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Abstract

We present boundary integral representations of several initial boundary value problems
related to the heat equation. A Galerkin discretization with piecewise constant functions
in time and piecewise linear functions in space leads to optimal a priori error estimates
provided that the meshwidth in space and time satisfy ht = O(h2

x). Each time step involves
the solution of a linear system, whose spectral condition number is independent of the
refinement under the same assumption on the mesh. We show that, if the parabolic multipole
method is used to apply parabolic boundary integral operators, the overall complexity of
the scheme is log-linear while preserving the convergence of the Galerkin discretization
method. The theoretical estimates are confirmed numerically at the end of the paper.
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1 Introduction

Boundary integral equations related to the heat equation have been studied in Pogorzelski [11],
Brown [3], Arnold and Nooon [1, 9] and Costabel [4]. For classically used second kind integral
equations, e.g., a double layer potential approach for the Dirichlet problem and a single layer po-
tential ansatz for the Neumann problem, the compactness of these integral operators for smooth
domains, guarantees the well posedness and provides the backbone for the analysis of numeri-
cal methods. However, in the case of non smooth domains and first kind integral equations the
situation is more complicated. Brown [3] gave some first results on Lipschitz domains before
almost contemporaneously Arnold and Noon [1] and Costabel [4] proved the boundedness and
coercivity of the thermal single layer operator. Furthermore, the latter paper showed the coerciv-
ity of the hypersingular operator and the boundedness of all thermal boundary integral operators
in the appropriate anisotropic Sobolev space setting.

With these results the analysis of Galerkin methods in space and time follows the well known
pattern of the elliptic theory, i.e., the Lemma of Lax-Milgram guarantees uniqueness and solv-
ability of the corresponding operator equations and their Galerkin variational formulation. Using
conforming finite-dimensional subspaces of the natural energy spaces, uniqueness and solvabil-
ity translates directly to the discrete system, where Cea’s Lemma provides quasi-optimality. Us-
ing the approximation property of piecewise polynomial finite-dimensional ansatz spaces, the
regularity of the boundary integral operators, and assuming certain regularity of the discretiza-
tion, one can derive explicit error estimates in the energy norm as well as weaker and stronger
norms.

Since integral operators are non-local, discretizations lead to dense matrices and therefore,
fast methods are important to handle large scale problems efficiently. This is a very well studied
subject in the elliptic case, see [8], and has recently attracted considerable interest for parabolic
boundary integral equations. A possible approach in this direction is to employ Fourier tech-
niques [5]. Nevertheless, the focus here is on clustering techniques, because of their success in
the elliptic case. The idea is to agglomerate source- and evaluation panels in space and time and
approximate admissible interactions by a truncated series expansion. The parabolic fast multi-
pole method was originally described in [13, 14] and successfully applied to a Galerkin scheme
in [7]. In this paper we further pursue this strategy to accelerate the application of all boundary
integral operators of the heat equation. We will show that the additional error introduced by the
fast method can be controlled such that it is of the same order as the error of the discretization
scheme.

To facilitate boundary element calculations, one has to project the given boundary data into
the finite element space. Thus we extend the error analysis of [4, 9] to such an approximation.
Moreover, we simplify and extend the methodology for elliptic boundary integral equations, see,
e.g., [10, 12] to the parabolic case.

Finally, since integral operators of the heat equation are causal, their discretization lead to
block-lower triangular matrices. Thus every time step involves the solution of a linear system,
that is the discretization of an elliptic operator equation. We will derive bounds of the spectral
conditioning of that system. Our main result is that if the space-time refinement scheme sat-
isfies ht . h2

x then the condition number remains bounded as the mesh is refined. We obtain a
scheme with log-linear complexity in the number of degrees of freedom of the discretization and
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conclude with numerical examples that reproduce the theoretical estimates.

2 The Heat Equation

We consider the solution of the homogeneous heat equation with homogeneous initial conditions
in Ω× ϒ, where Ω ⊂ R3 with piecewise Lipschitz boundary ∂Ω := Γ and ϒ := (0,T ) with
T ∈R+. In such a setting we state a general mixed homogeneous initial boundary value problem
by

∆u(x̃, t) = ∂tu(x̃, t) , (x̃, t) ∈Ω×ϒ , (1a)

u(x̃,0) = 0 , x̃ ∈Ω , (1b)

u(x, t) = gD(x, t) , (x, t) ∈ ΓD×ϒ , (1c)

∂nxu(x, t) = gN(x, t) , (x, t) ∈ ΓN×ϒ , (1d)

∂nxu(x, t)+κ(x, t)u(x, t) = gR(x, t) , (x, t) ∈ ΓR×ϒ . (1e)

Here ΓD, ΓN and ΓR denote the parts of Γ where the Dirichlet, Neumann and Robin boundary
conditions are specified. We assume that κ ∈ L∞(Γ×ϒ) and that κ≥ 0.

2.1 Boundary Integral Equations

It is well known that the solution of the homogeneous heat equation with homogeneous initial
conditions is given by the representation formula [4, Theorem 2.20]

u(x̃, t) =

t∫
0

∫
Γ

G(x̃ − y, t − τ)q(y,τ)dsydτ −
t∫

0

∫
Γ

∂nyG(x̃ − y, t − τ)u(y,τ)dsydτ ,

where (x̃, t) ∈ Ω×ϒ. Here q(y,τ) := ∂nyu(y,τ) is the Neumann trace of the solution on the
boundary and the heat equation’s fundamental solution is given by

G(x, t) =

{
(4πt)−

3
2 exp

(
− |x|

2

4t

)
, x ∈ R3, t ≥ 0

0 , x ∈ R3, t < 0
. (2)

We take the Dirichlet trace of the representation formula to obtain the first boundary integral
equation

V q(x,τ)−
( I

2 +K
)

u(x, t) = 0 , (x, t) ∈ Γ×ϒ (3)

with the thermal single- and double layer operator

V q(x, t) :=
t∫

0

∫
Γ

G(x−y, t− τ)q(y,τ)dsydτ , (4)

K u(x, t) :=
t∫

0

∫
Γ

∂nyG(x−y, t− τ)u(y,τ)dsydτ . (5)
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Taking the Neumann trace of the representation formula yields the second boundary integral
equation (

− I
2 +K ′

)
q(x, t)+Du(x, t) = 0 , (x, t) ∈ Γ×ϒ (6)

with the adjoint double layer- and the hypersingular operator

K ′q(x, t) :=
t∫

0

∫
Γ

∂nxG(x−y, t− τ)q(y,τ)dsydτ , (7)

Du(x, t) :=−∂nx

t∫
0

∫
Γ

∂nyG(x−y, t− τ)u(y,τ)dsydτ . (8)

Similar to the case of elliptic equations, the bilinear form of the thermal hypersingular operator
has a representation in terms of a weakly singular operator.

Theorem 2.1. The bilinear form of the hypersingular operator can be represented by

〈Du,v〉
Γ×ϒ

=

T∫
0

∫
Γ

curl>x v(x, t)
t∫

0

∫
Γ

G(x−y, t− τ)curlyu(y,τ) dsydτ dsxdt

− lim
ε→0

T∫
0

∫
Γ

nx
>v(x, t)

t∫
0

∫
Γ\Bε(x)

∂τG(x−y, t− τ)nyu(y,τ) dsydτ dsxdt ,

where curlx := nx×∇Γ is the surface curl and ∇Γ the surface gradient. Further, Bε(x) is a ball
of radius ε centered in x.

The two dimensional version of this result is given in [4, Theorem 6.1]. In three dimensions
the result can be shown with similar techniques as for the hypersingular operator of the Laplace
equation, see, e.g., [12, proof of Theorem 6.17]. We omit the details.

2.2 Properties of Boundary Integral Operators

Recall that for positive r,s the Hr,s(Γ×R) norm is defined by

‖u‖2
Hr,s(Γ×R) =

∫
R

‖û(·,τ)‖2
Hr(Γ)+

(
1+ τ

2)s ‖û(·,τ)‖2
L2(Γ)

dτ , (9)

where û(x,τ) is the Fourier transform of u(x, t) in time, i.e.,

û(x,τ) =
1√
2π

∫
R

e−iτtu(x, t)dt .

