequent discretization done in a second step. In the case of
the Reissner-Mindlin shell only first order derivatives appear in (12). Therefore, we can
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use H1 hierarchical shape functions on quadrilaterals [23] for the discretization of the
five components ui and vα. Due to the second derivatives in (10) this approach is not
feasible for the Kirchhoff-Love model. In order to have a H2 conforming method we
use the Bogner-Fox-Schmidt quadrilateral [24] to discretize the three components ui.
Dirichlet boundary conditions are incorporated in the ansatz space in the case of the
Reissner-Mindlin model or enforced by a penalty technique in the case of the Kirchhoff-
Love model (cf. [25]).

3 Code Verification

In the present paper, we apply code verification based on order-of-accuracy tests and
the MMS to a code for solving the shell formulations given in Section 2. The necessary
prerequisite to apply it to a numerical schema is the knowledge of a formal order of
convergence and exact solutions. Thus, an estimate of the type

||uexact − unumerical|| ≤ C hq ||uexact||, (15)

where C is a constant and h is a characteristic element size, has to be known. Then q is
called the formal order of convergence with respect to the norm || · ||. For two meshes
with characteristic element sizes h1 and h2, the experimental order of convergence (eoc)
is defined as

eoc =
log(e1)− log(e2)

log(h1)− log(h2)
, (16)

where
ei = ||uexact − unumericalhi

|| (17)

is the numerical error corresponding to the discretization hi. The code is verified, if the
eoc matches the formal order of convergence within the asymptotic range. For the finite
element method applied in this paper, we expect q = p+ 1 for the error in the L2 norm
for smooth solutions for the Reissner-Mindlin shell. In the case of the Kirchhoff-Love
shell no theoretical error estimates are known to the authors.

In order to evaluate (17), an exact solution has to be available. Within the MMS,
such a solution is prescribed. Then, the source term is determined such that the chosen
solution fulfills the governing equations. In particular, we perform the following steps:

1. Choose the form of the problem domain, i.e. specify the surface parametrization
(2) and the thickness t

2. Choose the form of the manufactured solution uM , i.e specify the independent
parameters in (7)

3. Derive the modified governing equations, i.e. compute an artificial source term
bM = −∇ · (C : ε(uM )) and derive the boundary conditions

4. Solve the discrete form of the modified governing equations on multiple meshes,
i.e. solve (13) with b = bM

7
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5. Evaluate the numerical error (17) and the eoc (16)

6. Apply the order of convergence test

Additionally to [26], we added the first point. The finite element code needs the com-
ponents bi of the source term b = biei with respect to the global Cartesian frame. They
are given by

bi = −
(
σjl,j + σklΓ j

kj + σjkΓ l
kj

)
J il . (18)

As noted in [27], an arbitrary choice of manufactured solution leads easily to a very
long computer code for the source term. We have observed this for general complex
curved surfaces too. We use the computer algebra system MathematicaTM [28] to derive
the source terms in an automated way. Nevertheless, a general verification example
assessing all features of the code results in a source code with more than 106 characters,
where simplifications are prohibitively time consuming. Therefore, we compute only the
derivatives analytically and the algebraic operations are performed numerically. Instead
of exporting a function for bi, we export functions taking the spatial position as input
argument for

• strain tensor εij ,

• derivatives of the strain tensor εij,k,

• covariant base vectors Gi,

• derivatives of the covariant base vectors Gi,j .

We evaluate these quantities at the needed spatial position and compute

Gij = Gi ·Gj ,

[Gij ] = [Gij ]
−1,

J il = Gl · ei,
Γ l
kj = Gk,j ·GiG

il,

Gij,k = −Γ j
kl G

li − Γ i
kl G

lj ,

σjl = λ
(
GijGklεkl + 2µGikGjlεkl

)
,

σjl,j = λ
(
Gij,jG

klεkl +GijGkl,j εkl +GijGklεkl,j

)
+ µ

(
Gik,jG

jlεkl +GikGjl,jεkl +GikGjlεkl,j

)
.

