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Abstract

Wave propagation is of great interest for all fields of science and engineering. Partic-
ularly, for the case of semi-infinite and infinite domains, the Boundary Element Method
is an appropriate numerical method for the simulation of such problems. The presented
formulation establishes a data efficient and fast boundary element formulation for the 3-d
elastodynamic problem. Approximations of the inherently present temporal convolution
are computed via the Convolution Quadrature Method in a nonstandard manner. Contrary
to utilizing Cauchy’s integral formula, this paper establishes a ’direct’ convolution weight
evaluation. The application of a cubic spline interpolation on these analytic functions and
an appropriate clustering strategy, finally, yield a fast and data efficient formulation that is
validated with numerical examples.
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1 Introduction

The numerical investigation of transient problems is of great interest for all disciplines in engi-
neering and science. A large variety of methods is available for the solution of such problems
– each of them offering certain advantages and disadvantages. The Boundary Element Method
(BEM) is well established in the field of transient analysis, particularly for the treatment of
infinite and semi-infinite domains. Despite the major advantage, the reduction of dimension-
ality, the drawback of the method is evident in terms of computational complexity and storage
requirements. Within the last two decades significant improvements have led to an increased
competitive position of the method. The reader is recommended to consult, e.g., Ergin et al.
[13], Takahashi et al. [39], Messner and Schanz [29] and Takahashi [38] – just to mention a few
publications that are related to ’fast methods’ dealing with wave propagation.

Due to its special character, an implementation of transient elastodynamics implicates to deal
with the inherently present temporal convolution as well as with strategies to improve the effi-
ciency in terms of computational time and memory consumption. From a general point of view,
two strategies are commonly used to treat the convolution in time. The first approach exploits
temporal shape functions with local support to describe the time-dependency of the respective
quantities. Such procedures where used right from the beginning in basic works of, e.g., Mansur
[25], Mansur and Brebbia [26] and Antes [3]. Unfortunately, this approach suffers from stability
issues – a research topic addressed by authors like Siebrits and Peirce [36] and Birgisson et al.
[7].

Due to works of Lubich [22, 23] in the late eighties, a new method for the treatment of the
temporal convolution was given and might be regarded as the second commonly used strategy.
Consequentially, Lubich and Schneider [24] applied the procedures to time-dependent boundary
integral equations. Schanz and Antes [34] followed by applying it to transient elastodynamics
with subsequent publications in visco- and poroelasticity [33, 32, 35]. As a result, the convolu-
tion quadrature method (CQM) found its way into boundary element formulations for a broad
range of problems in science and industrial applications. The reader is recommended to consult
[4] for more details and a large list of references.

The evaluation of the convolution weights, a crucial task in the application of the CQM,
usually utilizes numerical approximations of Cauchy’s integral formula. Most of the imple-
mentations use this strategy since it allows to use sophisticated fundamental solutions, e.g., in
poroelasticity. Quite recently, a formulation for the numerical treatment of the scalar wave equa-
tion proposed by Hackbusch et al. [18] uses a ’direct’ weight evaluation instead of the Cauchy
integral. In this formulation, based on a BDF-2 multistep method, an analytic expression is
given to compute the weights exactly. Even if the scalar-type fundamental solution is a rather
simple expression, the resulting weight functions turn out to be quite involved. However, the
direct computation reveals some interesting properties that correspond to the wave nature of the
problem. These characteristics in turn enable efficiency improvements in terms of computa-
tional effort and storage requirements. While Hackbusch et al. [18] utilize the BDF-2 scheme
as underlying multistep method for the CQM, Monegato et al. [30] show the possible practical
applicability of higher order schemes – even though an essential criterion (A-stability of the
underlying multistep method) is partially not met.

Yet, the direct convolution weight computation is confined to the scalar wave equation – thus,
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the aim of the present paper is to extend the approach to linear elastodynamics. This paper estab-
lishes a boundary element formulation for the treatment of transient elastodynamics based on the
CQM that uses the concept of direct weight evaluation. Like in the scalar case, the wave nature
is recovered and a chance for efficiency improvements is given. The paper is organized in the
following way: A brief introduction to both, the underlying boundary integral equation as well
as the convolution quadrature method is given in sections 2 and 3, respectively. The main part,
the direct computation of the tensor-valued weights is shown in section 4 accompanied by some
illustrations concerning the mentioned wave nature of the problem. In section 5, the concepts
for an efficient and fast implementation based on cubic spline interpolation are introduced and
implementation details are provided. Finally, the proposed formulation is tested and validated
with numerical examples in section 6.