The space Hr,s(Γ×ϒ) consists of functions in Hr,s(Γ×R) restricted to the interval ϒ and is
equipped with the quotient norm

‖u‖Hr,s(Γ×ϒ) = inf
U∈Hr,s(Γ×R)

U |Γ×ϒ=u

‖U‖Hr,s(Γ×R) ,
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while the spaces of negative order are defined by duality, i.e., H−r,−s(Γ×ϒ) = [Hr,s(Γ×ϒ)]′.
For an open part of the boundary surface Γ0 ⊂ Γ the space H̃r,s(Γ0×ϒ) is the closed subspace

H̃r,s(Γ0×ϒ) := {u ∈ Hr,s(Γ×ϒ) : supp u⊂ Γ0}

of Hr,s(Γ×ϒ).

Theorem 2.2. [4, Theorems 3.10 and 3.11] The operator

A :=
[

V −K
K ′ D

]
is an isomorphism of the space H−

1
2 ,−

1
4 (Γ×ϒ)×H

1
2 ,

1
4 (Γ×ϒ) onto its dual space. Further, A

is elliptic, i.e., 〈
A
[

p
v

]
,

[
p
v

]〉
Γ×ϒ

& ‖p‖2
H−

1
2 ,− 1

4 (Γ×ϒ)
+ ‖v‖2

H
1
2 , 1

4 (Γ×ϒ)
.

Theorem 2.3. [4, Theorem 4.8 and 4.16] On piecewise Lipschitz boundaries Γ the boundary
integral operators

V : H−
1
2+s,(− 1

2+s)/2(Γ×ϒ)→ H
1
2+s,( 1

2+s)/2(Γ×ϒ) ,

± I
2 +K : H

1
2+s,( 1

2+s)/2(Γ×ϒ)→ H
1
2+s,( 1

2+s)/2(Γ×ϒ) ,

± I
2 +K ′ : H−

1
2+s,(− 1

2+s)/2(Γ×ϒ)→ H−
1
2+s,(− 1

2+s)/2(Γ×ϒ) ,

D : H
1
2+s,( 1

2+s)/2(Γ×ϒ)→ H−
1
2+s,(− 1

2+s)/2(Γ×ϒ)

are isomorphisms for s ∈
(
−1

2 ,
1
2

)
.

We note that the single- and double layer operators are self-adjoint with respect to a time-
twisted duality, i.e.,〈

V p,RT q
〉

Γ×ϒ
=
〈
V q,RT p

〉
Γ×ϒ

and 〈Du,RT v〉
Γ×ϒ

= 〈Dv,RT u〉
Γ×ϒ

.

Likewise, the normal derivative of the single layer operator and the double layer operators satisfy

〈K v,RT q〉
Γ×ϒ

=
〈
K ′q,RT v

〉
Γ×ϒ

.

Here RT is the time inversion operator RT v(·, t)= v(·,T−t), which is an isometry in Hr,s(Γ×ϒ).
The discussion below will depend on the mapping properties of the Dirichlet to Neumann

map S . We use the well known symmetric representation

Su =
[
D +

(1
2 +K ′

)
V −1 (1

2 +K
)]

u . (10)

Lemma 2.1. The operator S is H
1
2 ,

1
4 (Γ×ϒ)-elliptic and

S : H
1
2+s,( 1

2+s)/2(Γ×ϒ)→ H−
1
2+s,(− 1

2+s)/2(Γ×ϒ)

is an isomorphism for s ∈
(
−1

2 ,
1
2

)
.
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Proof. For u ∈ H
1
2 ,

1
4 (Γ×ϒ) write

Su =
( I

2 +K ′
)

q+Du ,

where
V q−

( I
2 +K

)
u = 0

is in H−
1
2 ,−

1
4 (Γ×ϒ). Multiplying the above equations by u and q gives

〈Su,u〉
Γ×ϒ

=

〈[
0

Su

]
,

[
q
u

]〉
Γ×ϒ

=

〈
A
[

q
u

]
,

[
q
u

]〉
Γ×ϒ

where the 1/2-terms have canceled. Because of the ellipticity of A it follows that

〈Su,u〉
Γ×ϒ

& ‖q‖2
H−

1
2 ,− 1

4 (Γ×ϒ)
+‖u‖2

H
1
2 , 1

4 (Γ×ϒ)
& ‖u‖2

H
1
2 , 1

4 (Γ×ϒ)
,

which implies the first assertion. The mapping properties of S follow directly from (10) and
Theorem 2.3. A symmetric representation of the inverse can be derived by adding u to both
sides of (3) and setting u = S−1q, where q is the Neumann data. Then

S−1q =
[
V +

(
− I

2 +K
)

D−1 (− I
2 +K ′

)]
q . (11)

Thus the mapping properties of S−1 follow again from Theorem 2.3.

We will also need the mapping properties of the Dirichlet to Robin map, which can be ex-
pressed as gR = (S +κI )u, where u is the Dirichlet data, gR the Robin data, and 0 ≤ κ ∈
L∞(Γ×ϒ).

Lemma 2.2. The operator (S +κI ) is H
1
2 ,

1
4 (Γ×ϒ)-elliptic and

S +κI : H
1
2+s,( 1

2+s)/2(Γ×ϒ)→ H−
1
2+s,(− 1

2+s)/2(Γ×ϒ)

is an isomorphism for s ∈
(
−1

2 ,
1
2

)
.

Proof. Since the pointwise multiplication κI : H
1
2 ,

1
4 (Γ×ϒ) → L2(Γ×ϒ) is continuous and

since L2(Γ×ϒ) is a subspace of H−
1
2 ,−

1
4 (Γ×ϒ), the ellipticity and mapping properties of

(S + κI ) follow directly from those of S in Lemma 2.1. It remains to establish the continu-
ity of the inverse. To that end, consider the operator equation (S +κI )u = gR. Setting q = Su,
the equation turns into

(
I +κS−1

)
q = gR.

Note that κS−1 : H−
1
2+s,− 1

4+
s
2 (Γ×ϒ)→ L2(Γ×ϒ) is continuous and therefore a compact

operator in H−
1
2+s,− 1

4+
s
2 (Γ×ϒ). Further, it follows from the ellipticity that the only solution to

the homogeneous equation is q = 0. By the Fredholm alternative q ∈ H−
1
2+s,− 1

4+
s
2 (Γ×ϒ) and

by Lemma 2.1 u ∈ H
1
2+s, 1

4+
s
2 (Γ×ϒ). Moreover,

‖u‖
H

1
2 +s, 1

4 + s
2 (Γ×ϒ)

∼ ‖q‖
H−

1
2 +s,− 1

4 + s
2 (Γ×ϒ)

∼ ‖gR‖H−
1
2 +s,− 1

4 + s
2 (Γ×ϒ)

.

6
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For the following discussion it will be convenient to introduce the spaces

Hs := H−
1
2+s,− 1

4+
s
2 (Γ×ϒ)×H

1
2+s, 1

4+
s
2 (Γ×ϒ) (12)

for s ∈
(
−1

2 ,
1
2

)
which have norms

‖φ‖2
Hs := ‖q‖2

H−
1
2 +s,− 1

4 + s
2 (Γ×ϒ)

+‖u‖2
H

1
2 +s, 1

4 + s
2 (Γ×ϒ)

where φ = [q,u] ∈ Hs. The dual space is given by

(Hs)′ := H
1
2−s, 1

4−
s
2 (Γ×ϒ)×H−

1
2−s,− 1

4−
s
2 (Γ×ϒ) .

Errors introduced by the fast evaluation of layer potentials will be estimated in the space Ȟ,
defined by

Ȟ := L2(Γ×ϒ)×H1,0(Γ×ϒ). (13)

For a duality argument later on we will need the following result.

Lemma 2.3. For f = [ fD, fR] ∈ (H−s)
′, s ∈

(
−1

2 ,
1
2

)
the system

V q−
( I

2 +K
)

u = fD( I
2 +K ′

)
q+(D +κI )u = fR

has a solution φ = [q,u] ∈ Hs and the norm equivalence ‖φ‖Hs ∼ ‖ f‖(H−s)′ holds.

