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Abstract

Transient problems can often be solved with transformation methods, where the inverse
transformation is usually performed numerically. Here, the discrete Fourier transform in
combination with the exponential window method is compared with the convolution quadra-
ture method formulated as inverse transformation. Both are inverse Laplace transforms,
which are formally identical but use different complex frequencies. A numerical study is
performed, first with simple convolution integrals and, second, with a boundary element
method (BEM) for elastodynamics.

Essentially, when combined with the BEM, the discrete Fourier transform needs less
frequency calculations, but finer mesh compared to the convolution quadrature method to
obtain the same level of accuracy. If further fast methods like the fast multipole method
are used to accelerate the boundary element method the convolution quadrature method is
better, because the iterative solver needs much less iterations to converge. This is caused by
the larger real part of the complex frequencies necessary for the calculation, which improves
the conditions of system matrix.
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1 Introduction

Classical integral equation methods for solving wave propagation problems include the direct
discretization of the time-domain integral equation [16], the frequency-domain approaches (see,
e.g., [5]) and the dual reciprocity approach (see, e.g., [1]). A relatively new approach is to
use convolution quadrature developed by Lubich to discretize the time-domain integral equa-
tion [14, 15]. The resulting discretized system involves the integration weights determined by
one function, usually the kernel function, in the Laplace domain and another function, typically
boundary data, in the time domain. Due to its better stability compared to the classical time dis-
cretization approach (see, e.g., [21]), convolution quadrature based boundary element method
(CQBEM) has attracted much attention and applications of the method can be found in a variety
of areas such as, e.g., anisotropic [26] or cracked piezoelectric materials [8].

Methods working in the frequency domain require a suitable inverse transforms, which is
commonly performed numerically. The inverse Fourier transform is one popular method. How-
ever for systems with no intrinsic damping and mismatched initial and ending responses, the
discrete Fourier transform (DFT) fails to produce accurate results. This is why in practical
calculations often a small artificial damping is added to the model, either via the exponential
window method as suggested by Kausel and Roësset [12] or by introducing a small viscous or
hysteretic damping in the system. The application of the exponential window method in an elas-
todynamic BE formulation has recently been published in [23, 24]. On the other hand, using the
Laplace transform systems without damping can be handled without adding artificial damping.
As this topic is not new, a lot of literature exists for numerical inverse transformation techniques.
In the framework of BEM and dynamic problems there is an old but nevertheless timely com-
parison from Narayanan and Beskos [18]. Later, for viscoelastic BE formulations a comparison
including the CQBEM can be found in [9].

An important step in the CQBEM is the method for solving the linear system resulting from
the application of convolution quadrature. In order to avoid the explicit evaluation of the quadra-
ture weights, most of work employs the decoupled approach suggested by Banjai and Sauter [2]
and reformulated for elastodynamics in [20]. In this approach, the time-domain function is also
casted in a Laplace form, hence, the decoupled approach works as a transformation method. The
similarity of the final discretized systems shared by the CQBEM and the DFT based frequency-
domain approach motives a close examination of the relationship between the two approaches.
In addition, it would be of interest and is practically valuable to compare the efficiency of the
two approaches.

In this paper, we present a study of both methods, focusing on the relationship between the
two. We first give a brief description of each method, followed by a discussion on the connection
between the two methods. The performance of the two approaches is demonstrated on two
analytical convolution integrals. Lastly, applications of the methods to elastodynamic problems
are presented and performance comparison is given via numerical results.
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2 Numerical approximation of a convolution integral

In any computation of time dependent linear problems, there exists the possibility to use integral
transformation methods. The most commonly used method is the Fourier transform beside the
Laplace transform. Both allow to compute the solution in the transformed domain and via an
inverse transformation the time domain response is obtained. In most engineering computations,
essentially, a convolution in time

y(t) = f ∗g =

t∫
0

f (t− τ)g(τ)dτ (1)

has to be performed, where one of the functions may be the response of the system computed by
some numerical method and the other is the time dependent load. Beside the classical numerical
inverse transformation techniques, such a representation as a convolution integral allows to use
as well the CQM as inverse transformation, i.e., to solve the convolution integral (1) numerically.
To make a comparison of both techniques, the Fourier transform and the CQM, first, the basic
formulae are given in a discrete setting. This allows to see the similarities.

In the remaining text, a Fourier transformed function is denoted by ỹ and the Laplace trans-
formed function by ŷ. Further, for the Laplace parameter s it holds s ∈ C s.t. ℜs > 0. The
notation ỹ` = ỹ(ω`) indicates that this function is related to the discret frequency ω`. The analo-
gous shortcut is used for Laplace transformed functions at discrete complex frequencies s`. It is
assumed that the data are zero for negative times, i.e., y(t) = 0 ∀t < 0. The Heaviside function
is denoted by H (t) = 1 ∀t > 0 else zero and the Dirac distribution by δ(t).

