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Abstract

In this paper, a high order finite element method for partial differential equations on
smooth surfaces is proposed. The surface is defined as the intersection of a rectangular
cuboid and an implicitly defined surface. Therefore, the surface of interest may not be
closed. The main novel contribution in this work is the incorporation of an exact geom-
etry description of surfaces with boundary into the finite element method. To this end, a
piecewise planar triangulation is mapped onto the surface of interest by making use of the
implicit surface definition. The mapping uses predefined search directions and can, there-
fore, be tailored to consider boundaries. High order hierarchical shape functions are utilized
for the field approximation. They are defined on a reference triangle in the usual way. The
proposed method is easy to implement and bypasses the need of a high order geometry
description. Furthermore, due to the exact geometry the imposition of Dirichlet boundary
conditions, source terms and mesh refinement are easy to carry out.
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1 Introduction

The numerical solution of partial differential equations on surfaces by means of the finite element
method has been attracting intensive research since the emerging of finite element analysis. In
the beginning, the main motivation was given by structural mechanics problems, see e.g. [1].
Today, besides membrane [2] and shell problems [3], surface problems are of interest in many
branches in science and engineering, e.g. fluid flow on surfaces [4, 5], in the context of two-phase
flow [6], and geometric flow problems [7]. We refer to [8] and references therein for applications
in image processing, computer graphics, and pattern formation.

In the present paper, we focus on methods for problems on implicitly defined surfaces. We
refer to [9] for an overview of different methods. The first surface finite element method for such
problems was proposed in [10]. A piecewise linear discretization on a triangulation was used to
solve the Laplace-Beltrami equation. This resulted in a second order accurate method. In order
to compare functions on the triangulation and on the exact surface, the lift based on the closest
point projection was introduced for the theoretical analysis. In [11], this lift was utilized in order
to obtain an adaptive method. The extension towards an arbitrary order method was presented in
[12] for closed smooth surfaces. In coupled bulk-surface problems, like transport and diffusion
of surfactants in two phase flows and cellular dynamics in cell motility, only a finite element
approximation of the level-set function defining the interface surface might be available. This
setting was treated for closed stationary surfaces in [13]. To this end, the closest point projection
was adapted making use of a continuous quasi-normal field instead of the possibly rough exact
normals. The resulting method is of higher order if the original surface is smooth. In [14], a high
order method for surfaces with boundaries defined by multiple level set functions was proposed.
This method relies on the high order accurate surface approximation, which is constructed using
a background mesh and directional mapping of Lagrange elements. The publications so far
are concerned with stationary surfaces. In contrast to this, surface finite elements for evolving
surfaces are treated in [15, 16, 17, 18]. The coupling of a surface and a bulk problem was
investigated in [19].

Another class of methods for surface problems are the Eulerian methods [8]. Such methods
rely on the extension of the problem to the bulk volume. Thus, the problem to solve is posed
in a domain with one dimension higher than the original problem. This approach circumvents
the explicit meshing of the surface. In [8, 20, 21] finite difference methods are proposed for the
solution. Eulerian finite element methods are first described in [22] and [23]. In [24], the bulk
problem was restricted to a narrow band.

A third class of methods for surface problems is labeled TraceFEM [25, 26] or CutFEM
[27, 28]. The main idea of this method is to use the finite element spaces defined on a volume
triangulation. However, the surface problem is not extended to a bulk problem. Instead, the
trace of the bulk discretization on the (approximated) surface is used. Due to this the shape
functions on the surface may not be linearly independent. Thus, stabilization techniques are
necessary, cf. [26]. An adaptive method has been published in [29], whereas the extension to
evolving surfaces is given in [30].

Besides the solution of surface problems, the integration over implicitly defined surfaces and
volumes is of interest in the context of embedded/fictitious domain methods like the Finite Cell
Method [31, 32, 33], CutFEM [34], immersed boundary methods [35], and immersed finite ele-
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ment methods [36, 37]. In such methods, the boundary of the problem domain is not explicitly
meshed. Therefore, the main difficulty is the integration of the "cut elements" and the imposition
of boundary conditions. To face the integration issue, several approaches with optimal computa-
tional complexity has been proposed (see [38] for a comparison). One technique relies on a high
order re-meshing, which was developed in a series of papers [39, 40, 41]. The integration of the
cut elements and its boundary has been done by means of moment fitting in [42]. Furthermore,
in [43] high order integration based on height functions over hyper-planes is developed. This
last approach has delivered input to our developments.