(19)

Then the source term is obtained with (18).
Remark: In the present implementation, we keep the exact surface parametrization

during the whole computation. Therefore, we are able to evaluate the error in a contin-
uous norm. In case of an approximation of the surface, one has to use the discrete norm

8
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[12]

e =

√√√√ 1

N

N∑
n=1

(
uexact(xn)− unumerical(xn)

)2

. (20)

Furthermore, the influence of geometry approximation on the formal order of convergence
has to be considered. For a discussion of this ‘variational crime’, we refer to [29]. We
remark that in the present approach this is not an issue.

4 Verification Examples

In the following, we provide a set of verification examples with increasing complexity. In
principle, it would be sufficient to consider only the most general case in order to verify
the code, since the special cases are included in the general case [30]. However, in order
to have confirmation exercises, we suggest special cases where parts of the code can be
tested.

In all examples, we use the parameter space (θ1, θ2) ∈ [0, 0.56] × [0, 0.65] and the
thickness t = 0.07 m. The material parameters λ = µ = 4000 N m−2 are used, which
corresponds to Young’s modulus E = 1000 N m−2 and Poisson’s ratio of ν = 0.25. An
additional confirmation exercises is obtained through setting ν = 0.

field A field B

u1 = θ1 sin(πθ1) cos(πθ2)

u2 = θ2 cos(πθ1) sin(πθ2)

u3 = θ1θ2 sin(πθ1θ2)

v1 = θ1θ2 sin(πθ1θ2)

v2 = θ1θ2 sin(πθ1θ2)

Table 1: Prescribed displacement parameters for the Reissner-Mindlin model

In the verification examples for the Reissner-Mindlin model, we use the two types of
displacement fields given in Table 1. Displacement field A is chosen such that it can
be represented exactly with each discretization. Displacement field B is chosen to be
general to assess all features of the code. For the Kirchhoff-Love model we present
three types of displacement fields, which are given in Table 2. Again field A can be
exactly discretized and field C is chosen to be general. The field B is constructed such
that it vanishes up to the second derivatives on the boundary. Therefore, one can test
simple supported boundary conditions without the need of considering external moments
along the boundary. Additional displacement fields for confirmation exercises can be

9



Preprint No 03/2017 Institute of Applied Mechanics

obtained through setting only individual parameters. Different surface parametrizations
are given in Table 3. The parametrization g1 is the identity map yielding a plane
rectangular mid-surface. With g2 we have a plane mid-surface with curved boundaries.
A cylindirical geometry and, therefore, curved (constant curvature) surface is given by
g3. The parametrization g4 defines a general curved surface.

field A field B field C

u1 = θ1 f(θ1, 0.56)f(θ2, 0.65) sin(πθ1) cos(πθ2)

u2 = θ2 f(θ1, 0.56)f(θ2, 0.65) sin(πθ1) cos(πθ2)

u3 = θ1θ2 f(θ1, 0.56)f(θ2, 0.65) sin(πθ1) cos(πθ2)

Table 2: Prescribed displacement parameters for the Kirchhoff-Love model, where
f(x, y) = 64

y6
(y − x)3x3

g1 g2 g3 g4

x1 = θ1 θ1 + (θ2)2 cos(θ1) 2θ1θ2+2θ1−θ2
3

x2 = θ2 θ2 + (θ1)2 θ2 −θ1θ2+2θ1+2θ2

3

x3 = 0 0 sin(θ1) 2θ1θ2−θ1+2θ2

3

Table 3: Surface parametrizations. The coordinates in physical space (x1, x2, x3) are
given as functions of θ1 and θ2.

In all examples, we consider all lateral sides as Dirichlet boundary and the top and
bottom surfaces as Neumann boundary.