2.1 Frequency domain approach

The Fourier transform of a function f is defined via the integrals

f̃ (ω) =
∞∫
−∞

f (t)e−iωt d t ↔ f (t) =
1

2π

∞∫
−∞

f̃ (ω)eiωt dω (2)

with the frequency ω. For numerical purposes a discrete version is necessary. Discretizing the
time period t ∈ [0,T ] in N + 1 equal intervals of size ∆t yields the discrete Fourier transform
(DFT)

f̃` = ∆t
N

∑
k=0

f (k∆t)ζ−k` ↔ f (n∆t) =
1

∆t (N +1)

N

∑̀
=0

f̃`ζ`n with ζ = ei 2π
N+1 . (3)

In order to apply the DFT technique, the initial and ending responses within the time period
of interest must match owing to the periodic nature of DFT, or otherwise, large ‘wrap-around’
errors will result. This condition unfortunately cannot be satisfied for most problems. An effec-
tive and general method to overcome this issue is the exponential window method (EWM). It is
frequently used in signal processing and has been introduced in structural engineering by Kausel
and Roësset [12]. In this approach, a “damped” solution fD (t) = f (t)e−ηt is obtained first with
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η > 0. It is then scaled up to retrieve the original solution. The new continuous definition of the
transformation pair is

f̃D (ω) =
∞∫
−∞

f (t)e−ηte−iωt d t =
∞∫
−∞

f (t)e−iω̄t d t = f̃ (ω̄)

f (t) = fD (t)eηt =
1

2π

∞∫
−∞

f̃ (ω)eiωt dω =
1

2π

∞−iη∫
−∞−iη

f̃ (ω̄)eiω̄t d ω̄ .

(4)

The corresponding discrete counterpart, i.e., the modified DFT called in the following EWM-
DFT , is

f̃ ∗` = ∆t
N

∑
k=0

f (k∆t)ζ−k`e−ηk∆t ↔ f (n∆t) =
1

∆t (N +1)
eηn∆t

N

∑̀
=0

f̃ ∗` ζ`n . (5)

The notation f̃ ∗` has been introduced to make clear that these values are related to a complex
valued frequency and not to the real valued frequency of (3). Exploring the second formula
in (5), i.e., the inverse discrete transformation, numerical problems are obvious when η is chosen
too large. Kausel and Roësset [12] developed an empirical formula for the damping parameter

η <
m ln10

T
(6)

if m is the number of significant digits.

Remark 1. A close inspection of the last integrals in each line of (4) shows that a substitution
s = iω̄ brings up the definition of the usual Laplace transform, if additionally the condition
f (t) = 0 for t < 0 is imposed. Hence, this method mimics the Laplace transform and the EWM-
DFT is an approximation of the inverse Laplace transform. Consequently, the numerical inverse
Laplace transform is similar. Comparing the formula (5) with the method of Durbin [7] it is
found to be the same.

The above sketched method allows to apply the FFT on non-periodic functions. However, the
method still suffers from Gibb’s phenomenon, i.e., the truncation of high frequency parts of the
solution causes the time signal to oscillate at discontinuous points. To suppress these unwelcome
parts of the solution a filter can be used. A common one is the Blackman filter, which multiplies
the frequency response with

wn = 0.42−0.5cos
(

2πn
N−1

)
+0.08cos

(
4πn

N−1

)
0≤ n≤ N

2
−1 . (7)

This filter will be used for all calculations in the following. An additional benefit of this filter
is that the amplification of the oscillations caused by the exponential weighting eη∆t in (4) is
decreased, which allows a larger m to be used and, hence, a more accurate solution.

Summarizing, to compute the convolution integral (1) both functions f (t) and g(t) are trans-
formed with the first equation in (5). This allows to simply multiply them to obtain the convolu-
tion in the transformed domain. Finally, the product is transformed back by the second equation
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in (5) using the filter (7), which results in

y(n∆t) =

(
eη∆t

)n

∆t (N +1)

N

∑̀
=0

f̃ ∗` g̃∗`w`ζ`n . (8)

This final result will be compared with the CQM .

2.2 Convolution quadrature method

The CQM approximates the convolution integral (1) with a quadrature formula, of which inte-
gration weights are determined based on the Laplace transform of one of the functions f or g.
Let assume as above a discretization of the time interval t ∈ [0,T ] in N+1 equal time steps with
size ∆t. Further, it is assumed that the Laplace transform f̂ exists. The final formula of the CQM
is

y(n∆t) =
n

∑
k=0

R −(n−k)

N +1

N

∑̀
=0

f̂ (s`)ζ(n−k)`g(k∆t) with s` =
γ
(
ζ−`R

)

∆t
, (9)

with the abbreviation γ(z) for the quotient of the characteristic polynomials of the underlying
multi-step method. For a Backward Differential formula of order two (BDF 2) this expression
is γ(z) = 3/2− 2z+ z2/2. The parameter R must be 0 < R < 1 and is usually determined by
R N+1 =

√εCQ, with 10−20 < εCQ < 10−4 chosen according to the problem. The latter range is
a recommendation and not a bound (for studies see [19]). Details of the method can be found in
the original papers by Lubich [14, 15] or with an extension to Runge-Kutta methods, e.g., in [3].

As suggested by Banjai and Sauter [2] and reformulated for elastodynamics in [20] the above
formula, which works directly in time domain, can be split such that it works like a transforma-
tion method. A first step ist to extend the outer sum in (9) to N with zeros. This corresponds
to zero integration weights with negative index. A condition which is fulfilled by all causal
functions. Then the sums are interchanged to

y(n∆t) =
R −n

N +1

N

∑̀
=0

f̂ (s`)ζn`
N

∑
k=0

R kg(k∆t)ζ−k` , (10)

which shows the discrete transformation pair

ĝ` =
N

∑
k=0

R kg(k∆t)ζ−k` → y(n∆t) =
R −n

N +1

N

∑̀
=0

f̂ (s`) ĝ`ζn` . (11)

It must be remarked that this expression is not a transformation pair as discussed above but the
final result of the convolution combined with the discrete transformation of one function in the
convolution.