In the present work, we propose a surface finite element method for smooth stationary sur-
faces defined as the intersection of the zero level of an exact level-set function and a rectangular
cuboid. In contrast to high order surface finite element methods relying on high order accurate
geometry approximations, a feature of our method is the parametrization of the exact surface
over a coarse base triangulation. An exact geometry method making use of the closest point pro-
jection was proposed in [12]. Following this idea, hybridizable discontinuous Galerkin methods
are defined and analyzed in [44]. Unfortunately, the mapping is only known explicitly if the
signed distance function is known explicitly. This is the case only for special shapes. In many
situations, only a level set function is known. Then the signed distance function has to be ap-
proximated numerically, which is a non-trivial task, cf. [45]. Furthermore, the mapping is in
general only exact for closed surfaces. In the case of surfaces with boundaries a geometric error
arises. Following the idea introduced in [46] and applied to a TraceFEM for surface problems in
[47], we make use of a directional mapping. Therefore, we are able to map every point on the tri-
angulated surface with a specific search direction. However, in the cited publications the search
directions coincide with (some approximation of) the gradient of the level set function. Releas-
ing this condition allows us to tailor the search directions such that surfaces with boundaries
can be treated exactly. Moreover, we avoid the isoparametric approximation of the geometry
mapping. Nevertheless, the implementation of the proposed method remains simple. Due to the
exact geometry mapping, our method has a number of interesting features. The imposition of
Dirichlet boundary conditions can be done in a strong form without extensions or corrections.
Furthermore, the exact source terms defined on the exact surface can be used without extension.
Moreover, mesh refinement can be performed by splitting of the existing elements without the
need of adapting the new triangulation to the exact surface. Nevertheless, as usual in the finite
element method, we require numerical quadrature for the integration over the surface. Due to
the exact geometry standard quadrature rules can be applied, yielding a super-algebraic conver-
gent surface integration. Hence, this approach can be used for the numerical integration in other
types of methods.

The remainder of the paper is organized in the following way. In Section 2, we introduce
the problem setting and present the variational formulation in the case of a parametrized sur-
face. Section 3 deals with the basic ingredients of the finite element method. In Section 4, we
present the exact parametrization of the implicitly defined surface. Numerical examples will be
presented in Section 5. Finally, the paper will be concluded in Section 6.
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2 Preliminaries

Let B⊆R3 be a rectangular cuboid. Let the smooth surface Ω be defined as the zero level-set of
a given function φ : R3→ R

Ω = {x ∈ B |φ(x) = 0}. (1)

We are interested in solving the following boundary value problem on the surface Ω ⊂ B with
boundary σ: Find the function u defined on Ω such that

u−∆S u = gΩ,

u(x) = gD(x) for x ∈ σD,

∇S u(x) ·nS = gN(x) for x ∈ σN .

(2)

Here, ∆S is the Laplace-Beltrami operator on Ω and ∇S the tangential gradient. The outer unit
normal vector nS of σ lies in the tangent space of Ω, whereas the surface normal vector n is
orthogonal on the tangent plane. The geometric setting of the problem is illustrated in Figure
1. The given function gΩ is the source term, gD is the given Dirichlet datum on the Dirichlet
boundary σD and gN is the given Neumann datum on the Neumann boundary σN . Furthermore,
we require σD∩σN = { /0} and σD∪σN = σ.

Figure 1: Problem setting

We recall the basic relations in the case of a parametrized surface. Let

g : P →Ω

(θ1,θ2) 7→ x
(3)

be a regular parametrization of Ω. Then the tangent plane to the surface is spanned by the two
linear independent base vectors

gα = g,α :=
∂g

∂θα
. (4)

Here, and in the following the Greek letters α and β take the values 1 and 2. The coefficients of
the first fundamental form are given by the scalar products of the base vectors

gαβ = gα ·gβ. (5)

The dual basis is obtained by
gα = gαβgβ, (6)
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where [gαβ] is the inverse of the matrix [gαβ]. Here, and in the following, Einstein summation
convention applies. Whenever an index occurs once in an upper position and in a lower position
we sum over this index. With the definitions above, we are able to define the surface area as
integrals over Ω and P as

A =
∫
Ω

dx =
∫
P

√
det([gαβ]) dΘ, (7)

where dx and dΘ are the surface measures on Ω and P, respectively. Furthermore, the surface
Laplacian ∆S of u on the surface Ω is defined as

∆Su = ∇S ·∇Su. (8)

Defining û(θ1,θ2) = u(g(θ1,θ2)), the surface gradient is given in local coordinates by [48]

∇S u = û,α gα. (9)

Next, we state the weak form of problem (2). To this end, we define Vg = {u ∈ H1(Ω) |u =
gD on σD} and V0 = {v ∈ H1(Ω) |v = 0 on σD}. Find u ∈Vg such that∫

Ω

u v dx+
∫
Ω

∇Su ·∇Sv dx =
∫
Ω

gΩ v dx+
∫

σN

gN v dsx, ∀v ∈V0. (10)

Here, dsx is the line measure on σ. In local coordinates, the integrals can be evaluated according
to ∫

Ω

uv dx =
∫
P

û v̂
√

det([gαβ]) dΘ,

∫
Ω

∇S u ·∇S v dx =
∫
P

û,α v̂,β gαβ

√
det([gαβ]) dΘ,

∫
Ω

gΩ v dx =
∫
P

gΩ(g(θ
1,θ2)) v̂

√
det([gαβ]) dΘ,

∫
σN

gN v dsx =
∫

g−1(σN)

gN(g(θ
1,θ2)) v̂

√
gθ ·gθ dθ.