4.1 Results for the Reissner-Mindlin model

Example 1: Plane geometry, exact representation of solution The goal of the first
example is to determine the influence of round-off errors. To this end, we have chosen
the plane geometry given by the parametrization g1 from Table 3 and displacement field
A from Table 1. In Figure 2a the reference surface with the body force is depicted.
The displacement field can be exactly represented in the discrete system. Therefore, the
remaining error is due to round-off errors. We have executed the code for ansatz orders
up to order three for single precision, as well as for double precision. The distribution of
the error for a coarse and a fine mesh over the parameter domain is depicted in Figures

10
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2b and 2c, respectively. In Figure 3, the errors for different discretization levels are
shown. We observe constant error levels around 10−15 for double precision. This agrees
with the expected accuracy. The errors for single precision arithmetics are as expected
about 10−7. However, using more elements raises the error. The conditioning of the
discrete system might be the reason for this.

(a) (b) (c)

Figure 2: Example 1: (a) reference surface and body force, (b) numerical error for a
coarse mesh (double precision, p = 2), (c) numerical error for a fine mesh
(double precision, p = 2)

1 1.5 2 2.5 3 3.5 4

−15

−10

−5

0

log2(elements per edge)

lo
g

1
0
(E

rr
or

)

p1, single
p2, single
p3, single
p1, double
p2, double
p3, double

Figure 3: Numerical error for example 1

Example 2: Plane geometry, general solution In the second example, the discretiza-
tion error at a plane geometry is assessed. Therefore, we use the parametrization g1

with displacement field B. The obtained distribution of the body force at the reference
surface is shown in Figure 4a. For ansatz order p = 3 the distributions of the errors
is displayed in Figures 4b and 4c. We observe oscillations in the errors. Such phenom-
ena was also observed in [20] for a benchmark example in the case of elements showing
locking. Since in the present element formulation no special method to alleviate locking
has been applied, the present oscillations are expected. However, the locking does not
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deteriorate the convergence of the method. The development of the errors and the eoc
for ansatz orders up to order six are shown in Figure 5. For the ansatz orders one to
four the eoc tends to the respective formal order of convergence. However, for ansatz
orders five and six, the eoc does not agree with the formal order of convergence. In these
cases, the numerical error is dominated by the error introduced due to round-off and not
by the discretization error. This effect is also visible in the subsequent examples. The
results verify the tested capabilities of the code.

(a)

(b) (c)

Figure 4: Example 2: (a) reference surface and body force, (b) numerical error for a
coarse mesh (p = 3), (c) numerical error for a fine mesh (p = 3)
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(a) numerical error
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(b) experimental order of convergence

Figure 5: Development of the numerical error and the eoc for example 2

Example 3: General geometry, exact representation of solution In the third example,
a general geometry with displacement field A is considered. For the reference surface
parametrization g4 from Table 3 is taken. The necessary body force for equilibrium is
depicted in Figure 6a at the reference surface. The distribution of the numerical error
obtained with a coarse and a fine mesh is shown in Figures 6b and 6c. Again, we observe
strong oscillations in the numerical error in case of the fine mesh. The development of
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the errors and the eoc for ansatz orders up to order six are shown in Figure 7. The
numerical error present in the example stems from the numerical integration of the
integrals in (13) and round-off since displacement field A can be exactly discretized.
We have set the number of quadrature points in both in-plane directions to the ansatz
order. However, as long as the numerical error is dominated by the integration error,
the eoc is higher or equal as the formal order of convergence regarding the discretization
of the displacement field. Therefore, the integration error will not hamper the overall
convergence rate. Note, with more quadrature points the eoc can be increased in this
example.

(a)

(b) (c)

Figure 6: Example 3: (a) reference surface and body force, (b) numerical error for a
coarse mesh (p = 4), (c) numerical error for a fine mesh (p = 4)
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(a) numerical error
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(b) experimental order of convergence

Figure 7: Development of the numerical error and the eoc for example 3

Example 4: General geometry, general solution The fourth example consists of the
general surface parametrization g4 and the general displacement field B. Thus, this
example assesses all features of the code. The reference surface and the body force are
illustrated in Figure 8a. In Figures 8b and 8c, the distribution of the numerical error
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is depicted for a coarse and a fine mesh. Again, we observe oscillations of the error.
However, the eoc is not deteriorated due to this effects. The development of the errors
and the eoc for ansatz orders up to order six are shown in Figure 9. Again, the error
corresponding to ansatz orders five and six is limited by the round-off error. Thus, the
eoc drops. For all other ansatz orders the eoc tend to the formal order of convergence.
Thus, the code passes this verification example.