In the following tests, not only the BDF 2 is used but as well some Runge-Kutta methods.
The formula (11) has then the same structure but some details differ. Let a s-stage Runge-Kutta

method be given by its Butcher tableau
c A

bT with A∈Rs×s, b,c∈Rs. Further, let us assume

that the method is A-stable and L-stable. The latter requires that bTA−1 = (0,0, . . . ,1) holds.
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For such kind of Runge-Kutta methods the characteristic function γ(z) in (9) changes to a matrix
equation

∆(z) =
(
A+

z
1− z

1bT
)−1

with 1 := (1,1, . . . ,1)T . (12)

The formula corresponding to (9) is then

y((n+1)∆t) = bTA−1
n

∑
k=0

R −(n−k)

N +1

N

∑̀
=0

f̂

(
∆
(
R ζ−`

)

∆t

)
ζ(n−k)`gk , (13)

where gk is the vector of the function g(t) at the stage’s discrete times within each time step k.
The same reasoning as above results in the discrete transformation pair

ĝ` =
N

∑
k=0

R kgkζ−k` → y((n+1)∆t) = bTA−1 R −n

N +1

N

∑̀
=0

f̂

(
∆
(
R ζ−`

)

∆t

)
ĝ`ζn` . (14)

Now the function f̂ is dependent on a matrix of frequencies ∆(z), i.e., in each step the function
is evaluated corresponding to the s stages. Details of the derivation and numerical realisation
can be found in [3].

3 Comparison of both approaches

For the comparison of both methods an inspection of the formulas for the EWM-DFT (8) and the
corresponding one for the CQM (11) is helpful. Note, for this formal comparison the Blackman
window will not be considered. There are several similarities and, essentially, two observations
can be made:

1. The obtained transformation formulas are obviously weighted FFT’s, i.e., the different
complex valued frequencies are not equally important for the final result. The weighting
factors have a similar structure and the formulas used to determine them are in both cases
related to the numerical precision of the computation. For the EWM-DFT it is η or using
the estimate (6) m and for the CQM it is εCQ. The relation is

R ≡ e−η∆t ⇒ ε
1

2(N+1)
CQ = e−η T

N+1 ⇒ ε
1
2
CQ = e−ηT . (15)

Playing with some realistic numbers for the CQM gives the combinations

εCQ = e−10 ≈ 4.5 ·10−5 ⇒ 5 = ηT < m ln10 ⇒ 2.17 < m

εCQ = e−20 ≈ 2 ·10−9 ⇒ 10= ηT < m ln10 ⇒ 4.34 < m ,

which results in the first line in values for m comparable to Kausel and Roësset [12].
However, due to Gibbs oscillation, if no filter is employed, the value of m should not
exceed 3 in the application of elastodynamic BEM with a Heaviside load as reported
in [23].

Numerical comparisons of the weighting factors R or e−η∆t with εCQ = 10−5 and m = 3
show very close behaviors either in size as well as in the course of increasing k. Hence, it
can be concluded that the forward transformation is very similar.
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2. The inverse transformations are different in two aspects. First, in the EWM-DFT both
functions to be multiplied are discrete transformations. In the CQM only one of the two
functions is a discrete transformation. The other function is a continuous transformation,
which is evaluated at discrete frequencies. Secondly, in the EWM-DFT both functions are
multiplied at the same frequency. Contrary, in the CQM the second function is evaluated
at different frequencies s`, determined by the time step size and the underlying multistep
method. It may be instructive to study the different frequency distributions in both for-
mulas. In Fig. 1, the used complex frequencies are plotted in the complex plane for both
methods using ∆t = 0.0391,T = 5,εCQ = 10−10, and m = 3. Note, all the time values are
assumed to be normalized. Hence no dimension is given. For the CQM different time
stepping methods can be used, which influences the values of s`. That is why in Fig. 1
beside the used complex frequencies of the EWM-DFT three curves for the CQM are
given. They are indicated by the names of the multistep methods (BDF 1 and BDF 2) or
of the Runge-Kutta methods (Radau IIA and Lobatto IIIC, both in the 3-stage version, see
appendix A for the Butcher tableau). The influence of the time stepping method on the
CQM results is not discussed in this paper and can be found in [3].

A different time step size obviously changes the used complex frequencies in the classical
way, i.e., a smaller time step size results in larger frequencies and vice versa. However,
important for this study here is the relation between the EWM-DFT and the CQM . The
comparison shows that the Radau IIA method uses frequencies with imaginary parts larger
than the EWM-DFT . The other methods uses smaller or similar frequencies in the Lobatto
IIIC case. In Fig. 1b, the distance to the imaginary axis is shown, which is a measure of
the used damping in the EWM-DFT . Clearly, the CQM is further away for this choice of
parameters and the following study will confirm that the results are more damped. This
distance is obviously influenced by the way the values for εCQ and m are set. Hence, the
choice may even produce a larger damping in EWM-DFT compared to the CQM . This
choice is problem dependent but in the EWM-DFT it can only be shifted to higher values
using the Blackman window.