Proof. Simple elimination shows that

u = (S +κI )−1 ( fR−
( I

2 +K ′
)

V −1 fD
)

q = V −1 (( I
2 +K

)
u+ fD

)
The assertion follows directly from the mapping properties of the boundary integral operators in
Theorem 2.3 and the Dirichlet to Robin map in Lemma 2.2.

2.3 Boundary Integral Formulations

We now derive the boundary integral formulation of the mixed initial boundary value problem
(1). For this purpose, we define the surfaces ΓDR and ΓNR, which are the interiors of ΓD∪ΓR and
ΓN ∪ΓR, respectively. Further, we assume that the Dirichlet- and Neumann data have extensions
g̃D ∈ H

1
2 ,

1
4 (Γ×ϒ) and g̃N ∈ H−

1
2 ,−

1
4 (Γ×ϒ) to all of Γ×ϒ. Thus the Dirichlet- and Neumann

data can be written as u = ũ+ g̃D and q = q̃+ q̃N with unknown ũ ∈ H̃
1
2 ,

1
4 (ΓNR×ϒ) and q̃ ∈

H̃−
1
2 ,−

1
4 (ΓDR×ϒ). Moreover, define

κR(x, t) :=

{
κ(x, t), (x, t) ∈ ΓR×ϒ,

0, (x, t) ∈ ΓN×ϒ,
and fR(x, t) :=

{
gR(x, t), (x, t) ∈ ΓR×ϒ,

0, (x, t) ∈ ΓN×ϒ.

7
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To determine ũ, q̃ we choose the following system of boundary integral equations based upon
the first and second Green’s formula (3) and (6)

V (q̃+ g̃N)(x, t)−
( I

2 +K
)
(ũ+ g̃D)(x, t) = 0 , (x, t) ∈ ΓDR×ϒ,( I

2 +K ′
)
(q̃+ g̃N)(x, t)+(D +κRI )(ũ+ g̃D)(x, t) = fR(x, t) , (x, t) ∈ ΓNR×ϒ.

If ΓR = /0 then this formulation reduces to the well known symmetric formulation of the mixed
Dirichlet-Neumann problem.

We state the variational form of this problem in a slightly more general setting. To that end,
let f ∈

(
H0
)′ and g ∈ H0 be given, further, let V be a closed subspace of H0. Consider the

variational problem: Find φ ∈V such that for all χ ∈V

a(φ+g,χ) = 〈 f ,χ〉 . (14)

Here, 〈·, ·〉 denotes the L2(Γ×ϒ)-duality pairing and the bilinear form is

a(ψ,χ) =
〈
V q, p

〉
−
〈( I

2 +K
)

u, p
〉
+
〈( I

2 +K ′
)

q,v
〉
+ 〈(D +κRI )u,v〉 , (15)

where ψ = φ+g = [q,u] ∈ H0 and χ = [p,v] ∈ H0. Since the 1/2-terms cancel, it follows from
Theorem 2.2 that a(·, ·) is coercive and bounded in H0 and therefore coercive and bounded in
the subspace V . Thus (14) is well-posed.

For the mixed problem we have V = H̃−
1
2 ,−

1
4 (ΓDR×ϒ)× H̃

1
2 ,

1
4 (ΓNR×ϒ), φ = [q̃, ũ] g =

[g̃N , g̃D] and f = [0, fR]. We note, however, that (14) also includes the pure Dirichlet, Neumann,
and Robin initial boundary value problems as special cases, thus the ensuing error analysis also
applies to these problems as well. Since their numerical formulations can be significantly sim-
pler, we list them below.

2.3.1 Initial Dirichlet Boundary Value Problem

For the pure Dirichlet problem of the heat equation (1) we have ΓD = Γ, ΓN = ΓR = /0. In this
case the first boundary integral equation (3) can be used as a boundary integral formulation

V q(x, t) =
( I

2 +K
)

gD(x, t) , (x, t) ∈ Γ×ϒ. (16)

The variational formulation of this problem is given by (14) with V = H−
1
2 ,−

1
4 (Γ×ϒ)×{0},

φ = [q,0], g = [0,gD], and f = 0.

2.3.2 Initial Neumann Boundary Value Problem

When ΓN = Γ, ΓD = ΓR = /0, then the second boundary integral equation (6) can be used to
obtain a boundary integral formulation

Du(x, t) =
( I

2 −K ′
)

gN(x, t) , (x, t) ∈ Γ×ϒ . (17)

The variational form can be obtained by setting V = {0}×H−
1
2 ,−

1
4 (Γ×ϒ), φ= [0,u], g= [0,gN ],

κ = 0 and f = [0,gR].

8
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2.3.3 Initial Robin Boundary Value Problem

The pure Robin problem is characterized by ΓR = Γ, ΓD = ΓR = /0. Similar to [12, page 181] we
use the symmetric representation of Dirichlet to Robin map given in Lemma 2.2

(S +κRI )u(x, t) = gR(x, t) , (x, t) ∈ Γ×ϒ .

Because of the inverse single layer operator in the definition of S it is difficult to realize this
equation numerically. Therefore, we introduce the Neumann data q = V −1

( I
2 +K

)
u as an

additional unknown and solve the equivalent system

V q(x, t)−
( I

2 +K
)

u(x, t) = 0 , (x, t) ∈ Γ×ϒ ,( I
2 +K ′

)
q(x, t)+(D +κRI )u(x, t) = gR(x, t) , (x, t) ∈ Γ×ϒ .

(18)

The variational form of this problem is again (14) where V = H0, g = 0, and f = [0,gR].

3 Galerkin Boundary Element Method

3.1 Properties of the Space-Time Tensor-Product Spaces

Throughout this work we assume a quasi-uniform, conforming triangulation of the boundary
Γ and an equidistant partition of the time interval ϒ. Further, we assume the interior of every
triangle is entirely contained in either ΓD, ΓN or ΓR. Upon this triangulation we define piecewise
polynomial ansatz spaces of degree dx in space (either piecewise constant dx = d0 or piecewise
linear and continuous dx = c1)

Xdx
hx
(Γ) := span{ϕdx

hx,`
(x)}Nx−1

`=0 .

Here, ϕ
d0
hx,`

is the characteristic function of the `-th triangle and ϕ
c1
hx,`

a hat-function corresponding
to the `-th vertex. Further, Nx is the number of triangles when dx = d0 or the number of vertices
when dx = c1. For the time variable we consider a piecewise constant ansatz space

T dt
ht
(ϒ) := span{φd0

ht , j(t)}
Nt−1
j=0 ,

where φ
d0
ht , j is the characteristic function of the j-th time interval and Nt the number of time steps.

Note that φ
d0
ht , j(t) = φloc(t/h− j), where φloc is the characteristic function of the interval [0,1].

To discretize functions in space and time we construct the tensor-product spaces

V dx,dt
hx,ht

(Γ×ϒ) := Xdx
hx
(Γ)⊗T dt

ht
(ϒ) ,

thus the lowest order H0-conforming ansatz space is

Vh(Γ×ϒ) :=V d0,d0
hx,ht

(Γ×ϒ)×V c1,d0
hx,ht

(Γ×ϒ) .

9
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Theorem 3.1. [4, Proposition 5.3] Let dx = d0 or dx = c1 and dt = d0. Then the L2(Γ×ϒ)
projection, defined by

〈w−P dx
hx

P dt
ht

w,wh〉L2(Γ×ϒ) = 0 ∀wh ∈V dx,dt
hx,ht

(Γ×ϒ) ,

satisfies ∥∥∥w−P dx
hx

P dt
ht

w
∥∥∥

Hsx ,st (Γ×ϒ)
.
(

hα
x +hβ

t

)
‖w‖Hrx ,rt (Γ×ϒ)

for w ∈ Hrx,rt (Γ×ϒ), where sxst ≥ 0, sx ≤ rx, st ≤ rt , rt ≤ 1, st <
1
2 ,

rx ≤

{
1, dx = d0,

2, dx = c1,
sx <

{
1
2 , dx = d0,
3
2 , dx = c1,

and

α = min
{

rx− sx,rx−
rx

rt
st

}
, β = min

{
rt − st ,rt −

rt

rx
sx

}
.