(11)

Here, gθ is the tangent vector to the boundary curve σN and dθ the respective line measure.
In the following, we construct an exact element-wise parametrization of Ω and make the first
order derivatives available. Thus, the point-wise evaluation of the integrands in (11) is possible.
Within the FEM, we evaluate the integrals numerically by means of a quadrature rule. Thus, a
quadrature error is introduced.

3 Finite Element Method

In this section, we briefly recall the basic principles of the FEM. Here, the first step to obtain a
finite element discretization is a geometric partitioning of the problem domain Ω with a mesh
T . The mesh is the union of geometric elements τe. We denote the union of all τe by Ωh. In
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the present paper, we consider triangular τe only. In many situations T is only an approximation
of Ω. This is particularly true in the case of curved surfaces Ω and flat triangles τe. In order to
eliminate the geometric error we will introduce the mapping a : Ωh→Ω. This mapping will be
examined in Section 4.

For the construction of shape functions, the reference element τR = {(ξ,η) ∈ [0,1]2 |η+ξ≤
1} is introduced. We define the mapping Φe such that each geometric element τe is the image of

ξ

η

(0, 0) (1, 0)

(0, 1)

τR

Φe ge

a

τe a(τe)

Figure 2: Mappings Φe, a, and ge = a◦Φe between the reference triangle τR, the element τe ∈ T ,
and a(τe)

the reference element
Φe : τ

R → τe

(ξ,η) 7→ x =
3

∑
i=1

λi(ξ,η)xe
i ,

(12)

with
λ1 = 1−ξ−η,

λ2 = ξ,

λ3 = η,

(13)

and xe
i are coordinates of the vertexes of τe. The different mappings are illustrated in Figure

2. In order to discretize a function, we use hierarchical H1 conforming shape functions defined
on the reference triangle. We follow the developments and notations in [49]. The Legendre
polynomials are defined for x ∈ [−1,1] by the three-term recurrence relation

(n+1)`n+1(x) = (2n+1)`n(x)−n `n−1(x) for n≥ 1, (14)

6



Preprint No 02/2017 Institute of Applied Mechanics

with
`0(x) = 1,

`1(x) = x.
(15)

Furthermore, the integrated Legendre polynomials are

Ln(x) =
x∫
−1

`n−1(y) dy. (16)

The scaled integrated Legendre polynomials are defined as

LS
n(x, t) = tnLn

(x
t

)
forx ∈ [−t, t], t ∈ (0,1]. (17)

Then the shape functions of the Vertex-Edge-Cell base space of polynomial order p can be given.
The vertex-based shape functions 1≤ i≤ 3 are

φ
V
i = λi. (18)

The edge-based shape functions 2 ≤ i+ 1 ≤ p for the oriented edges Em from vertices e1 to e2
are

φ
Em
i = LS

i+2(λe2−λe1 ,λe1 +λe2). (19)

The cell-based shape functions 1≤ i+ j ≤ p−3 are

φ
C
i j = LS

i+2(λ2−λ1,λ1 +λ2) λ3 ` j(2λ3−1). (20)

These element shape functions are pieced together to FEM basis functions in the usual way by
establishing a connection between local and global degrees of freedom. In the present paper, we
restrict us to a uniform polynomial order p. The space spanned by the finite element functions
is denoted by Vh.

Due to the exact geometry, we are able to impose Dirichlet boundary conditions in a strong
form without extension of the given data (see e.g. [50] for considerations using an extension).
Unlike isoparametric elements, we do not have the concept of a nodal basis here. Therefore,
we impose Dirichlet boundary conditions by a L2 projection. To this end, we first solve for
uh,σ ∈Vh,σ = {uh ∈Vh |uh(x) 6= 0 for x ∈ σD} such that∫

σD

uh,σ vσ dsx =
∫

σD

gD vσ dsx (21)

holds for all vσ ∈ Vh,σ. Hence, the discrete problem reads: Find uh ∈ Vh,g = {wh ∈ Vh |wh(x) =
uh,σ(x) for x ∈ σD} such that∫

Ω

uh vh dx+
∫
Ω

∇Suh ·∇Svh dx =
∫
Ω

gΩ vh dx+
∫

σN

gN vh dsx, (22)

holds for all vh ∈Vh,0 = {wh ∈Vh |wh(x) = 0 for x ∈ σD}.
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4 Exact parametrization of the implicit surface

In this section, we extend the standard geometry mapping (12) such that the exact geometry is
preserved, i.e. we map the discrete surface Ωh to the exact surface Ω.