Next, the two methods are tested for two sets of functions. In both cases the function f (t) =
δ(t−1) is chosen. This choice is related to the kernel function in a BE formulation of acoustics,
which has the same temporal behavior for r/c = 1 but is divided by 4πr. It is a prototype for any
kernel function describing waves. The load function g(t) is chosen differently, either

• Heaviside function: g(t) = H (t)−H (t−b). This results in the exact solution of

f ∗g =

t∫
0

δ(t− τ−1) [H (τ)−H (τ−b)]dτ = H (t−1)−H (t− (b+1)) (16)

• Sine function: g(t) = sin(Tt). This results in the exact solution of

f ∗g =

t∫
0

δ(t− τ−1)sin(T τ)dτ = sin(T (t−1))H (t−1) (17)

6
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Figure 1: Real part versus the imaginary part of the used complex frequencies s` for ∆t = 0.0391
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For all tests an overall observation time T = 5 is used and εCQ = 10−10. The parameter for the
EWM-DFT is chosen for the Heaviside load with m = 3 and for the Sine load with m = 6. Both
have found to be the good choice by a trial and error search. It must be remarked that only the
usage of the Blackman filter allows to use high values of m. Taking N = 128 results in a time
steps size of ∆t = 0.0391. In Fig. 2, the results for the Heaviside load with b = 3 are presented
with and without the Blackman window. For the results without the Blackman window the
value m = 2 has to be chosen, else the shown oscillations would be much higher. In Fig. 3, the
results for the Sine load are displayed. From now on all presented results are obtained using the
Blackman window. In both load cases all results are acceptable. The CQM has oscillations at
the jumps but they decrease within a small distance, where the Runge-Kutta method performs
best. For the Sine load no jumps have to be resolved and, consequently, the results are much
nicer. The CQM with the BDF 2 smoothes the kink in the beginning and all CQM solutions
show a slight nearly not visible phase-shift in the first bow of the Sine. The EWM-DFT shows
no shift. Both methods show a small offset from zero for t < 1. For EWM-DFT , this offset
depends on the value of m. For m ≈ 3 this offset would be ≈ 10−6. It decreases to ≈ 10−8 if
m = 6 is set. For CQM , the offset is ≈ 10−6 and is relatively independent of εCQ. If the original
version of the CQM as proposed by Lubich [14] is used, i.e., not reformulated as transformation
and utilizing the integration weights in time domain, a much smaller nearly zero value can be
obtained. It must be remarked again that only with the Blackman window such results can be
obtained and the value of m has to be set to high values. The above results show as well that a
normal DFT without the EWM and the Blackman window is not suitable for such functions as
above.

The above study shows that both methods work well. Next, the error will be quantatively
measured. For the CQM a discrete `2 error estimate exists for the above used kernel function [3].
It is based on the assumption

g(t) ∈ L2 (R) with g(t)≡ 0 ∀t < 0 and |ĝ| ≤C |s|−µ ∀ℜs > 0 with µ >
1
2
.

Under this assumption the CQM converges for a Runge-Kutta method of order p with O (∆tα)
and

α = min
{
(2µ−1) p
2(p+1)

, p
}

. (18)

The smoothness assumption on g(t = 0) is violated by the above used functions, but the study
presented in [3] has shown that the convergence order can be shown numerically also for such
non-smooth functions. For the Heaviside function µ = 1 and for the Sine µ = 2 holds. Both
3-stage Runge-Kutta methods used are A-stable and have order p = 5 or p = 4 for the Radau IIA
and Lobatto IIIC rule, respectively. With this in mind the relative error

ε∆t =




N
∑

n=0

(
y(tn)− y∆t

n
)2

N
∑

n=0
y(tn)

2




1
2

(19)
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Figure 2: Solution with different multistep methods and EWM-DFT : Heaviside function
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Figure 3: Solution with different multistep methods and EWM-DFT : Sine function

is computed. In (19), y(tn) denotes the exact solution at time tn = n∆t and y∆t
n is the approximated

solution by either the CQM or EWM-DFT . This error is displayed in Fig. 4 and Fig. 5 versus
the time step size in a logarithmic scale for the Heaviside and Sine load. The differences in
the error plots in Fig. 4 and Fig. 5 is, whether the second jump visible in Fig. 2 is included
in the observation time or not. This is governed by the parameter b for the Heaviside load in
(16). For the results in Fig. 4 b = 10 is used and in Fig. 5 b = 3. The solution presented in
Fig. 2 corresponds to the latter case. Additionally, the convergence rates of a BDF 1 and the
3-stage Radau IIA method computed with (18) are displayed by the two straight lines. It can be
observed that the CQM has the predicted convergence rate. The EWM-DFT seems to have the
similar convergence rate as that of the 3-stage Runge-Kutta method.

The same error study is performed for the Sine load and displayed in Fig. 6. The same ten-
dency as before is observed, where the EWM-DFT seems to have for this function a higher
convergence rate than the Radau IIA. The fast convergence rate of the EWM-DFT might be
explained by the link between EWM-DFT and CQM . If one sets the quotient of the character-
istic polynomial of the underlying multi-step method to be γ(ζ) = − logζ, one can show that
the formula of the EWM-DFT (8) is equivalent to that of the CQM (11). However, it must be
remarked that such a choice of the characteristic polynomial is not possible in CQM in defin-
ing the weights (i.e., the necessary series expansion does not exist). By neglecting this aspect,
EWM-DFT can be regarded as CQM with a special time stepping method, the quotient of which
is γ(ζ) = − logζ. It is well known that the accuracy of the stable linear multistep scheme is
measured by how well the quotient of the generating polynomial approximates logζ as ζ ap-
proaches 1. This may explain the more accurate solutions obtained by EWM-DFT at least for
smooth functions. For non-smooth functions, such as the Heaviside function, the convergence
rate of EWM-DFT may be reduced due to Gibbs oscillations.

For both methods the error does not go beyond a certain value. This value is larger for the
CQM than for the EWM-DFT , as long as a large m = 6 is used. For m = 3 the plateau for the

10
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Figure 4: Log-log-plot of the relative `2 error: Heaviside function with one jump (b = 10)
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Figure 5: Log-log-plot of the relative `2 error: Heaviside function with two jumps (b = 3)
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Figure 6: Log-log-plot of the relative `2 error: Sine

EWM-DFT would be at ≈ 0.5 · 10−3. The reason for this stagnation of the error in case of the
EWM-DFT is the approximation of the initial zeros and, hence, can be minimized by a large
value of m. In fact, for m = 8, there is no plateau within the time step sizes considered as shown
in Fig. 6. For the CQM this plateau is mainly caused by the slight phase-shift in the first bow of
the results. Playing with εCQ this shift can be affected but not avoided. On the other hand the
value of εCQ influences the zero offset as well. For the presented study it has been tried to find
good values. However, it must be clearly stated that the value of m influences the EWM-DFT
much more than the εCQ the CQM .