A simple consequence of this result is

Corollary 3.1. The L2(Γ×ϒ) projection Ph : [q,u]→ [P d0
hx

P d0
ht

q,P c1
hx

P d0
ht

u] satisfies

‖χ−Phχ‖Hs .
(

hr−s
x +h

r−s
2

t

)
‖χ‖Hr ,

‖χ−Phχ‖Ȟ .

(
h

r− 1
2

x +h
r
2−

1
4

t

)
‖χ‖Hr

for χ ∈ Hr, 0≤ r ≤ 3
2 , s≤ r and 0≤ s < 1

2 .

Corollary 3.2. The L2 projection satisfies the stability conditions

‖Phχ‖Hs . ‖χ‖Hs , 0≤ s <
1
2
,

‖Phχ‖Ȟ . ‖χ‖
H

1
2
.

Proof. The triangle inequality and Corollary 3.1 for r = s lead to

‖Phχ‖Hs ≤ ‖χ−Phχ‖Hs +‖χ‖Hs . ‖χ‖Hs .

For the second assertion replace Hs by Ȟ and use ‖χ‖Ȟ ≤ ‖χ‖H
1
2
.

Theorem 3.2. The following inverse inequalities

‖ph‖H−sx ,−st (Γ×ϒ) .
(

h−(rx−sx)
x +h−(rt−st)

t

)
‖ph‖H−rx ,−rt (Γ×ϒ) , 0≤ sx ≤ rx ≤

1
2
,

0≤ st ≤ rt ≤
1
2
,

‖vh‖Hrx ,rt (Γ×ϒ) .
(

h−(rx−sx)
x +h−(rt−st)

t

)
‖vh‖Hsx ,st (Γ×ϒ) , 0≤ sx ≤ rx <

3
2
,

0≤ st ≤ rt <
1
2
,

hold for all ph ∈V d0,d0
hx,ht

(Γ×ϒ) and vh ∈V c1,d0
hx,ht

(Γ×ϒ).

10
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For positive order, these inverse estimates follow directly from the well-known inverse esti-
mates in the spaces Xdx

hx
(Γ) and T dt

ht
(ϒ), see [9, Lemma 7.4]. The estimates for negative order

can be obtained with a duality argument, see, e.g.,[12, Lemma 10.10]. We omit details.

Corollary 3.3. The following inverse inequalities

‖χh‖Hs .
(

h−s
x +h

− s
2

t

)
‖χh‖H0 , 0≤ s <

1
2
,

‖χh‖Ȟ .

(
h
− 1

2+s
x +h

− 1
4+

s
2

t

)
‖χh‖Hs , 0≤ s <

1
2
,

hold for all χh ∈V d0,d0
hx,ht

(Γ×ϒ)×V c1,d0
hx,ht

(Γ×ϒ).

3.2 Efficient Solution Procedure

To describe the Galerkin discretization of (14), we introduce the finite element space

Vh =V ∩
(

V d0,d0
hx,ht

(Γ×ϒ)×V c1,d0
hx,ht

(Γ×ϒ)
)

and the projection gh = [gN,h,gD,h] where gN,h = P d0
hx

P d0
ht

gN and gD,h = P c1
hx

P d0
ht

gD. This ap-
proximation is necessary to avoid a separate quadrature to compute the application of boundary
integral operators to the Dirichlet or Neumann data. Thus the discrete problem is: Find φh ∈Vh
such that for all χh ∈Vh

a(φh +gh,χh) = 〈 f ,χh〉 . (19)

The discrete problem appears in the form of a lower-triangular block-Töplitz system,

i

∑
j=0

Ai− jψ j = fi , i = 0, . . .Nt −1.

Here ψ j and f j are coefficient vectors of the solution and right hand side for time step j and

Ai =

 Vi −
(

δ0,i
2 M+Ki

)(
δ0,i
2 M>+K>i

)
Dκ,i

 ,

where the blocks correspond to the different layer potentials

[Vi]k,` =
∫
Γ

∫
Γ

Vht ,i(x−y)ϕd0
hx,k(x)ϕ

d0
hx,`

(y)dsydsx.

The time integrated kernel are given by

Vht ,i− j(x−y) =


ht∫

t=0

t∫
τ=0

G(x−y, t− τ)φd0
ht ,i(t)φ

d0
ht , j(τ)dτdt , i = j ,

ht∫
t=0

ht∫
τ=0

G(x−y, t− τ)φd0
ht ,i(t)φ

d0
ht , j(τ)dτdt , i > j .

(20)

11
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The matrices Ki and Dκ,i are defined similarly for the double layer operator and the operator
D +κRI . Finally, δi, j is the Kronecker-delta and M is the mass matrix

Mk,` = ht

∫
Γ

ϕ
d0
hx,k(x)ϕ

c1
hx,`

(x)dsx .

The solution of the above system can be found by forward elimination, where every time step
amounts to solving

A0φi = bi , i = 0, . . .Nt −1 , (21)

where the right hand side involves the solution of the previous time steps

bi = fi−
i−1

∑
j=0

Ai− jφ j .

This linear system can be solved by elimination; writing bi = [c,d] and φi = [q,u] we have

S0 u= d−
(

1
2
M+K0

)>
V−1

0 c , (22)

V0 q= c+

(
1
2
M+K0

)
u , (23)

where S0 is given by

S0 = Dκ,0 +

(
1
2
M+K0

)>
V−1

0

(
1
2
M+K0

)
(24)

which can be viewed as a discrete Dirichlet to Robin operator. Thus every time step involves
solving linear systems with V0 and S0.

Note that the matrices on the left and right hand side are dense and must be evaluated by
a fast method to overcome a complexity estimate that grows quadratically with the number of
unknowns. This is achieved by an adaption of the parabolic fast multipole algorithm (pFMM)
[13], [14] to Galerkin discretized boundary integral operators of the heat equation as described
in [7] and [6].

4 Error Estimates

Error estimates for the Galerkin discretization of boundary integral equations of parabolic in-
tegral equation were already derived in [4, 9]. However, the discussion there assumes that the
boundary data and the bilinear form of the operators are represented exactly. To account for their
approximations, a variation of the well known Strang lemma and the Aubin-Nitsche duality ar-
gument can be used. To make this work self contained we will give the argument in this section,
while for a discussion along these lines in the case of elliptic BEM we refer to [10].

When multiplying powers of the temporal and spatial meshwidths we frequently use the fol-
lowing estimate which is a simple consequence of Young’s inequality(

hr
x +h

r
2
t

)(
hs

x +h
s
2
t

)
.
(

hr+s
x +h

r+s
2

t

)
, rs≥ 0 .

12
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If the exponents have opposite signs, then the product can be estimated by(
hr

x +h
r
2
t

)(
h−s

x +h
− s

2
t

)
. C s(h)

(
hr−s

x +h
r−s

2
t

)
, r,s≥ 0 ,

where

C (h) = max
{

hx√
ht
,

√
ht

hx

}
.

4.1 Bilinear Form

As mentioned in the introduction, we use the parabolic fast multipole method to evaluate layer
potentials efficiently. This algorithm is based on a hierarchical subdivision of space-time into
space-time clusters. To compute interactions of these clusters efficiently, the kernel (2) is ap-
proximated by an expression that separates the (x, t) and (y,τ) variables, for instance, by a
multivariate Chebyshev interpolation. This replaces the kernel by an approximation Gap with
error [14] ∣∣G(x−y, t− τ)−Gap(x−y, t,τ)

∣∣. h
− 3

2
t
(
ρ

pt
t +ρ

px
x
)

:= εh , (25)

where px and pt are the expansion orders and ρt < 1 and ρx < 1 depend on the way the space-
time clusters are separated with respect to their size. The point is that any desired accuracy εh
can be achieved by increasing the expansion order, while the complexity of the fast algorithm is
order

(
p2

t + p4
x
)
/(h2

xht), see [13, 7]. The subscript of εh indicates that the expansion orders are
adjusted to the discretization mesh width, such that the approximation error of the kernel does
not affect the asymptotic convergence of the discretization scheme.