We briefly review the mapping based on the closest point projection. In order to compare a
function vh defined on Ωh to a function defined on Ω, we introduce the lifted function vl

h as in
[10]

vl
h(x−d(x)n(x)) = vh(x) for x ∈Ωh. (23)

Here, d is the signed distance function. It holds |d(x)| = dist(x,Ω). This is valid in a strip
U = {x∈R3 |dist(x,Ω)< δ} about Ω, where δ is bounded by the curvature. In (23), the mapping

ã : Ωh → Ω

x 7→ ã(x) = x−d(x)n(x).
(24)

is used. This mapping has been used in [12] to propose a method based on the exact geome-
try description for closed surfaces. However, the use of (24) has two drawbacks. Firstly, the
numerical realization is difficult in cases where the signed distance function d is not explicitly
known. Secondly, for surfaces with boundaries, the mapped surface does not have to agree with
the exact surface. Thus, the exact geometry cannot be preserved in general. Such a situation is
illustrated in Figure 3. The level-set function φ(x) = ||x||−1 defines a sphere in R3. However,

Figure 3: Limitations of the mapping ã

only that part lying inside B = [0,1]× [0,1]× [0.5,1.5] is the considered surface (see the left
representation of Figure 3). Let T consist of the single black triangle, which is displayed in the
right representation. The vertices are (

√
3/4,0, 1/2), (0,

√
3/4, 1/2), and (0,0,1). Thus, they are

on the exact surface. The application of the mapping (24) to the triangle yields the blue surface
ã(Ωh), which is depicted in the right of Figure 3). The red surface is the difference between the
mapped triangle ã(Ωh) and the exact surface Ω. Thus, in the given example ã(Ωh) 6= Ω.

To overcome such issues arising with the mapping based on the closest point projection we
use the mapping

a : Ωh → Ω

x 7→ a(x) = x+ r(x) s(x).
(25)
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Here, s(x) are predefined search directions and r(x) is the distance of x to the surface with
respect to the respective search direction. Such a mapping has been considered in [46] and in
[14]. However, [46] is concerned with interface problems where the level-set function describing
the interface is given as a finite element function. There, the bulk problem is discretized by
an unfitted background mesh. In order to increase the resolution of the interface, the mesh is
transformed. In [14], surfaces described by multiple exact level-set functions are considered.
However, only a high order accurate approximation of Ω is constructed making use of surface
elements of Lagrange type. The elements and the search directions are induced by a background
mesh.

In the present approach, no background mesh is necessary. The requirement is that a valid base
triangulation is available, i.e. (25) is a regular map. Nevertheless, we remark that a background
mesh can be a useful tool for the construction of a valid initial mesh. Furthermore, a necessary
requirement for the present approach is that the vertices on the boundary of T have to lie on the
boundary of the bounding box B. We specify the search directions in (25) as follows. Let V
denote the set of all vertices of T . We set

s̃v(x) =
∇φ(x)
||∇φ(x)||

for x ∈ V , (26)

where ∇φ is the usual gradient of φ in R3. To preserve the exact geometry, we apply a modifica-
tion at the vertices on the boundary of B. Thus, we set

sv(x) =

{
s̃v(x)− (s̃v(x) ·n∂B(x))n∂B(x) for x ∈ V ∩∂B
s̃v(x) else

, (27)

where n∂B are the normal vectors to ∂B. Then the search direction field s(x) defined on Ωh is
obtained by linear interpolation of sv(x).

The mapping (25) requires the solution of a non-linear root finding problem. This is numeri-
cally realized by means of the Newton iteration

xk+1 = xk− s(xk)
φ(xk)

∇φ(xi) · s(xk)
. (28)

Thus, every point in the reference element can be mapped onto the exact geometry. In our
experience, the Newton scheme (28) converges within a few iterations (at most seven iterations
in the numerical examples given in Section 5). We enhance the standard FEM element mapping
by the mapping (25). Thus, we obtain an element-wise parametrization of Ω by

ge : τ
R →Ω

(θ1,θ2) 7→ a(Φe(θ
1,θ2)).

(29)

The evaluation of the integrals in (11) requires x = ge(θ1,θ2) and the base vectors. All other
geometric quantities can be computed from the base vectors. In the case of (24), they can be
calculated from the first and second order derivatives of d and the first order derivatives of Φe,
cf. [11], [12]. Here, we are able to compute the base vectors based on the knowledge of ∇φ
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only, once we have solved x = ge(θ1,θ2), i.e. we know the distance r. We are interested in the
base vectors given by

gα = ge
,α = Φ

e
,α + r,αs+ r s,α. (30)

Since Φe and s are linear finite element functions, their derivatives are available in finite element
codes. However, r,α is not readily available. In order to compute r,α we note that for a point
x ∈Ω the surface normal vector is given by

n(x) =
∇φ(x)
||∇φ(x)||

. (31)

The scalar product of (30) with the normal vector yields

Φ
e
,α ·n+ r,α s ·n+ r s,α ·n = 0. (32)

Thus, we are able to obtain the derivatives of the distance r by

r,α =−
Φe

,α ·n+ r s,α ·n
s ·n

. (33)

This result can be inserted in (30) to obtain the computable expression

gα = Φ
e
,α−

Φe
,α ·n+ r s,α ·n

s ·n
s+ r s,α. (34)

With (34) the base vectors and, therefore, all other geometric quantities necessary for the imple-
mentation are available.