Throughout the whole paper, lower subscripts indicate tensor- and vector-valued quantities
while bold-faced lower case letters denote vectors in R3. Additionally, Einstein’s summation
convention is used and (·)i, j =

∂

∂x j
(·)i holds. A hat ˆ(·) denotes Laplace-transformed quantities

with the Laplace parameter s ∈ C s.t. ℜs > 0.

2 Basic Equations

Consider a domain Ω ⊂ R3 with boundary Γ = ΓN ∪ΓD = ∂Ω composed of both, a Neumann
boundary ΓN and Dirichlet boundary ΓD. Assuming the domain to be occupied by a linear elastic
continuum the governing equation inside the body is represented by the Lamé-Navier equation

(
c2

1− c2
2
)

u j, ji (x, t)+ c2
2 ui, j j (x, t)+

∂2ui (x, t)
∂t2 = 0 with i, j = 1,2,3. (1)

Note that in equation (1) and in the sequel, body forces are assumed to vanish. The constant
parameters c1 and c2 denote the wave velocities corresponding to the compression and the shear
wave, respectively. Their relation to the density ρ and the Lamé parameters λ and µ is given via
the identities c2

1 = (λ+2µ)/ρ and c2
2 = µ/ρ. ui (x, t) denotes the displacement in the i-th direction of

a material particle located at x ∈ Ω at time t ∈ (0,T ) ⊂ R+, where T is a fixed end time. For
subsequent derivations, all initial conditions are assumed to vanish, i.e., ui (t = 0) = u̇i (t = 0) =
0. The boundary integral equation (see [11] for instance) in its space-time representation

Ci j (x)u j (x, t) =
∫
Γ

Ui j (r, t)∗ t j (y, t)dsy−
∫
Γ

Ti j (r, t)∗u j (y, t)dsy, x ∈ Γ (2)

serves as a prerequisite for a boundary element formulation. Equation (2) contains the time-
dependent Neumann datum ti (x, t) and Dirichlet datum ui (x, t) on the boundary as well as the
displacement fundamental solution Ui j (r, t), the traction fundamental solution Ti j (r, t) and the
integral free term Ci j (x). The asterisk (∗) denotes convolution in time and the vector valued
difference between load and field point is denoted by r = y−x. In the following the Euclidean
distance between these points will be denoted with r = |r| and will be called radius.

Remark 1. Although the time-domain fundamental solutions Ui j (r, t) and Ti j (r, t) are well
known in closed form (see [2] for instance), the special treatment of the convolution in the
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sequel allows to work solely with the Laplace-transformed fundamental solutions Ûi j (r,s) and
T̂i j (r,s) (see section 4).

3 Convolution Quadrature Method

The basic problem of finding approximations of the convolution integral

y(t) = f (t)∗g(t) =
t∫

0

f (t− τ)g(τ)dτ, (3)

involving two temporal functions f (t) and g(t) is crucial for the time-domain boundary element
method since this convolution is inherently present in the underlying boundary integral equation
(2). A well established method to acquire such approximations is the convolution quadrature
method developed by Lubich [22, 23]. A detailed and neatly arranged derivation of the method
is given in [32]. The time interval of interest t ∈ [0,T ] is split into Nt equidistant intervals
∆t = T/Nt . If the Laplace-transformed function f̂ (s) exists, the approximation reads as

y(n∆t) =
n∆t∫
0

f (n∆t− τ)g(τ)dτ≈
n

∑
m=0

ω
n−mg(m∆t) (4)

with n = 0,1, ...,Nt . Choosing the A-stable BDF-2 scheme as underlying multistep method, the
weights ωn can be obtained via

ω
n =

1
n!

∂n

∂ξn

[
f̂
(

γ(ξ)

∆t

)]
ξ=0

, with γ(ξ) =
1
2
(
ξ

2−4ξ+3
)

. (5)

Note that γ(ξ) represents the characteristic polynomial of the chosen BDF-2 scheme and ξ ∈
C, |ξ|< 1.