For χh = [ph,vh] and φh = [qh,uh] in Vh the errors of the layer potentials when G is replaced
by Gap can be bounded as〈

(V −Vh)qh, ph
〉

Γ×ϒ
. εh ‖qh‖L2(Γ×ϒ) ‖ph‖L2(Γ×ϒ) ,

〈(K −Kh)uh, ph〉Γ×ϒ
. εh ‖uh‖H1,0(Γ×ϒ) ‖ph‖L2(Γ×ϒ) ,〈(

K ′−K ′h
)

qh,vh
〉

Γ×ϒ
. εh ‖qh‖L2(Γ×ϒ) ‖vh‖H1,0(Γ×ϒ) ,

〈(D−Dh)uh,vh〉Γ×ϒ
. εh ‖uh‖H1,0(Γ×ϒ) ‖vh‖H1,0(Γ×ϒ) .

We will denote the resulting approximate bilinear form by ah(·, ·). The variational problem we
solve is: Find φ∗h ∈Vh such that for all χh ∈Vh

ah(φ
∗
h +gh,χh) = 〈 f ,χh〉 . (26)

In the remainder of this section we will derive error estimates for φ∗h− φ. First note that the
difference of the exact and approximate bilinear form satisfies the bound

|a(φh,χh)−ah(φh,χh)|. εh ‖φh‖Ȟ ‖χh‖Ȟ , (27)

where the space Ȟ was introduced in (13). Using the inverse inequality (Corollary 3.3) and the
ellipticity of a(·, ·) we can now estimate

ah(χh,χh) = a(χh,χh)−
(

a(χh,χh)−ah(χh,χh)
)

&

(
1− εh

(
h−1

x +h
− 1

2
t

))
‖χh‖2

H0

13
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for all χh ∈Vh. Thus the approximate bilinear form ah(·, ·) is coercive in Vh, independent of the
mesh width, if εh goes to zero sufficiently fast, i.e.,

εh = o

((
h−1

x +h
− 1

2
t

)−1
)

.

To ensure that the fast method reproduces the full convergence behavior as the direct Galerkin
discretization method the parameter εh must satisfy the stronger bound

εh . C−
1
2 (h)

(
h2

x +h1
t
)
, (28)

which will become apparent in the following error estimates. Equation (25) implies that the
expansion orders px and pt depend logarithmically on the mesh width and hence, the complexity
of the fast method is log-linear.

4.2 Estimates in the Energy Norm

The error in the H0-norm can be estimated by the well known Strang Lemma (see, e.g., [2]).

Lemma 4.1. If εh satisfies (28) and 1
2 ≤ r ≤ 3

2 then the error of (26) can be estimated by

‖φ+g−φ
∗
h−gh‖H0 .

(
hr

x +h
r
2
t

)
‖φ+g‖Hr .

Proof. For any χh ∈Vh we set ψh = φ∗h−χh and estimate, using the ellipticity of ah(·, ·)

‖φ∗h−χh‖2
H0 . ah(φ

∗
h−χh,φ

∗
h−χh)

= a(φ+g−χh−gh,ψh)+
[
a(χh +gh,ψh)−ah(χh +gh,ψh)

]
+
[
ah(φ

∗
h +gh,ψh)−a(φ+g,ψh)

]
.

Because of (14) and (26) the last square bracket cancels and thus it follows from (27) and the
boundedness of the bilinear form that

‖φ∗h−χh‖H0 . ‖φ+g−χh−gh‖H0 + εh ‖χh +gh‖Ȟ

∥∥φ∗h−χh
∥∥

Ȟ∥∥φ∗h−χh
∥∥

H0

.

Setting χh = Phφ, and applying the inverse estimate gives

‖φ∗h−Phφ‖H0 . ‖φ+g−Ph (φ−g)‖H0 + εh

(
h
− 1

2
x +h

− 1
4

t

)
‖Ph (φ+g)‖Ȟ .

Combining this with the triangle inequality

‖φ+g−φ
∗
h−gh‖H0 ≤ ‖φ+g−Ph (φ+g)‖H0 +‖φ∗h−Phφ‖H0

.
(

hr
x +h

r
2
t

)
‖φ+g‖Hr + εh

(
h
− 1

2
x +h

− 1
4

t

)
‖φ+g‖

H
1
2
,

where we have used the approximation and stability properties of Ph. The assertion follows from
(28).

14
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4.3 Estimates in Stronger Norms

Error estimates in Hs-norms, s > 0, can be derived with the help of the inverse estimate.

Lemma 4.2. If εh satisfies (28), s∈
(
0, 1

2

)
, and r ∈

[1
2 ,

3
2

]
, then the error of (26) can be estimated

by

‖φ+g−φ
∗
h−gh‖Hs . C s(h)

(
hr−s

x +h
r−s

2
t

)
‖φ+g‖Hr .

Moreover, the solution is stable in the sense that

‖φ∗h +gh‖Ȟ . C
1
2 (h)‖φ+g‖

H
1
2
.

Proof. From the triangle inequality, the approximation properties of Ph (Theorem 3.1), and the
inverse estimate (Corollary 3.3) we get

‖φ+g−φ
∗
h−gh‖Hs ≤ ‖φ+g−Phφ−gh‖Hs +‖Phφ−φ

∗
h‖Hs

.
(

hr−s
x +h

r−s
2

t

)
‖φ+g‖Hr +

(
h−s

x +h
− s

2
t

)
‖Ph (φ+g−φ

∗
h−gh)‖H0 ,

where the last step is justified because Ph (g−gh) = 0. The stability of Ph (Corollary 3.2) and
Lemma 4.1 then imply that

‖φ+g−φ
∗
h−gh‖Hs .

[(
hr−s

x +h
r−s

2
t

)
+
(

hr
x +h

r
2
t

)(
h−s

x +h
− s

2
t

)]
‖φ+g‖Hr

which gives the first assertion. To show the second statement, repeat the same arguments from
before with Hs replaced by Ȟ. This implies that

‖φ+g−φ
∗
h−gh‖Ȟ ≤ C

1
2 (h)

(
h

r− 1
2

x +h
r
2−

1
4

t

)
‖φ+g‖

H
1
2
.

Combining this result for r = 1
2 with the triangle inequality leads to

‖φ∗h +gh‖Ȟ ≤ ‖φ+g−φ
∗
h−gh‖Ȟ +‖φ+g‖Ȟ . C

1
2 (h)‖φ+g‖

H
1
2
,

which is the second assertion.

4.4 Estimates in Weaker Norms

The error in the H−s-norm can be estimated with a variation of the Aubin-Nitsche duality argu-
ment.

Lemma 4.3. If εh satisfies (28), 1
2 ≤ r≤ 3

2 and 0 < s < 1
2 then the error of (26) can be estimated

by

‖φ+g−φ
∗
h−gh‖H−s .

(
hr+s

x +h
r+s

2
t

)
‖φ+g‖Hr .

15
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Proof. For b ∈ (H−s)
′ let ψb ∈ Hs be the solution of the adjoint problem

a(χ,ψb) = 〈χ,b〉 , ∀χ ∈ H0 . (29)

Set χ = φ+g−φ∗h−gh in (29) and add and subtract Phψb ∈Vh. Then

〈φ+g−φ
∗
h−gh,b〉= a(φ+g−φ

∗
h−gh,ψ

b)

= a(φ+g−φ
∗
h−gh,ψ

b−Phψ
b)

+
[
ah(φ

∗
h +gh,Phψ

b)−a(φ∗h +gh,Phψ
b)
]

+
[
a(φ+g,Phψ

b)−ah(φ
∗
h +gh,Phψ

b)
]

Since φ and φ∗h solve (14) and (26) the second square bracket cancels, and thus

‖φ+g−φ
∗
h−gh‖H−s = sup

b∈(H−s)′

〈
φ+g−φ∗h−gh,b

〉
‖b‖(H−s)′

. sup
b∈(H−s)′

[
a(φ+g−φ∗h−gh,ψ

b−Phψb)

‖b‖(H−s)′

+
ah(φ

∗
h +gh,Phψb)−a(φ∗h +gh,Phψb)

‖b‖(H−s)′

]
.

(30)

From Lemma 2.3 it follows that
∥∥ψb

∥∥
Hs ∼ ‖b‖(H−s)′ . Using Lemma 4.1 and the approximation

property of Ph the first term can be estimated by

a(φ+g−φ∗h−gh,ψ
b−Phψb)

‖b‖(H−s)′
. ‖φ+g−φ

∗
h−gh‖H0

∥∥ψb−Phψb
∥∥

H0

‖ψb‖Hs

.
(

hr
x +h

r
2
t

)(
hs

x +h
s
2
t

)
‖φ+g‖Hr .