For the success of the method, it is necessary to have a valid base triangulation. For such a
triangulation we have the requirement

√
det([gαβ]) > 0. We remark that

√
det([gαβ]) is non-

negative by construction and has to be evaluated at the quadrature points. Thus, finding a point
where

√
det([gαβ]) = 0 is difficult. However, here we have

√
det([gαβ]) = ||ñ|| where ñ =

g1×g2. Thus, we are able to evaluate the requirement ñ ·n > 0 instead. Furthermore, from (34)
we observe the requirement s ·n > 0. These two conditions can easily be checked at a number of
points in each triangle. If any is violated the base triangulation has to be refined in that region.

We end this section with a comment on solution refinement. In order to estimate the error
of the numerical solution, refinements are of interest. In standard FEM approaches, for solution
refinement, one needs a procedure how to refine the mesh in order that it yields a better geometry
approximation. In contrast to this, in the present method, it is only necessary to have one valid
base triangulation T . Here, a valid mesh is a mesh for which (29) provides a piecewise regular
parametrization of the exact surface. Thus, for a valid mesh, the geometry error vanishes. There-
fore, no adaption of the refined mesh obtained by element splitting is necessary for the present
approach. This means that although the triangulation T is refined the base surface Ωh is fixed
during refinement. In this setting, it is desirable to keep the mapping (25) fixed. To this end, we
define the search directions on the coarsest triangulation and interpolate them on the finer levels.
This is easily possible since we define the search directions as linear finite element functions.

10
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5 Numerical results

In this section, we verify and investigate the performance of the present approach considering
numerical examples. We verify the developed FEM making use of the method of manufactured
solutions (MMS). To this end, we define the surface Laplacian by means of tangential calculus.
The surface gradient of a scalar function v(x) defined on R3 is defined by

∇S v(x) = ∇v(x)− (∇v(x) ·n(x)) n(x) for x ∈Ω. (35)

Let (∇S v)i =
∂v
∂xi
− (∇S v ·n) ni be a component of ∇S v. Then the surface divergence of a vector

field w with component wi is defined as

∇S ·w =
3

∑
i=1

(∇S wi)i . (36)

Following the MMS concept, we prescribe a solution uM defined on R3. Then the source term is
given with

gΩ = uM−∇S ·∇S uM. (37)

The boundary data functions are

gD(x) = uM(x) for x ∈ σD,

gN(x) = ∇S uM(x) ·nS for x ∈ σN .
(38)

In the following examples, we investigate the error introduced by the numerical quadrature and
the field approximation. To this end, we define the relative error in area

eA =
|A−Ah|

A
(39)

and the relative error in the field approximation

eu =

√∫
Ω
(uM−uh)2 dx∫

Ω
(uM)2 dx

. (40)

5.1 Spherical surface

In this first example, we consider the spherical surface Ω given by

φ(x,y,z) = 1− x2− y2− z2 (41)

and B = [−2,2]× [−2,2]× [−0.2,0.8]. We have constructed a base triangulation T0, which is
only loosely in relation to Ω. The T0 consists only of six vertexes and six elements, see Figure
4. None of the vertexes is on the exact surface. First, we study the quadrature error. In order to
assess the quadrature error, we compute (39) for three different refinement variants. The results
are plotted in Figure 5a. In the variant fixed elements, we keep T0 fixed and raise the number of
quadrature points and therefore the degree of exactness of the quadrature rule. In the variants A

11
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(a) Base triangulation T0 (b) Mapped triangulation a(T0)

Figure 4: Triangulations for the spherical surface

and B, we uniformly refine the base triangulation T0 several times and use only one quadrature
point per element. In variant A, we map the mesh after each refinement such that all vertices are
on the exact surface. In variant B, we refine the mesh and leave the newly introduced vertices
unchanged as outlined at the end of Section 4. Thus, in this case, Ωh remains the same for all
refinements. In Figure 5a, we see the superior convergence of the variant fixed elements. For
the other two variants, we can identify a linear convergence behavior Surprisingly, the error in
variant B is slightly lower than in variant A.

Next, we study the convergence of the FEM under uniform mesh refinement. We do not move
the nodes after refinement (according to variant B). Thus, the same Ωh is used in all calculations.
As the sought solution we set

uM = xsin(z). (42)

We define σN = {(x,y,z)∈ σ|z< 0} and σD = σ∩σN . Following the MMS, we derive the source
term and the boundary conditions such that (42) is the solution of the considered boundary value
problem. The results of the convergence study are presented in Figure 5b. We observe optimal
convergence rates, i.e. O(hp+1)-convergence where h is a characteristic element length.