Above the accuracy of the methods has been compared. The missing point is a discussion
on the numerical effort. The efficiency of the method can be defined as the numerical effort
necessary to obtain a defined error level. As in the above examples the numerical effort is
determined by a function evaluation for each necessary complex frequency, it is sufficient to find
the necessary number of frequencies, i.e., the number N to obtain a certain error. The method
with the lowest number of evaluations is the most efficient one. In Tab. 1, the numbers N for
different error levels and the used loading functions are presented. However, care must be taken
with the Runge-Kutta methods. In the above, 3-stage methods are used, which means within one
time step 3 function evaluations are necessary. That is why in the lines of Tab. 1 the numbers
for the Runge-Kutta methods are multiplied with 3. The result confirms the observations of the
above studies. Within the CQM the Radau IIA method performs best. In comparison with the
EWM-DFT the CQM is not such efficient, i.e., it needs more frequency evaluations particularly
at small time steps.

The above study has shown that both methods yield good results, whereas the EWM-DFT
seems to be the most efficient one, as long as the parameter m is chosen well and a Blackman
window is used for non-smooth functions. Without both windowing techniques the DFT would
fail for the tested non-periodic functions. In some sense the CQM can be declared to be the
more robust method as only the physical accesible time step size must be chosen. But, this nice
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Error EWM-DFT CQM BDF 2 CQM Lobatto IIIC CQM Radau IIA
Heaviside load b = 10

0.05 290 650 170*3=510 120*3=360
0.01 7450 140000 7300*3=21900 3400*3=10200

Heaviside load b = 3
0.05 510 3740 380*3=1140 300*3=900
0.01 12750 660000 20600*3=61800 9900*3=29700

Sine load
0.001 670 5350 530*3=1590 370*3= 1110
0.0005 1050 10100 950*3=2850 630*3=1890

Table 1: Necessary function evaluations for a given accuracy

property comes along with more function evaluations. Note, the observations may be different if
different functions are tested but the above choice should give a good indicator for the intended
application in BEM.

4 Boundary element method

The application of the above shown transformation methods to BE formulations is presented
next. The model problem chosen is linear elastodynamics. Obviously, the transformation tech-
niques can be applied to any linear problem whose time domain description involves convolution
integrals.

4.1 Governing equations

The assumption of linear elasticity and a linear geometry description results in the Lamè-Navier
equation for the displacement field u(x, t)

c2
1∇(∇ ·u(x, t))− c2

2∇× (∇×u(x, t)) =
∂2u
∂t2 (x, t) (x, t) ∈Ω× (0,T )

u(y, t) = gD(y, t) (y, t) ∈ ΓD× (0,T )

t(y, t) = gN(y, t) (y, t) ∈ ΓN× (0,T )

u(x,0) =
∂u
∂t

(x,0) = 0 (x, t) ∈Ω× (0) .

(20)

In this hyperbolic partial differential equation the position in the three-dimensional Euclidean
space R3 is denoted by x and the time by t ∈ (0,T ). The material properties of the solid are
represented by the wave speeds

c1 =

√
E (1−ν)

ρ(1−2ν)(1+ν)
c2 =

√
E

ρ2(1+ν)
, (21)

with the material data Young’s modulus E, Poisson’s ration ν, and the mass density ρ. The
partial differential equation in (20) is given in the spatial domain Ω for all times 0 < t < T . The
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boundary Γ of the domain Ω is subdivided into two disjoint sets ΓD and ΓN at which boundary
conditions are prescribed. The Dirichlet boundary condition is the second statement of (20) and
assigns a given datum gD to the displacement u on the part ΓD of the boundary. Similarly, the
Neumann boundary condition is the third statement in which the datum gN is assigned to the
surface traction t, which is defined by

t(y, t) = (T u)(y, t) = lim
Ω3x→y∈Γ

[σ(x, t) ·n(y)] . (22)

In (22), σ is the stress tensor depending on the displacement field u according to the strain-
displacement relationship and Hooke’s law. For later purposes the traction operator T is defined,
which maps the displacement field u to the surface traction t. The boundary conditions have to
hold for all times and may be also prescribed in each direction by different types, e.g., roller
bearings. Finally, in the last statement of (20) the condition of a quiescent past is given which
implies homogeneous initial conditions.

The integral representation formula may be derived from the dynamic reciprocal identity [22]
or also from a weighted residual statement. Using the fundamental solution U(x− y, t− τ) of
equation (20) (see for instance [11]) and taking the boundary trace of the representation formula,
the boundary integral equation for elastodynamics can be obtained (see, e.g., [5, 19]). Using
operator notation, this boundary integral equation is

(V ∗ t)(x, t) = C (x)u(x, t)+(K ∗u)(x, t) (x, t) ∈ Γ× (0,∞) . (23)

The introduced operators are the single layer operator V , the integral-free term C , and the double
layer operator K which are defined as

(V ∗ t)(x, t) =
t∫

0

∫
Γ

U(x−y, t− τ)t(y,τ)dsy dτ (24a)

C (x) = I + lim
ε→0

∫
∂Bε(x)∩Ω

(TyU)>(x−y,0)dsy (24b)

(K ∗u)(x, t) = lim
ε→0

t∫
0

∫
Γ\Bε(x)

(TyU)>(x−y, t− τ)u(y,τ)dsy dτ . (24c)

In these expressions, Bε(x) denotes a ball of radius ε centered at x and ∂Bε(x) is its surface.
Note that the single layer operator (24a) involves a weakly singular integral and the double layer
operator (24c) has to be understood in the sense of a Cauchy principal value.