The second term in (30) can be estimated using (27), the inverse estimate, the stability of Ph and
Lemma 4.2

ah(φ
∗
h +gh,Phψb)−a(φ∗h +gh,Phψb)

‖b‖(H−s)′
. εh ‖φ∗h +gh‖Ȟ

∥∥Phψb
∥∥

Ȟ
‖ψb‖Hs

. εhC
1
2 (h)‖φ+g‖

H
1
2

(
h
− 1

2+s
x +h

− 1
4+

s
2

t

) ∥∥Phψb
∥∥

Hs

‖ψb‖Hs
.

The assertion follows by combining (28) with the last two estimates.

5 Conditioning of the Linear Systems

After the optimal realization of the discrete boundary integral operators via pFMM it remains to
investigate the conditioning of the system matrices in the linear systems (22) and (23). Note that
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the matrices V0, Dκ,0 and S0 are symmetric positive definite, thus it suffices to derive bounds for
the spectral condition number to predict the behavior of an iterative solver.

We denote by V0 the integral operator with the time integrated kernel Vht ,0 given by (20).
Furthermore, D0 is defined similarly for the hypersingular operator.

For estimates of the conditioning of V0 and D0 we consider functions in the ansatz space

qh(x, t) = φht ,0(t)phx(x) , and uh(x, t) = φht ,0(t)vhx(x) , (31)

where
phx(x) = ∑

k
ϕhx,k(x)pk , and vhx(x) = ∑

k
ϕhx,k(x)vk . (32)

The equivalences

‖phx‖
2
L2(Γ)

∼ h2
x ‖p‖

2
2 and ‖vhx‖

2
L2(Γ)

∼ h2
x ‖v‖

2
2 , (33)

of the L2(Γ×ϒ)-norm of the function and the Euclidean norm of the coefficient vectors follow
from the assumptions of the mesh refinement, see, e.g., [12]. By Theorem 2.3,〈

V0 phx , phx

〉
Γ
=
〈
V qh,qh

〉
Γ×ϒ
∼ ‖qh‖2

H−
1
2 ,− 1

4 (Γ×ϒ)
, (34)

〈D0vhx ,vhx〉Γ = 〈Duh,uh〉Γ×ϒ
∼ ‖uh‖2

H
1
2 , 1

4 (Γ×ϒ)
. (35)

We begin with an estimate of φht ,0.

Lemma 5.1. For s ∈
(
−1

2 ,
1
2

)
and ht → 0 the estimate

‖φht ,0‖Hs(R) ∼ h
1
2−s
t

holds.

Proof. Because of the scaling φht ,0(t) = φloc(t/ht) it follows that the Fourier transform φ̂ht of φht

satisfies φ̂ht (τ) = ht φ̂loc(htτ). Thus the change of variables ρ = htτ gives

‖φht‖
2
Hs(R) = h2

t

∫
R

(1+ τ
2)s
∣∣φ̂loc(htτ)

∣∣2 dτ = h1−2s
t

∫
R

(h2
t +ρ

2)s
∣∣φ̂loc(ρ)

∣∣2 dρ . (36)

It remains to verify that the last integral can be bounded from above and below independently
of ht . To that end, consider the case s≥ 0 first. A lower bound can be obtained by dropping the
factor ht in the integrand of (36). Thus

‖φht‖
2
Hs(R) ≥ ht

1−2s
∫
R

ρ
2s
∣∣φ̂loc(ρ)

∣∣2 dρ , s≥ 0 .

Since the latter integral is positive, the first part of the assertion is verified. An upper bound can
be obtained by replacing ht in the integrand of (36) with unity, thus

‖φht‖
2
Hs(R) ≤ h1−2s

t

∫
R

(1+ρ
2)s
∣∣φ̂loc(ρ)

∣∣2 dρ , s≥ 0 .

Since ‖φloc‖Hs(R) is finite this establishes the next part of the assertion. The argument for neg-
ative s is the same, with the exception that dropping ht in (36) will give the upper bound and
replacing ht by unity will give the lower bound of ‖φht‖Hs(R).
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Lemma 5.2. For ht → 0 the function uh(x, t) defined in (31) satisfies

‖uh‖2
H

1
2 , 1

4 (Γ×ϒ)
∼ ht ‖vhx‖

2
H

1
2 (Γ)

+h
1
2
t ‖vhx‖

2
L2(Γ)

.

Proof. The Fourier transform of uh(x, t) in time is ûh(x,τ) = vhx(x)φ̂ht (τ). Moreover, the defini-
tion of the H

1
2 ,

1
4 (Γ×R) norm in (9) implies that

‖uh‖2
H

1
2 , 1

4 (Γ×R)
=

∫
R

‖ûh(·,τ)‖2
H

1
2 (Γ)

+
(
1+ τ

2) 1
4 ‖ûh(·,τ)‖2

L2(Γ)
dτ

= ‖φht‖
2
L2(R) ‖vhx‖

2
H

1
2 (Γ)

+‖φht‖
2
H

1
4 (R)
‖vhx‖

2
L2(Γ)

.

Thus the assertion follows from Lemma 5.1 and the fact that ‖uh‖H
1
2 , 1

4 (Γ×R)
= ‖uh‖H

1
2 , 1

4 (Γ×ϒ)
.

Lemma 5.3. For ht → 0 the function qh(x, t) defined in (31) satisfies

‖qh‖2
H−

1
2 ,− 1

4 (Γ×ϒ)
. h

3
2
t ‖phx‖

2
L2(Γ)

.

Proof. The negative norm is defined by the duality

‖qh‖H−
1
2 ,− 1

4 (Γ×ϒ)
= sup

06=ϕ∈H
1
2 , 1

4 (Γ×ϒ)

〈qh,ϕ〉Γ×ϒ

‖ϕ‖
H

1
2 , 1

4 (Γ×ϒ)

= sup
06=ϕ∈H

1
2 , 1

4 (Γ×R)

〈qh,ϕ〉Γ×R
‖ϕ‖

H
1
2 , 1

4 (Γ×R)

. (37)

Here the duality pairing is given by

〈qh,ϕ〉Γ×R =
∫
R

∫
Γ

φht (t)phx(x)ϕ(x, t)dsxdt =
∫
R

∫
Γ

φ̂ht (τ)phx(x)ϕ̂(x,τ)dsxdτ .

where the second step is Parseval’s identity. We estimate this integral using the Cauchy-Schwarz
inequality for the Γ-integral and the duality in the H−

1
4 (ϒ) norm for the τ-integral. That is,∣∣〈qh,ϕ〉Γ×R

∣∣2 ≤ ‖phx‖
2
L2(Γ)

∫
R

(
1+ τ

2)− 1
4
∣∣φ̂ht (τ)

∣∣2 dτ

∫
R

(
1+ τ

2) 1
4 ‖ϕ̂(·,τ)‖2

L2(Γ)
dτ

≤ ‖phx‖
2
L2(Γ)
‖φht‖

2
H−

1
4 (ϒ)
‖ϕ‖2

H
1
2 , 1

4 (Γ×R)

and the assertion follows from (37) and Lemma 5.1.
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Theorem 5.1. For ht → 0 the eigenvalues and spectral condition numbers of V0 and D0 satisfy
the bounds

λmax(V0). h
3
2
t h2

x , λmax(D0).

(
h
− 1

2
x +h

− 1
4

t

)2

h2
xht ,

λmin(V0)&

(
h
− 1

2
x +h

− 1
4

t

)−2

h2
xht , λmin(D0)& h2

xh
1
2
t ,

cond(V0). 1+
(

ht

h2
x

) 1
2

, cond(D0). 1+
(

ht

h2
x

) 1
2

.

Proof. Let qh, phx and p be defined by (31) and (32). From (34), Theorem 3.2, (33) and
Lemma 5.1 we have

λmin(V0) = min
p 6=0

p>V0p

‖p‖2
2

= min
p6=0

〈
V0 phx , phx

〉
Γ

‖p‖2
2

& min
p 6=0

‖qh‖2
H−

1
2 ,− 1

4 (Γ×ϒ)

‖p‖2
2

&

(
h
− 1

2
x +h

− 1
4

t

)−2

min
p6=0

‖phx‖
2
L2(Γ)
‖φht‖

2
L2(ϒ)

‖p‖2
2

&

(
h
− 1

2
x +h

− 1
4

t

)−2

h2
xht .