5.2 Deformed torus

This example is inspired from the flower-shape example in [46, 51]. However, here we consider
a 3D surface of a deformed torus. The level-set function of the surface is

φ(x,y,z) =
(

x2 + y2 + z2 +R(x/y)2− r2
)2
−4R(x/y)2 (x2 + y2),

R(τ) = 1+ r0 sin(6 τ), r = 0.2, r0 = 0.1.
(43)
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Figure 5: Convergence results for the spherical surface

We consider the zero level surface in B = [−1.5, 1.5]× [−1.5, 1.5]× [0, 0.5]. This surface is also
parametrically defined by

Ω = {(x,y,z)| x = (R(θ1)+ r cos(θ2))cos(θ1),

y = (R(θ1)+ r cos(θ2))sin(θ1),

z = r sin(θ2), θ
1 ∈ [0,π], θ

2 ∈ [0,2π]}.
(44)

We notice that for r0 = 0 a torus is obtained. The base triangulation (see Figure 6a) is obtained
in three steps. First, we apply the Matlab-function isosurface to a structured 10×10×5 grid to
obtain a triangulation of the surface. This function implements a variant of the Marching Cubes
Algorithm [52]. In the second step, we map all vertices onto the exact surface. In the final
step, we eliminate small triangles using the Matlab-function reducepatch and obtain the base
triangulation. The mapped base triangulation is displayed in Figure 6b.

(a) Base triangulation T0 (b) Mapped triangulation a(T0)

Figure 6: Triangulations for the deformed torus example

We study the convergence of eA. To this end, we compute the area with different quadrature
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rules with increasing degree of exactness. The super-algebraic convergence can be observed in
Figure 7a.

For the investigation of the convergence of the field approximation, we consider the manufac-
tured solution

uM = z2 cos(2πx) cos(2πy). (45)

We take the whole boundary as Dirichlet boundary. Again, we perform uniform refinement of
the triangulation without subsequent node manipulation. We observe optimal convergence rates
in Figure 7b.
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Figure 7: Convergence results for the deformed torus example

5.3 Gyroid

In this example, we consider a complexly shaped surface. The surface of interest is given by the
zero level of the level-set function

φ(x,y,z) = sin(x)cos(y)+ sin(y)cos(z)+ sin(z)cos(x) (46)

and B = [−1,1]3. The exact surface and the base triangulation T0 with 240 elements are depicted
in Figure 8. The base triangulation was obtained by making use of the Matlab-function isosur-
face applied to a structured 5×5×5 grid. Since we are not aware of a parametric description of
the gyroid, we study only the convergence of the field approximation in this example. Therefore,
we prescribe the solution as

uM = x2 sin(y)exp(z) (47)

and consider the case σD = σ. In Figure 9, the results of a convergence study are presented. We
see the optimal convergence rates. This constitutes the validity of the proposed method, even in
geometrically complex examples.
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(a) Base triangulation T0 (b) Mapped triangulation a(T0)

Figure 8: Triangulations for the gyroid example

5.4 Pot problem

In this example, we apply the present method for the analysis of an empty pot. The geometry
of the pot is defined by the combination of three level-set functions. In order to realize boolean
operations on implicitly given domains, the max-function can be utilized. However, then the
resulting surface is not smooth in general. We follow [53] to obtain a smooth final surface. To
this end, we have used the exterior blending with the parameters δ = 0.75 and ε = 0.0025. This
blending builds upon a smooth approximation of the max-function. The individual level-set
functions are

φ1 = 0.8+
z2

10
− x2− y2

φ2 =

(
R−

√
(x−1)2 + y2

)2

+(z−0.8)2− r2

φ3 =

(
R−

√
(x+1)2 + y2

)2

+(z−0.8)2− r2

(48)

with R = 0.6 and r = 0.15. Instead of modeling the bottom of the pot, we apply a Dirichlet
boundary condition on the bottom curve, i.e. u = 1. The base triangulation and the mapped base
triangulation are depicted in Figure 10. We have obtained the base triangulation in four steps.
In the first step, we applied the Matlab-function isosurface on a 30× 20× 20 structured grid.
In order to capture the topology of the problem, we had to use such a fine grid. In the second
step, we mapped all vertices on the surface. In the third step, we applied the Matlab-function
reducepatch in order to keep the mesh as small as possible. However, the resulting mesh of these
first three steps is not valid since a negative determinate occurs in one element. Thus, the fourth
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Figure 9: Convergence of the field approximation in the gyroid example

step consists of an adaptive refinement of the invalid triangle. In this example we keep the mesh
fixed and consider the p-version of the FEM. The advantage of the present method is that once
the valid base triangulation is set up no care about geometry approximation has to be taken.

(a) Base triangulation T0 (b) Mapped triangulation a(T0)

Figure 10: Triangulations for the pot problem

We study the convergence of the method in this example. For this purpose three meshes are
used, which are the mesh given in Figure 10 and two uniform refinements. Since the resulting
level-set function is highly complex, we were not able to compute a source term by means of
the MMS in a reasonable time. Hence, the error in the integral of the solution ũ =

∫
Ω

u dx
is compared with a reference value ũ = 3.4718104451902, the solution of the finest mesh and
p = 18. The error plot can be found in Figure 11. Concerning the numerical effort the number
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Figure 11: Convergence of the field approximation in the pot model

of dofs to obtain a distinct error level is considered. Up to an error level of 10−8 the initial
mesh is the most efficient but to obtain lower error levels the first refinement shows the best
efficiency. This shows that increasing the order of the shape functions is more efficient than a
mesh refinement in this example.