3.1 Conventional Approach of Weight Computation

At this stage, the common approach for the weight computation utilizes Cauchy’s integral for-
mula to obtain the partial derivatives with respect to ξ in equation (5). Thus, ωn is

ω
n =

1
2πi

∫
|ξ|=R

f̂
(

γ(ξ)

∆t

)
ξ
−(n+1) dξ. (6)

R denotes the radius of a circle within the domain of analyticity of the Laplace-domain function
f̂
(

γ(ξ)
∆t

)
. Commonly, a trapezoidal rule is used to evaluate the integral in equation (6).

One reason for the frequent usage of Cauchy’s integral formula is that this strategy can be
applied for all kinds of multistep methods and functions f̂ (s) – even complicated ones like,
e.g., poroelastic fundamental solutions. As a consequence, the derivation of closed form ex-
pressions for the n-th partial derivative in (5) can be avoided. Nonetheless, this leads to another
approximation that is introduced into the formulation – with additional computational effort.

4



Preprint No 01/2014 Institute of Applied Mechanics

Contrary to that, another strategy is the direct evaluation of the weight functions. Much more
effort has to be invested in finding closed form expressions for the n-th partial derivative with
respect to ξ in (5). Even for simple expressions like for the scalar wave equation (see Hackbusch
et al. [18]), the resulting weight functions get quite involved. Fortunately, this strategy reveals
some interesting properties that can be used for efficiency improvements. The aim of the next
section is to employ this strategy for elastodynamics to finally come up with an efficient and fast
boundary element formulation.
Remark 2. The proposed formulation does not utilize Cauchy’s integral formula at all. Instead,
the partial derivatives are evaluated exactly for each timestep n.

4 Direct Weight Computation for Elastodynamics

For the sake of readability the crucial ideas are shown solely for the displacement fundamental
solution. The same strategies can be applied to the traction fundamental solution. Its expres-
sions are listed in A.2. For the elastodynamic case the convolution involving the displacement
fundamental solution and the Neumann datum is

Ui j (r,n∆t)∗ t j (y,n∆t) =
n∆t∫
0

Ui j (r,n∆t− τ) t j (y,τ)dτ≈
n

∑
m=0

ω
n−m
i j (r) t j (y,m∆t) . (7)

As stated in section 3, a successful application of the CQM requires the elastodynamic funda-
mental solution in Laplace-domain that is defined according to [9] as

Ûi j (r,s) =
1

4πρc2
2
(δi jψ(r,s)− r,ir, jχ(r,s)) , (8)

with scalar functions

ψ(r,s) =
(

c2
2

s2r3 +
c2

sr2 +
1
r

)
exp
(
− sr

c2

)
− c2

2

c2
1

(
c2

1
s2r3 +

c1

sr2

)
exp
(
− sr

c1

)
χ(r,s) =

(
3c2

2
s2r3 +

3c2

sr2 +
1
r

)
exp
(
− sr

c2

)
− c2

2

c2
1

(
3c2

1
s2r3 +

3c1

sr2 +
1
r

)
exp
(
− sr

c1

)
,

(9)

which depend solely on the Euclidean distance r and not on any direction r. In the sequel
α = 1,2 is an index for the wave velocities. With the aid of equations (5) and (8), the tensor-
valued weights are defined by

ω
n
i j (r) =

1
n!

∂n

∂ξn

[
Ûi j

(
r,

γ(ξ)

∆t

)]
ξ=0

. (10)

Using the representation of the fundamental solution with the scalar functions χ(r,s) and ψ(r,s)
(9) and the abbreviations

n
ψ(r) =

1
n!

∂n

∂ξn

[
ψ

(
r,

γ(ξ)

∆t

)]
ξ=0

n
χ(r) =

1
n!

∂n

∂ξn

[
χ

(
r,

γ(ξ)

∆t

)]
ξ=0

(11)
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equation (10) might be rewritten to

ω
n
i j (r) =

1
4πρc2

2

(
δi j

n
ψ(r)− r,ir, j

n
χ(r)

)
. (12)

Taking into account equations (9), the terms to consider are essentially of the form exp
(
− rs

cα

)
s−k

with k = 0,1,2. Hence, the expressions to be handled in (11) have the form

(n)

Pk
α (r) =

1
n!

∂n

∂ξn

[
exp
(
−rγ(ξ)

cα∆t

)(
γ(ξ)

∆t

)−k
]

ξ=0

. (13)

Thus, the weight is computed for a fixed radius r as a linear combination of the quantities (13)
with constant prefactors. For k = 0 and a BDF-2 as multistep method, an explicit expression can
be found in [18] involving Hermite polynomials where the n-th polynomial is denoted Hn (x),
particularly,

(n)

P0
α (r) =

1
n!