Likewise, from Lemma 5.3 we get

λmax(V0) = max
p 6=0

p>V0p

‖p‖2
2

. max
p6=0

‖qh‖2
H−

1
2 ,− 1

4 (Γ×ϒ)

‖p‖2
2

. h
3
2
t max

p 6=0

‖phx‖
2
L2(Γ)

‖p‖2
2

. h
3
2
t h2

x .

To estimate the eigenvalues of D0 we consider uh, vhx and v as defined in (31) and (32). From
(35), Lemma 5.2 and the norm equivalence (5.2) we get

λmin(D0) = min
v 6=0

v>D0v

‖v‖2
2

& min
v 6=0

‖uh‖2
H

1
2 , 1

4 (Γ×ϒ)

‖v‖2
2

& h
1
2
t min

v 6=0

‖vhx‖
2
L2(Γ)

‖v‖2
2

& h
1
2
t h2

x .

Moreover, from Theorem 3.2 it follows that

λmax(D0) = max
v 6=0

v>D0v

‖v‖2
2

. max
v 6=0

‖uh‖2
H

1
2 , 1

4 (Γ×ϒ)

‖v‖2
2

.

(
h
− 1

2
x +h

− 1
4

t

)2

max
v 6=0

‖vhx‖
2
L2(Γ)
‖φht‖

2
L2(ϒ)

‖v‖2
2

.

(
h
− 1

2
x +h

− 1
4

t

)2

h2
xht .

The condition numbers are finally derived by taking the ratios of the estimates for the extremal
eigenvalues.

We now turn to the discrete Dirichlet to Robin operator in (24).
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Theorem 5.2. For ht → 0 the eigenvalues and spectral condition numbers of S0 satisfy the
bounds

λmin(S0)& h
1
2
t h2

x ,

λmax(S0).

(
1+
(

ht

h2
x

) 1
4
)(

h
− 1

2
x +h

− 1
4

t

)2

h2
xht ,

cond(S0). 1+
(

ht

h2
x

) 3
4

.

Proof. Let vhx , phx , uh and qh be defined as in (31). Further, in view of (24), we define the vector

c=

(
1
2
M+K0

)
v

then
v>S0v = v>Dκ,0v+ c>V−10 c. (38)

Since V−10 is symmetric positive definite and since κ≥ 0 it follows that

v>S0v ≥ λmin(D0)‖v‖2
2

which implies the first assertion.
For the second assertion, we estimate, using Lemma 5.3 and the inverse estimate

‖c‖2 = sup
p6=0

p>c

‖p‖2
= sup

p 6=0

〈(1
2 +K

)
uh,qh

〉
Γ×ϒ

‖p‖2

. sup
p 6=0

‖uh‖H
1
2 , 1

4 (Γ×ϒ)
‖qh‖H−

1
2 ,− 1

4 (Γ×ϒ)

‖p‖2

.

(
h
− 1

2
x +h

− 1
4

t

)
h

3
4
t sup

p 6=0

‖uh‖L2(Γ×ϒ) ‖phx‖L2(Γ)

‖p‖2

.

(
h
− 1

2
x +h

− 1
4

t

)
h

5
4
t h2

x ‖v‖2

Thus it follows from (38) and Theorem 5.1 that

v>S0v ≤ λmax(Dκ,0)‖v‖2
2 +λ

−1
min(V0)‖c‖2

2

.

(
1+
(

ht

h2
x

) 1
4
)(

h
− 1

2
x +h

− 1
4

t

)
hth2

x ‖v‖
2
2

which implies the second and third assertion.

Our main result is a simple consequence of the previous estimates.

Corollary 5.1. If ht . h2
x then the spectral condition number of V0,D0 and S0 is independent of

the meshwidth.
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6 Numerical Examples

6.1 Condition of V0 and D0

In this section we experimentally investigate the eigenvalues and spectral condition number of
V0 and D0. We choose our domain to be the unit cube, i.e., Ω = (−0.5,0.5)3, times the unit time
interval ϒ = (0,1). The coarsest discretization consists of four equally sized triangles on each
face of the unit cube times one unit timestep. Starting from this discretization we perform four
uniform spatial and eight uniform temporal refinements.

Table 1 through 3 display the extremal eigenvalues and spectral condtion number of V0, nor-
malized by the estimates given by Theorem 5.1. One should expect that these ratios stay bounded
away from zero and infinity, and it appears that they indeed do, at least in the lower right corners
of the tables. Table 4 through 6 display the analogous data for D0.

hx = 2 0 hx = 2−1 hx = 2−2 hx = 2−3 hx = 2−4

ht = 2 0 0.0914 0.0916 0.0918 0.0922 0.0919
ht = 2−1 0.1004 0.1006 0.1009 0.1008 0.1006
ht = 2−2 0.1040 0.1040 0.1043 0.1044 0.1044
ht = 2−3 0.1034 0.1041 0.1039 0.1040 0.1043
ht = 2−4 0.1024 0.1021 0.1023 0.1024 0.1022
ht = 2−5 0.1005 0.1006 0.1008 0.1008 0.1006
ht = 2−6 0.0988 0.0991 0.0991 0.0996 0.0996
ht = 2−7 0.0976 0.0979 0.0982 0.0992 0.0990
ht = 2−8 0.0967 0.0970 0.0976 0.0980 0.0985

Table 1: λmax(V0)/
[
h2

xh
3
2
t
]

hx = 2 0 hx = 2−1 hx = 2−2 hx = 2−3 hx = 2−4

ht = 2 0 0.0326 0.0249 0.0196 0.0160 0.0136
ht = 2−1 0.0389 0.0289 0.0221 0.0176 0.0148
ht = 2−2 0.0469 0.0340 0.0253 0.0196 0.0160
ht = 2−3 0.0571 0.0405 0.0295 0.0222 0.0177
ht = 2−4 0.0693 0.0490 0.0347 0.0253 0.0196
ht = 2−5 0.0825 0.0595 0.0413 0.0295 0.0222
ht = 2−6 0.0947 0.0719 0.0499 0.0347 0.0254
ht = 2−7 0.1041 0.0854 0.0607 0.0415 0.0295
ht = 2−8 0.1094 0.0976 0.0731 0.0500 0.0348

Table 2: λmin(V0)/
[(

h
− 1

2
x +h

− 1
4

t
)−2h2

xht
]
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hx = 2 0 hx = 2−1 hx = 2−2 hx = 2−3 hx = 2−4

ht = 2 0 5.6074 7.1340 8.4412 9.3567 9.9144
ht = 2−1 5.1220 6.9087 8.5786 9.8093 10.5497
ht = 2−2 4.3118 6.1090 8.0138 9.5775 10.6316
ht = 2−3 3.4035 5.1034 6.9929 8.8049 10.1273
ht = 2−4 2.6611 4.0487 5.9043 7.8616 9.3835
ht = 2−5 2.0868 3.1793 4.8421 6.7738 8.4979
ht = 2−6 1.6986 2.4821 3.8596 5.7358 7.6076
ht = 2−7 1.4503 1.9646 3.0413 4.7484 6.6624
ht = 2−8 1.2989 1.6191 2.4032 3.8066 5.6634

Table 3: cond(V0)/
[
1+(ht/h2

x)
1
2
]

hx = 2 1 hx = 2 0 hx = 2−1 hx = 2−2 hx = 2−3

ht = 2 0 0.1003 0.1757 0.2347 0.2930 0.3461
ht = 2−1 0.0860 0.1534 0.2080 0.2664 0.3213
ht = 2−2 0.0748 0.1350 0.1823 0.2389 0.2955
ht = 2−3 0.0660 0.1202 0.1586 0.2124 0.2683
ht = 2−4 0.0820 0.1115 0.1389 0.1862 0.2412
ht = 2−5 0.0995 0.1148 0.1242 0.1624 0.2134
ht = 2−6 0.1170 0.1276 0.1212 0.1408 0.1880
ht = 2−7 0.1331 0.1429 0.1274 0.1254 0.1638
ht = 2−8 0.1485 0.1589 0.1399 0.1233 0.1423