4.2 Semi-discrete equations

Let the boundary Γ of the considered domain be represented in the computation by an approxi-
mation Γh which is the union of geometrical elements

Γh =
Ne⋃

e=1

τe . (25)
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τe denote boundary elements, e.g., surface triangles as in this work, and their total number is Ne.
Now, the boundary functions u and t are approximated with shape functions ϕi or ψ j, which are
defined with respect to the geometry partitioning (25), and time dependent coefficients ui

k and
t j
k . This yields for the k-th component of the data

uk(y, t) =
N

∑
i=1

ui
k(t)ϕi(y) and tk(y, t) =

M

∑
j=1

t j
k (t)ψ j(y) . (26)

Inserting these spatial shape functions in the boundary integral equation (23) and a collocation
method results in the semi-discrete equation system

V ∗ t= Cu+K∗u . (27)

In Equation (27), the time is still continuous and the convolution has to be performed. Further,
the notation of matrices/vectors with sans serif letters denotes that in these matrices the data
at all nodes and all degrees of freedom are collected. Hence, the matrices V,K and C are the
discrete version of the single layer and double layer potential and the integral free term in (24).
The vectors t and u collects the tractions and displacements at all nodes.

4.3 Application of transformation methods

In principle, the remaining task is to perform a time discretisation or to use an integral transform
with respect to time. Choosing the latter, the hyperbolic problem is reduced to an elliptic prob-
lem. Discretising the convolution in (27) with (8) results in the EWM-DFT version and with
(11) or (14) gives the CQM version. Independently of the used method, the solution of (27) is
reduced to the solution of N elliptic problems for the complex ’frequency’ s`, `= 0,1, . . . ,N−1

V̂ (s`) t∗` − K̂(s`)u∗` = Cu∗` . (28)

The difference, as mentioned in section 3, lies in the used complex frequencies s`. Recalling
their definition it is

for EWM-DFT s` = η− i
2π

∆t (N +1)
` (29a)

for CQM s` =
γ
(
ζ−`R

)

∆t
. (29b)

The matrices and vectors in (28) are the transformed counterparts of (27). For the CQM it
remains to specify the underlying time stepping method γ(z). In case of a Runge-Kutta method
γ(z) is replaced by the matrix equation (12). With these operations the time stepping procedure
is reduced to the solution of decoupled Laplace domain problems.

4.4 Numerical solution and fast methods

The remaining part is the numerical realisation of the above given procedure. The following test
have two parts. One is concerned with the efficiency of the transformation methods in relation to
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the accuracy. For this a normal BE formulation without any fast techniques or iterative solvers is
used to study only the influence of the transformation method. The other test is concerned with
the overall efficiency of the transformation methods in connection with a fast BE formulation.
By virtue of the available codes, two different numerical realisations are used.

Normal BE formulation All regular integrals are performed with Gaussian quadrature formu-
las. The strong singular integral is regularized with partial integration (see, e.g., [13]). The
resulting weakly singular integrals are solved using Duffy coordinates [6]. The geometrical dis-
cretization is done with linear triangles and the Dirichlet data are approximated by piecewise
linear shape functions and the Neuman data by piecewise constant shape functions. For the
solution a direct solver is used.

Fast BE formulation A so-called ‘black-box’ fast multipole method (FMM) following the
paper of Ying et al. [25] is used for the test. Details of the realisation can be found in [4]. As
above, triangles are used for the geometrical discretization. The Cauchy data are approximated
with non-conforming quadratic shape functions and GMRES is used to solve the system of
equations. A block diagonal pre-conditioner is applied as well.

5 Numerical BE results

To study the behavior of both transformation methods a standard example for time domain BE
formulations is used. It is a 3d-column with boundary and material data set such that the results
can be compared to the available analytical solution.

This 3-d column has the size `1 = 3.0m and `2 = `3 = 1.0m, as depicted in Fig. 7. It has
zero displacements on one end and on the other end the normal traction tx1 = −1H(t)N/m2 is
prescribed. The material parameters of steel (E = 2.11 · 1011 N/m2,ν = 0,ρ = 7850 kg/m3) are
taken. Note, Poisson’s ratio is artificially set to zero to allow the comparison with the 1-d
analytical solution [10]. In order to determine a suitable time step size, the dimensionless value

β =
c1∆t

h
(30)

is introduced, which relates the spatial (mesh size h) to the temporal discretization (time step size
∆t). This CFL-condition like number is studied for the CQM calculations in several publications,
e.g., [19] or for the Runge-Kutta based CQM [3]. Please note, the time step size used in case of
Runge-Kutta methods is that of the stages and not the real time step size. This is made to allow
the comparison of the numerical effort with the one-stage methods. A similar number can not
be defined for the results obtained by the EWM-DFT , but the following relation

∆ω =
2π

∆t (N +1)
(31)

hold. Beside, to have a reliable computation a minimum of 3 elements per wave length is
required which results in a ωmax = c2π/3h. It must be remarked that this lower limit is very small
and highly discussable but it is sufficient for the subsequent tests.
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tx1 =−1H(t)N/m2