(
r

2cα∆t

) n
2

exp
(
− 3r

2cα∆t

)
Hn

(√
2r

cα∆t

)
. (14)

Applying the general Leibniz rule for differentiation yields the two remaining terms

(n)

P1
α (r) = ∆t

n

∑
m=0

(
1−3−(m+1)

) (n−m)

P0
α (r) (15)

(n)

P2
α (r) = (∆t)2

n

∑
m=0

3−(2+m)
(

4+m+3(m+2)m
) (n−m)

P0
α (r) . (16)

Using equations (14), (15) and (16), the scalar functions
n
ψ(r) and

n
χ(r) are constructed as linear

combinations with prefactors corresponding to equations (9)

n
ψ(r) =

(
c2

2
r3

(n)

P2
2 (r)+

c2

r2

(n)

P1
2 (r)+

1
r

(n)

P0
2 (r)

)
− c2

2

c2
1

(
c2

1
r3

(n)

P2
1 (r)+

c1

r2

(n)

P1
1 (r)

)
(17)

n
χ(r) =

(
3c2

2
r3

(n)

P2
2 (r)+

3c2

sr2

(n)

P1
2 (r)+

1
r

(n)

P0
2 (r)

)
− c2

2

c2
1

(
3c2

1
r3

(n)

P2
1 (r)+

3c1

r2

(n)

P1
1 (r)+

1
r

(n)

P0
1 (r)

)
. (18)

Local Support and Elastic Waves The scalar functions
n
ψ(r) and

n
χ(r) exhibit local support in

the Euclidean distance r and, consequently, the weight ωn
i j (r) as well. Figures 1 and 2 illustrate

the behavior using the parameters

c1 = 1 m/s , c2 =

√
1
2

m/s and r3 = 0 .

In figure 1, the scalar functions
n
ψ(r) and

n
χ(r) are shown for different timesteps n. Clearly, the

fact that the functions return non-zero values solely in a certain range of r becomes visible.
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Figure 1: Surface plots at different timesteps n

The weights ωn
i j (r) can be viewed as expressions that are obtained by convolution of the time

domain fundamental solution and shape functions in time. A discussion about these similarities
can be found in [22, 23]. Based on these observations it becomes obvious that from a physical
point of view the local support of ωn

i j (r) corresponds to the existence of the two elastic waves.
For subsequent derivations, it is essential to locate the position of the wave fronts, thus the

support radii rα (n∆t) are introduced. With the aid of these measures a distinction whether the
weight function returns ’zero’ (negligible) or ’non-zero’ values can be made. A radius r is
defined to be part of the support if √

n
χ(r)2 +

n
ψ(r)2 ≥ εsupp (19)

holds true. The evaluation of the n-th weight returns significant values solely if r lies in between
the two support radii r1 (n∆t) and r2 (n∆t). Thus, the n-th weight is assumed to give a ’zero’
contribution if r ≥ r1 (n∆t) or r ≤ r2 (n∆t) holds.

Figure 2 illustrates these radii for two different accuracies and a timestep size ∆t = 1s. Indeed,
the asymptotic behavior shows the correspondence to the compression and shear wave velocity
(slope).

Recurrence Relations Bearing in mind an algorithmic implementation, a recursive computa-
tion of the weight functions is an appropriate way to ensure efficiency. The principle strategy
for the derivation of the recurrence relations is shown for the first expression in A.1.

7



Preprint No 01/2014 Institute of Applied Mechanics

0 50 100 150 200
0

50

100

150

200

c1∆t

1

c2∆t

1

n

r α
(n

∆
t)

r1 (n∆t)

r2 (n∆t)

(a) εsupp = 10−6

0 50 100 150 200
0

50

100

150

200

c1∆t

1

c2∆t

1

n

r α
(n

∆
t)

r1 (n∆t)

r2 (n∆t)

(b) εsupp = 10−3

Figure 2: Wave front radii rα (n∆t) for different support detection accuracies εsupp

Subsequently, the required recurrences are listed:

1. Recurrence Relation for
(n)

P0
α (r)

With the aid of the recursive definition of the Hermite polynomial [1] simple computations
lead to the following recursion formulas.