In Figure 12, the solutions for p = 1,2,3,4 and the initial mesh are shown. In the left column
the solution u is given. We observe already for the linear method only minor deviations from
the other solutions. Moreover, the solutions for p = 2,3,4 agree visually. This is in contrast to
the right column where ||∇Ω u|| the norm of the flux vector is shown. Here, the linear method
yields only piecewise constant values and thus only a coarse approximation. The quality of the
flux solution is considerably improved for p = 2. Nevertheless, in regions of high curvature, a
deviation from the solutions obtained with the higher order methods is present. Finally, we do
not observe visual differences between the solutions of p = 3 and p = 4.

6 Conclusion

A high order finite element method for surface problems has been presented. The main feature
of the method is that an approximating triangulation is mapped onto the exact geometry of
the considered problem. Thus, the method introduces no geometry error. This enables the
construction of the high order FEM following standard concepts. The element shape functions
are constructed on the reference triangle and pieced together to continuous shape functions in
the usual way. Due to the exact geometry, refinements are easier compared to methods based
on an approximative geometry handling. We only have to perform element subdivision without
any adaption of the refined mesh to the exact surface. The only requirement is to have one valid
initial surface mesh.

We have shown the capabilities of the method in four examples. In order to assess the con-
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vergence behavior the method of manufactured solutions has been utilized. We investigated the
convergence at a spherical surface, a deformed torus, and a gyroid surface. In all numerical
experiments, we observe optimal convergence rates in the asymptotic range. Finally, we applied
the method to a pot model where the geometry is given by the smooth combination of three
level-set functions.

We conclude that the method works well in geometrically challenging examples provided that
a valid base triangulation is available. We discussed conditions for such a mesh. In the present
paper, we checked them at a number of points in each triangle and used local refinements if
violated. In future work, the conditions should be checked by a more elaborate approach.

Like in all finite element methods, the present method requires integration over the problem
domain. Due to the exact geometry, no refinement of the geometry representation is neces-
sary once a appropriate base triangulation is available. Thus, the integration can be numerically
realized with exponential convergence using standard quadrature rules. As outlined in the intro-
duction surface integration is of interest in embedded/fictitious domain methods and the Trace-
FEM/CutFEM, where the surface lies within cubes and tetrahedrons. We believe that the present
bounding box setting can also be readily applied to tetrahedrons and the developed mapping
techniques can also be used in those problems.

In the pot model example, the method has been applied to a smooth geometry defined by
three level-set functions. In future work, it is planned to extend the present method to non-
smooth Constructive Solid Geometry models. There, the challenge is the exact treatment of
corners and edges, which occur not on the boundary.

References

[1] M. Bischoff, K.-U. Bletzinger, W. Wall, E. Ramm, Models and finite elements for thin-
walled structures, in: E. Stein, R. de Borst, T. Hughes (Eds.), Encyclopedia of Computa-
tional Mechanics, Vol. 2, Wiley Online Library, 2004, Ch. 3, pp. 59–137.

[2] P. Hansbo, M. Larson, F. Larsson, Tangential differential calculus and the finite element
modeling of a large deformation elastic membrane problem, Comput. Mech. 56 (1) (2015)
87–95.

[3] D. Chapelle, K.-J. Bathe, The finite element analysis of shells, Springer Science & Busi-
ness Media, 2010.

[4] I. Nitschke, A. Voigt, J. Wensch, A finite element approach to incompressible two-phase
flow on manifolds, J. Fluid Mech. 708 (2012) 418–438.

[5] S. Reuther, A. Voigt, The interplay of curvature and vortices in flow on curved surfaces,
Multiscale Model. Simul. 13 (2) (2015) 632–643.

[6] S. Gross, A. Reusken, Numerical methods for two-phase incompressible flows, Vol. 40,
Springer Science & Business Media, 2011.

[7] K. Deckelnick, G. Dziuk, C. Elliott, Computation of geometric partial differential equa-
tions and mean curvature flow, Acta Numer. 14 (2005) 139–232.

18



Preprint No 02/2017 Institute of Applied Mechanics

[8] M. Bertalmío, L.-T. Cheng, S. Osher, G. Sapiro, Variational problems and partial differen-
tial equations on implicit surfaces, J. Comput. Phys. 174 (2) (2001) 759–780.

[9] G. Dziuk, C. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013)
289–396.

[10] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in: S. Hilde-
brandt, R. Leis (Eds.), Partial Differential Equations and Calculus of Variations, Vol. 1357,
Springer, 1988, pp. 142–155.

[11] A. Demlow, G. Dziuk, An adaptive finite element method for the Laplace-Beltrami opera-
tor on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (1) (2007) 421–442.

[12] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic
problems on surfaces, SIAM J. Numer. Anal. 47 (2) (2009) 805–827.

[13] J. Grande, A. Reusken, A higher order finite element method for partial differential equa-
tions on surfaces, SIAM J. Numer. Anal. 54 (1) (2016) 388–414.