1m

1m

3m

x1

x2

x3

mesh with 1792 elements on 899 nodes
h = 0.125m

Figure 7: System, boundary conditions, and mesh

h[m] Elements Nodes N for CQM for EWM-DFT
β = 1.2 β = 0.6 β = 0.3 ωmax[s−1] Nmax

0.25 448 227 256 512 1024 43433 256 <

0.125 1792 899 512 1024 2048 86869 512 <

0.0625 7168 3587 1024 2048 4096 173734 1024 <

Table 2: Parameters for the different meshes (for ωmax three elements per wave length are set)

The column shown in Fig. 7 is discretised with 1792 triangular boundary elements of mesh
size h = 0.125m on 899 nodes. Beside the displayed mesh a finer one (7168 elements) and a
coarser one (448 elements) are used. In Tab. 2 the necessary parameters are listed. In principle
the mesh size is halfed from one mesh to the other. Beside ωmax the amount of necessary time
steps for the different β-values are given under the assumption of the same total time T . These
values are needed for the comparison of the numerical effort in the next section. Further, in all
calculations in the following studies the value m = 3 for the determination of the damping factor
in (6) is chosen.

5.1 Comparison of results

For the above given problem the results are compared using a standard BEM without fast tech-
niques. The traction solution in the middle of the fixed end is observed. As mentioned above,
these data are approximated with constant shape functions, hence, the values can not be given
at the exact mid point but on one of the elements which corner coincides with the mid point.
For all BE calculations the same element is chosen and compared with the 1-d analytical so-
lution (see [10]). The motivation to compare the traction solution is simply that the course of
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Figure 8: Traction solution tx1 at the fixed end versus time: EWM-DFT and CQM solutions

this solution is more difficult to be approximated as it consists, essentially, of jumps. In Fig. 8,
the solutions for the CQM (using BDF 2 and Radau IIA) with a β = 0.3 and the solutions for
the EWM-DFT with 256 frequency steps, i.e., a ωmax = 52359s−1, are displayed using the mesh
with h= 0.125m. The analytical solution is given as well and the only obvious conclusion is that
all methods produce the correct solution. The BDF 2 solution shows the known overshooting at
the jumps, whereas the Radau IIA method decreases them significantly.

In Tab. 3, the traction error computed with (19) is shown. The analytical 1-d solution has
been taken as the exact solution. The necessary number of time steps is given in Tab. 2 for the
different β-values of the different meshes. Additionally, the error of the displacements at the
oposite point, i.e., at the free end, is given in Tab. 4. For EWM-DFT in the displacement results
the value at the last time step has been canceled because it was obviously an overshoot. This
shows the sensitivity of the method. Also indicated in the table, the result of the EWM-DFT for
mesh 448 and N = 512 is not good, i.e., the error increases compared to that of the case with
N = 256, whereas the same happens for mesh 1792 with N = 1024 (not shown in the tables).
This reflects the fact that for the EWM-DFT an upper limit of computable frequencies ωmax exist
for a given spatial discretization. In this problem, the upper limit seems to be consistent with the
maximal frequency resulted from the requirement of 3 elements per wave length because in both
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BDF 2 Radau IIA EWM-DFT
h[m] β = 1.2 β = 0.6 β = 0.3 β = 1.2 β = 0.6 β = 0.3 N = 128 N = 256 N = 512
0.25 0.311 0.274 0.214 0.251 0.222 0.206 0.289 0.232 0.838
0.125 0.288 0.227 0.176 0.180 0.147 0.139 0.266 0.192 0.163
0.0625 0.234 0.188 0.148 0.126 0.103 0.087 0.260 0.178 0.139

Table 3: Comparison of the error of the different methods: Traction solution

BDF 2 Radau IIA EWM-DFT
h[m] β = 1.2 β = 0.6 β = 0.3 β = 1.2 β = 0.6 β = 0.3 N = 128 N = 256 N = 512
0.25 0.081 0.056 0.039 0.095 0.064 0.049 0.150 0.084 0.128
0.125 0.057 0.030 0.017 0.043 0.026 0.018 0.139 0.067 0.035
0.0625 0.031 0.016 0.009 0.020 0.011 0.007 0.137 0.063 0.029

Table 4: Comparison of the error of the different methods: Displacement solution

discussed cases, N = 256 in case of mesh 448 and N = 512 in case of mesh 1792 exceeds the
maximal frequency determined by the requirement of 3 elements per wave length. The CQM
does not seem to be restricted by this requirement but the time step size should not be too small
either, i.e., β & 0.1. An inspection of the used frequencies show that the frequencies with the
high imaginary part has a much larger real part than those of a comparable EWM-DFT . This
seems to weight somehow the influence of the large frequencies such that the essential part of
the frequency response is still included in the time domain solution without blowing it up. The
price to pay is that more frequencies have to be used to get qualitatively the same result. This can
be concluded from the above tables. If, e.g., an error of ε≈ 0.18 in the traction solution should
be obtained the EWM-DFT would require approximately N ≈ 350 and the CQM with BDF 2
N ≈ 2000. With the Radau IIA method this value can be decreased to N ≈ 512. This observation
holds if the mesh with h = 0.125m is considered. However, if an error level of ε≈ 0.139 should
be hold, the CQM with the Radau IIA needs the mesh with h = 0.125m and N = 2048 and
the EWM-DFT needs the finer mesh with h = 0.0625m and N = 512. Having in mind that the
complexity of a standard BEM, i.e., without acceleration, is quadratic in the degrees of freedom
and linear in the amount of frequencies, the more efficient solution seems to be the CQM .