(0)

P0
α (r) = exp

(
− 3r

2cα∆t

)
,

(1)

P0
α (r) =

2r
cα∆t

(0)

P0
α (r) ,

(n+1)

P0
α (r) =

1
(n+1)

r
cα∆t

(
2
(n)

P0
α (r)−

(n−1)

P0
α (r)

)

Remark 3. It must be stated clearly that in the case of large r or small cα∆t, the recursion
might fail in an implementation with double precision data types. This numerical issue
can be overcome by logarithm techniques commonly used, e.g., for the computation of
binomial coefficients. For the problem sizes as shown in the following, this effect has not
occurred.

2. Recurrence Relations for
(n)

P1
α (r)

α0 (r) =
(0)

P0
α (r) , αn+1 (r) = αn (r)+

(n+1)

P0
α (r)

(0)

P1
α (r) =

2
3

∆t
(0)

P0
α (r) ,

(n+1)

P1
α (r) =

2∆t
3

(
αn (r)+

(n+1)

P0
α (r)

)
+

1
3

(n)

P1
α (r)

8
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3. Recurrence Relations for
(n)

P2
α (r)

β0 (r) =
4
81

(0)

P0
α (r) , βn+1 (r) =

1
3

βn (r)+
4
81

(n+1)

P0
α (r)

δ0 (r) =
52
27

(0)

P0
α (r) , δn+1 (r) = δn (r)+βn (r)+

52
27

(n+1)

P0
α (r)

ζ0 (r) =
28
9

(0)

P0
α (r) , ζn+1 (r) = ζn (r)+δn (r)+

28
9

(n+1)

P0
α (r)

(0)

P2
α (r) =

4
9
(∆t)2

(0)

P0
α (r) ,

(n+1)

P2
α (r) =

(∆t)2

3

(
ζn (r)+

4
3

(n+1)

P0
α (r)

)
+

1
3

(n)

P2
α (r)

5 Spatial Discretization and Efficiency Improvements

The aim of this section is to establish strategies to perform an efficient algorithmic implementa-
tion of the boundary element formulation based on the results of section 4.

5.1 Spatial Discretization and Integration

In order to establish a fully discretized version of the space-time dependent boundary integral
equation (2), a spatial discretization has to be performed. The shape functions for displacements
are chosen to be linear and continuous whereas the tractions are chosen to be constant over the
element and thus discontinuous. The convolution quadrature time discretization followed by a
collocation scheme in space finally yields a the well known Toeplitz structure that can be solved
recursively. The reader is recommended to consult, e.g., [25, 11] for more details about the
solution procedures

The singular spatial integration is done numerically with the use of Duffy’s transformation
[12]. Since this method is suitable solely for weakly singular kernels, a regularization technique
is used for the traction fundamental solution (see [21, 15, 20]). The corresponding expressions
are listed in the appendix. Note that the jump Ci j (x) at the spatial point x ∈ Γ on the boundary
is computed according to [27].

5.2 Cubic Spline Interpolation

A crucial task from a computational point of view is the assemblage of the system matrix for
each timestep n since the weight functions are expensive to evaluate. The largest part of the
computation is spent for the evaluation of the recurrences given in section 4. To overcome this
drawback a cubic spline interpolation is used on these functions. Note that for any discrete
domain the Euclidean distance r between two points is bounded by r≤ rmax. This in turn defines
the interpolation interval that is further subdivided into nr equidistant intervals of size ∆r with
r j = j∆r and j = 0,1, ...,nr.

9
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The necessary steps to compute the interpolation are shown according to [10] exemplarily for

the function
(n)

P0
α (r). The cubic spline interpolation of this function in r ∈ [r j,r j+1] reads as

(n)

P0
α (r)≈

1
6∆r

(
(r j+1− r)3 m j +(r− r j)

3 m j+1

)
+

1
∆r

(
(r j+1− r)

(n)

P0
α (r j)+(r− r j)

(n)

P0
α (r j+1)

)

+
∆r
6
((r j+1− r)m j +(r− r j)m j+1) .

The coefficients m j can be computed as solution of the linear system of equations

Mm = p , (20)

where m0 = mnr = 0 is set. The right hand side vector is defined by

pk =
6

(∆r)2

(
(n)

P0
α (rk−1)−2

(n)

P0
α (rk)+

(n)

P0
α (rk+1)

)
(21)

and the matrix is

Mk` =


4 if k = `

1 if k = `±1
0 else

(22)

with indices k, ` = 1, ...,nr− 1. The interpolation is done for every timestep, for all functions
(n)

Pi
α (r) with i = 1,2,3. Note that the inverse Mk`

−1 is set up once recursively and reused.