[14] T.-P. Fries, D. Schöllhammer, Higher-order meshing of implicit geometries part II: Ap-
proximations on manifolds, Comput. Methods in Appl. Mech. Eng. 326 (2017) 270–297.

[15] C. Eilks, C. Elliott, Numerical simulation of dealloying by surface dissolution via the
evolving surface finite element method, J. Comput. Phys. 227 (23) (2008) 9727–9741.

[16] G. Dziuk, C. Elliott, L2-estimates for the evolving surface finite element method, Math.
Comput. 82 (281) (2013) 1–24.

[17] B. Kovács, B. Li, C. Lubich, C. Guerra, Convergence of finite elements on a solution-driven
evolving surface, arXiv preprint arXiv:1607.07170.

[18] B. Kovács, High-order evolving surface finite element method for parabolic problems on
evolving surfaces, IMA J. of Numer. Anal. (2017) 1–30.

[19] C. Elliott, T. Ranner, Finite element analysis for a coupled bulk–surface partial differential
equation, IMA J. of Numer. Anal. 33 (2) (2013) 377–402.

[20] J. Greer, A. Bertozzi, G. Sapiro, Fourth order partial differential equations on general ge-
ometries, J. Comput. Phys. 216 (1) (2006) 216–246.

[21] J. Greer, An improvement of a recent eulerian method for solving pdes on general geome-
tries, J. Sci. Comput. 29 (3) (2006) 321–352.

[22] M. Burger, Finite element approximation of elliptic partial differential equations on im-
plicit surfaces, Comput. Vis. Sci. 12 (3) (2009) 87–100.

[23] G. Dziuk, C. Elliott, Eulerian finite element method for parabolic PDEs on implicit sur-
faces, Interface. Free. Bound. 10 (1) (2008) 119–138.

19



Preprint No 02/2017 Institute of Applied Mechanics

[24] K. Deckelnick, G. Dziuk, C. Elliott, C.-J. Heine, An h-narrow band finite-element method
for elliptic equations on implicit surfaces, IMA J. of Numer. Anal. 30 (2009) 351–376.

[25] M. Olshanskii, A. Reusken, J. Grande, A finite element method for elliptic equations on
surfaces, SIAM J. Numer. Anal. 47 (5) (2009) 3339–3358.

[26] M. Olshanskii, A. Reusken, Trace finite element methods for PDEs on surfaces, arXiv
preprint arXiv:1612.00054.

[27] E. Burman, P. Hansbo, M. Larson, A stabilized cut finite element method for partial
differential equations on surfaces: The Laplace–Beltrami operator, Comput.Methods in
Appl.Mech.Eng. 285 (2015) 188–207.

[28] E. Burman, P. Hansbo, M. Larson, A. Massing, Cut finite element methods for partial
differential equations on embedded manifolds of arbitrary codimensions, arXiv preprint
arXiv:1610.01660.

[29] A. Demlow, M. Olshanskii, An adaptive surface finite element method based on volume
meshes, SIAM J. Numer. Anal. 50 (3) (2012) 1624–1647.

[30] M. Olshanskii, A. Reusken, X. Xu, An Eulerian space-time finite element method for dif-
fusion problems on evolving surfaces, SIAM J. Numer. Anal. 52 (3) (2014) 1354–1377.

[31] J. Parvizian, A. Düster, E. Rank, Finite cell method, Comput. Mech. 41 (1) (2007) 121–
133.

[32] A. Düster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional
problems of solid mechanics, Comput. Methods in Appl. Mech. Eng. 197 (45) (2008)
3768–3782.

[33] D. Schillinger, M. Ruess, The Finite Cell Method: A review in the context of higher-order
structural analysis of CAD and image-based geometric models, Arch. Comput. Meth. Eng.
22 (3) (2015) 391–455.

[34] E. Burman, S. C, P. Hansbo, M. Larson, A. Massing, CutFEM: Discretizing geometry and
partial differential equations, Int. J. Numer. Methods Eng. 104 (7) (2015) 472–501.

[35] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005)
239–261.

[36] T. Rüberg, F. Cirak, Subdivision-stabilised immersed b-spline finite elements for moving
boundary flows, Comput. Methods in Appl. Mech. Eng. 209 (2012) 266–283.

[37] T. Rüberg, F. Cirak, J. Aznar, An unstructured immersed finite element method
for nonlinear solid mechanics, Adv. Model. Simul. Eng. Sci. 3 (1) (2016) 22.
doi:https://doi.org/10.1186/s40323-016-0077-5.

[38] M. Olshanskii, D. Safin, Numerical integration over implicitly defined domains for higher
order unfitted finite element methods, Lobachevskii Journal of Mathematics 37 (5) (2016)
582–596.

20



Preprint No 02/2017 Institute of Applied Mechanics
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(a) p = 1

(b) p = 2

(c) p = 3

(d) p = 4

Figure 12: Solutions of the pot problem: u (left column), ||∇Ωu|| (right column)
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