Summarizing, the EWM-DFT needs less frequencies to be computed compared to the CQM
to obtain the same error level up to a certain error level. For small errors the overall efficiency of
the CQM with Runge Kutta methods is better. Consequently, with a fixed mesh size the CQM
can obtain a smaller error. However, it must be clearly stated that EWM-DFT requires a good
adjustment of m and the usage of the Blackman window for non-smooth functions to justify
these conclusions. In contrast, the determination of ∆t for the CQM is straight forward given
with 0.1 . β . 0.6, whereas these limits can be in-/decreased, if fine meshes are used (see above
the results for the finest mesh).
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EWM-DFT CQM
No frequencies 201 450
displacement error 0.030 0.0052
traction error 0.157 0.120
CPU time 24.5 hours 14.1 hours
No iterations 25779 13608

Table 5: Comparison of the performance for EWM-DFT and CQM with 3-stage Radau IIA

5.2 Overall efficiency in combination with fast methods

In modern BE formulations fast methods are used to reduce complexity and storage to an al-
most linear order, which may lead to the conclusion that the overall efficiency of the EWM-
DFT would be comparable to that of the CQM with Runge Kutta methods. However, most
formulations require an iterative equation solver and the efficiency is, largely determined by
the amount of iterations. It is well known that the iteration number grows with the increasing
frequency. Hence, the performance of BE formulations based on transformation techniques is
strongly influenced by the used frequencies. This motivates a study with a fast BEM comparing
the EWM-DFT and the CQM .

Contrary to the above study, now an fixed error level is set to be ε < 0.16, the mesh with 448
quadratic elements is used, and only the CQM with Radau IIA (3-stage) is compared with the
EWM-DFT . The total observation time is set to T = 0.0155s and the stopping criterion for the
GMRES is set to εGMRES = 10−4. In Tab. 5, the CPU time is compared besides the number of
frequencies and iterations. The results show a clear advantage of the CQM formulation despite
it needs more frequencies to be calculated. But the error of the CQM is obviously better and the
iteration numbers are smaller. This results in a better overall efficiency for a fixed mesh size. The
error of the EWM-DFT can be improved if for the higher frequencies a high frequency version
of the FMM is used. But this would presumably also reduce the error in the CQM but not to the
same extend. However, the bigger problem is the high iteration number of the equation solver.
In Fig. 9, the number of these iterations are plotted versus the imaginary part of the frequency.
The figure shows the dramatical increase of iteration numbers for the EWM-DFT , whereas the
CQM stays nearly constant after an initial high value. The explanation can be found in the
influence of the real part of the frequency. In Fig. 1, the used complex frequencies are plotted
in the complex plane showing the constant real part of the EWM-DFT and the growing one for
the CQM . The effect of the real part is to decrease the condition number of the matrices and,
consequently, the iteration number. This effect has already been reported for the CQM in [17]
and for the EWM-DFT in [23] in a study concerning an improved iterative equation solver. If a
good pre-conditioner can be found for the EWM-DFT , this strong difference may be reduced.
However, up to now such a pre-conditioner has not be presented in literature.

It may be argued that the example made here is not representative as it is not a large problem
where an FMM is necessary. The used discretization results in 8064 degrees of freedom due to
the non-conforming quadratic elements, which could also be solved with a normal BEM. Indeed,
a more systematic study of larger problems with a robust fast method should be conducted.
Nevertheless, the tendency will likely not change if the problem size is increased, especially the
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Figure 9: Iteration numbers versus the imaginary part of the complex frequency

large difference in the iteration number, which indicates that this is a systematical advantage of
the CQM .

6 Conclusions

The CQM can be formulated as inverse Laplace transformation. It results in a simular formula as
the inverse discrete Fourier transformation in combination with the exponential window method.
In the paper, both formulations are recalled and the similarities are presented. Essentially, the
same inverse transformation is made, however, the used complex frequencies are different. In
the EWM-DFT approach a constant real part and continuously distributed imaginary parts of the
complex frequency realises a straight integration path parallel to the imaginary axis in the com-
plex plane. In the CQM the integration path is an ellipse in the complex plane. These differences
determine the different numerical behavior of both methods. With the aid of a convolution inte-
gral of analytical functions related to the BEM for wave propagation the basic behavior has been
studied. For the CQM the convergence order is mainly determined by the used time stepping
method. A-stable Runge-Kutta methods give the best results. For the EWM-DFT the conver-
gence behavior depends on the studied functions. For non-smooth functions, with a filtering
technique, EWM-DFT can be as good as the CQM with high order Runge-Kutta methods. For
smooth functions, the convergence rate of the EWM-DFT is slightly better.

Both methods can be used in the framework of BEM to obtain time domain results. Here,
the problem under study is elastodynamics but the results can certainly be transfered to other
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problem classes. The numerical study shows that the EWM-DFT can be very efficient compared
to the CQM as long as not to high precessions, i.e., small errors, are requested. Essentially,
the EWM-DFT needs less complex frequencies to be calculated and, consequently, the EWM-
DFT is faster. However, the Runge-Kutta based CQM allows much smaller error levels for a
fixed mesh size. The picture changes if fast BE formulations are used. In this study a kernel
independent fast multipole method has been used. For this formulation the Runge-Kutta CQM
is more efficient than the EWM-DFT because much less iterations are needed in the equation
solver. This is caused by the larger real part of the complex frequencies in the CQM compared
to the EWM-DFT , which improves the condition of the resulting system matrix. However,
it must be remarked that these conclusions are based on numerical experiments and not on a
mathematical proof.
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A Butcher tableaus for the used Runge-Kutta methods

In the test two 3-stage Runge-Kutta methods have been used. The respective Butcher tableaus
are:

• 3-stage Radau IIA
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