(a)

(b) (c)

Figure 8: Example 4: (a) reference surface and body force, (b) numerical error for a
coarse mesh (p = 5), (c) numerical error for a fine mesh (p = 5)
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Figure 9: Development of the numerical error and the eoc for example 4

4.2 Results for the Kirchhoff-Love model

Example 5: Plane geometry, exact representation of solution The goal of this ex-
ample is to determine the influence of round-off errors for the implementation of the
FEM for the Kirchhoff-Love model. To this end, we have chosen the plane geometry
given by the parametrization g1 from Table 3 and displacement field A from Table 2,
which can be exactly represented in the discrete system. Due to this setting the body
force vanishes for the Kirchhoff-Love model. The distribution of the numerical error for
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a coarse and a fine mesh is given in Figure 10. For the coarse mesh we observe that
the error is concentrated at the boundary. Due to the use of a penalty method this is
reasonable. In contrast to this, for the fine mesh the error is concentrated in the interior.
This is in agreement with the results obtained in example 1. In Figure 11, the error and
eoc for different discretization levels and single as well as double precision arithmetics
are shown. From Figure 11a it can be seen that the error increases with refinement. Fur-
thermore, in Figure 11b the eoc is at around minus four for single and double precision
arithmetics. This is in agreement with the estimated condition number of the stiffness
matrix, which raises at the same rate. Thus, we conclude that the numerical error is
due to round-off errors and the penalty method used.

(a) (b)

Figure 10: Example 5: (a) numerical error for a coarse mesh , (b) numerical error for a
fine mesh
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Figure 11: Development of the numerical error and the eoc for example 5

Example 6: General geometry, general solution In this last example we use the
parametrization g4 and displacement field C from Table 2. The reference surface and
the body force obtained by the MMS is depicted in Figure 12a. The distribution of
the numerical error for a coarse and a fine mesh are illustrated in Figures 12b and 12c.
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(a)
(b) (c)

Figure 12: Example 6: (a) reference surface and body force, (b) numerical error for a
coarse mesh , (c) numerical error for a fine mesh
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Figure 13: Development of the numerical error and the eoc for example 6

For the coarse mesh we observe oscillations as in the examples for the Reissner-Mindlin
model. The results of the performed convergence study are shown 13. In Figure 13a,
we observe the convergence of the method up to an error level of about 10−8. This final
error level is in accordance with the results from Example 5. The eoc given in Figure 13b
tends to 4 apart for the last considered mesh refinement. Due to the use of third order
ansatz functions this convergence rate is optimal. Based on these results, we conclude
that the code passes this general verification example.

5 Conclusion

Code verification of simulation tools is a necessary procedure in order to ensure the
reliability. Especially in shell analysis complicated expressions arise which have to be
coded. Thus, the error-proneness is high. During the preparation of the present paper,
we found that performing order of accuracy tests is a code verification procedure with
high rigor.

In order to derive exact solutions we applied the MMS to the strong form of the
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3D elasticity equations in curvilinear coordinates. We have used the computer algebra
system MathematicaTM for the derivation of the source term function. In order to avoid
long codes for this function we compute only the necessary derivatives analytically.

For code verification in the context of shell analysis we proposed different verification
examples. We apply the proposed tests to an in-house developed finite element research
code for Kirchhoff-Love and Reissner-Mindlin shell analysis. The examples are designed
such that in some examples some parts of the code are not assessed consciously. This can
help to identify coding faults. Furthermore, we have seen that not in all cases the optimal
order of convergence has to show up. In cases where the discretization error is zero we
observe the error due to round-off errors or if existing due to numerical integration.
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