Table 4: λmax(D0)/
[(

h
− 1

2
x +h

− 1
4

t
)2h2

xht
]

hx = 2 1 hx = 2 0 hx = 2−1 hx = 2−2 hx = 2−3

ht = 2 0 0.0697 0.0776 0.0802 0.0813 0.0814
ht = 2−1 0.0950 0.1047 0.1091 0.1104 0.1111
ht = 2−2 0.1134 0.1336 0.1414 0.1446 0.1454
ht = 2−3 0.0874 0.1527 0.1688 0.1749 0.1774
ht = 2−4 0.0720 0.1414 0.1811 0.1943 0.1987
ht = 2−5 0.0645 0.1122 0.1747 0.2009 0.2100
ht = 2−6 0.0614 0.0918 0.1498 0.1951 0.2130
ht = 2−7 0.0553 0.0765 0.1202 0.1774 0.2077
ht = 2−8 0.0525 0.0659 0.0970 0.1505 0.1962

Table 5: λmin(D0)/
[
h2

xh
1
2
t
]
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hx = 2 1 hx = 2 0 hx = 2−1 hx = 2−2 hx = 2−3

ht = 2 0 2.8766 4.3986 5.2695 5.8705 6.2523
ht = 2−1 1.7957 2.9107 3.5821 4.1372 4.4705
ht = 2−2 1.2816 2.0210 2.5038 2.9735 3.3099
ht = 2−3 1.4178 1.5621 1.8656 2.2822 2.5936
ht = 2−4 2.0489 1.5309 1.5336 1.8621 2.1856
ht = 2−5 2.6462 1.9215 1.4114 1.6046 1.9095
ht = 2−6 3.1059 2.5003 1.5726 1.4436 1.7147
ht = 2−7 3.7203 3.2030 1.9916 1.4035 1.5656
ht = 2−8 4.1607 3.9266 2.5963 1.5918 1.4509

Table 6: cond(D0)/
[
1+(ht/h2

x)
1
2

]
6.2 Initial Boundary Value Problems

In this section we solve homogeneous initial boundary value problems described in Section 2
for Ω = (−0.5,0.5)3 and ϒ = (0,0.5). In all cases, we choose the boundary data corresponding
to a heat point source gD(x, t) = G(x−x0, t), gN(x, t) = ∂nxG(x−x0, t), and gR(x, t) = ∂nxG(x−
x0, t)+κ(x)G(x−x0, t) located at x0 := (1.5,1.5,1.5)> with κ = 1.

We monitor errors of q and u in the L2(Γ×ϒ)-norm. Setting r = 3
2 and s = 1

2 in Lemma 4.2
shows that the optimal theoretical convergence rate for q is O(hx +

√
ht). If the endpoint s = 1

2
was included in the assumption of Lemma 4.3, the optimal convergence rate of u would be
O
(
h2

x +ht
)
. However, the endpoint cannot be reached because it is not known whether the

statement of Theorem 2.3 can be extended to s = 1
2 , see [4]. However, our numerical result

reproduces this optimal result, at least for the geometry considered.

6.2.1 Initial Dirichlet BVP

In our first example we solve the pFMM approximated variational form related to the initial
Dirichlet boundary value problem (16). In Table 7 we present errors, iteration numbers, com-
putation time and memory requirement for a ht = O(h2

x) refinement scheme. We observe that
the optimal hx +

√
ht convergence is achieved. Furthermore, the solution is obtained in optimal

complexity with respect to the total number of unknowns NxNt , thanks to the application of the
pFMM and the bounded number of iterations #V0 implied by Theorem 5.1.

NxNt
∥∥q−q∗h

∥∥
L2
/‖q‖L2

#V0 cpu[sec] mem[GB]
12,288 1.23 10−1 10 4.54 101 5.68 10−2

196,608 6.07 10−2 10 1.83 102 2.05 10−1

3,145,728 3.01 10−2 10 3.35 103 1.07 10 0

50,331,648 1.50 10−2 10 1.12 105 6.29 10 0

Table 7: Dirichlet IBVP with uniform ht = O(h2
x) refinement.

23



Preprint No 02/2014 Institute of Applied Mechanics

6.2.2 Initial Neumann BVP

We solve the pFMM approximated variational form related to the initial Neumann boundary
value problem (17). In Table 8 we present results for a ht = O(h2

x) refinement, which reveals
that the O(ht) behavior of the space-time Galerkin scheme is obtained in optimal complexity,
again thanks to pFMM algorithm and the bounded number of iterations #D0.

NxNt
∥∥u−u∗h

∥∥
L2
/‖u‖L2

#D0 cpu[sec] mem[GB]
6,208 2.76 10−2 8 1.04 102 4.55 10−2

98,560 6.65 10−3 8 3.37 102 2.09 10−1

1,573,888 1.65 10−3 8 4.93 103 1.09 10 0

25,169,920 4.10 10−4 8 1.55 105 6.88 10 0

Table 8: Neumann IBVP with uniform ht = O(h2
x) refinement.

6.2.3 Initial Robin BVP

We solve the pFMM approximated variational form related to the initial Robin boundary value
problem (18). In Table 9 we present more details for a ht = O(h2

x) refinement scheme. Again,
they reveal the O(ht) behavior of the nearly optimal computational complexity.

NxNt
∥∥u−u∗h

∥∥
L2
/‖u‖L2

#S∗0 cpu[sec] mem[GB]
6,208 2.19 10−2 10 1.43 102 8.85 10−2

98,560 5.46 10−3 10 4.96 102 3.55 10−1

1,573,888 1.36 10−3 10 8.16 103 2.00 10 0

25,169,920 3.41 10−4 9 2.58 105 1.12 10 1

Table 9: Robin IBVP with uniform ht = O(h2
x) refinement.

6.2.4 Mixed Initial BVP

Finally, we solve the pFMM approximated variational form of the mixed initial boundary value
problem (1). For our example below we have choosen ΓD = (−0.5,0.5)×−0.5× (−0.5,0.5),
ΓN = (−0.5,0.5)×0.5×(−0.5,0.5), and ΓR =Γ\(ΓN∪ΓD). The data in Table Table 10 display
the same convergence and complexity behavior of the algorithm as the other problems.

NxNt
∥∥u−u∗h

∥∥
L2
/‖u‖L2

#S∗0 cpu[sec] mem[GB]
6,208 2.19 10−2 10 1.52 102 7.46 10−2

98,560 5.45 10−2 10 5.64 102 3.54 10−1

1,573,888 1.36 10−3 10 9.62 103 1.94 10 0

25,169,920 3.41 10−4 9 2.80 105 1.19 10 1

Table 10: Mixed IBVP with uniform ht = O(h2
x) refinement.
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6.3 Industrial Application

Our method has been used for the thermal simulation of hot forming tools in joint work with W.
Weiss, who developed the thermal model in his PhD thesis [15]. The idea of using boundary
element methods is motivated by the fact that the geometry of hot forming tools is extremely
complicated (especially the cooling chanel geometry inside the tools) and only the surface tem-
perature of the tool is required.

(a) Quasi-static working temperature [◦C]. (b) Closing temperature [◦C].

Figure 1: Significant temperatures of the hot forming tool.

The hot forming process consists of two main steps: Fast forming and rapid cooling of the
blank in the closed and cooled tool. The model in [15] consists of an energetic averaging of the
individual cycles until the quasi-static working temperature is reached followed by one cooling
cycle in order to compute the closing temperature of the tools before the next hot blank is formed.
This model leads to the mixed Dirichlet-Robin IBVP (14), which can be transformed trivially to
have zero temperature Dirichlet boundary conditions, and homogeneous initial conditions.

Figure 1 shows the quasi-static working temperature and the closing temperature of the tool
(the whole setup consists of an upper and a lower tool, however only the results for the upper tool
are shown). These numerical simulations have been verified experimentally by measurements
during the real process. On several significant points inside the tools thermo-elements have
been installed with one exemplary comparison shown in Figure 2. Observe, that [15]’s model is
based on an energetic averaging of the real process, thus the simulation can not reproduce the
individual cycles.
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Figure 2: Temperature comparison – simulation vs. measurement [15].
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