5.3 Geometrical Clustering and Efficient Storage

The proposed formulation is based on the H -matrix concept (cf. e.g. [8, 31, 5]). Within this
approach, the nodal degrees of freedom (dofs) are hierarchically grouped to sets (clusters) via a
Principal Component Analysis (PCA) resulting in a balanced clustertree. This is achieved via a
recursive procedure that starts from a root cluster including all degrees of freedom. Within each
step, the dofs are split into two subsets based on geometric information provided by the PCA.

Combinations of two clustertrees in turn define the blockclustertree that serves as a basic struc-
ture for the hierarchical subdivision of the H -matrix. The geometric information of the clusters
Clx and Cly along with the local support information allow for a distinction whether a block is
a negligible ’zero’ block or not. Figure 3 shows a pair of such clusters and its corresponding
subblock in the matrix.

The subsequently denoted ’efficient storage scheme’ relies on the following steps that are
performed prior to any matrix entry evaluation:

1. compute the support radii rα (n∆t) at all timesteps n with predefined accuracy εsupp

10
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Γ

Clx

Cly

Clx

Cly

Figure 3: Cluster Clx and Cly with the corresponding matrix block

2. create a clustertree

3. create a blockclustertree for each timestep n

3.1 for each cluster Clx and Cly compute the axis aligned bounding box (dotted lines in
figure 3) recursively

3.2 for each cluster pairing (Clx,Cly), compute the minimum and maximum occurring
radius, i.e., the smallest possible distance dmin and the largest possible distance dmax
of two points residing in the two axis aligned boxes

3.3 for each cluster pairing (Clx,Cly), determine whether the block is

• a zero block - (dmin > r1 (n∆t))∨ (dmax < r2 (n∆t)),

• a fully populated block - dmax < r1 (n∆t)∧ r2 (n∆t)< dmin,

• a partially populated block - else,

based on the results of section 4 (Note that the recursive algorithm stops if a block
is either fully populated or identified to be a zero block.)

4. with the aid of the blockclustertree the hierarchical matrix is computed for each timestep
n

Both, the computation of zero-blocks as well as the storage of these blocks in the matrix are
avoided with this strategy. The nonzero blocks might be stored densely or in low-rank represen-
tation. The effect of a low rank representation is studied in section 6.

Remark 4. Note that the bounding boxes of the clusters have to contain the whole corresponding
nodal support.

Remark 5. It should be stated that a partially populated block is refined recursively at most to
leaf clusters of size bmin. This might result at most in a storage of ’zero’ entry blocks of leaf
cluster size bmin.
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5.4 Further Improvements and used Libraries

A possible improvement of the method is the application of low rank matrix compression strate-
gies for fully populated sub-blocks of the hierarchical matrices. Therefore, a singular value
decomposition (SVD) is applied on those blocks. Note that the SVD is chosen for simplicity
and robustness reasons since the problem sizes are rather small. The second part of the results is
devoted to this investigation.

The implementation makes use of HyENA [28], a C++ based BEM-library written at the
Institute of Applied Mechanics at Graz University of Technology. The library is capable to
treat a large set of partial differential equations including transient problems via the convolution
quadrature method.

Additionally, the implementation utilizes the slightly adopted hierarchical matrix library AHMED
which is a project of Mario Bebendorf [6]. The hierarchical storage concept is used as well as
the fast routines that come along with this library (i.e., fast matrix-vector product, iterative solver
routines, etc.).

6 Numerical Examples

This section presents two numerical examples. First, a Dirichlet Problem is evaluated to verify
the proposed algorithm and, secondly, a mixed problem is analyzed. Both examples are com-
puted for several refinement levels with uniform refinement in space and time. For all problems
the relations

β =
c1∆t

re
=

1
3

and c1 = 1 m/s, c2 =

√
1
2

m/s, ρ = 1 kg/m3 (23)

are chosen, where re is the average edge length of the triangulation. Furthermore, the wave
speeds are chosen according to a vanishing Poisson effect and the minimum leaf cluster size is
set to bmin = 9.

6.1 Dirichlet Problem

O

x1

x2

x3

Γ

O

x1

x2

x3

Γ

P
d

Figure 4: Dirichlet Problem

Domain and Parameters The Dirichlet Problem is computed for a cube of edge length 1 m
centered at the origin (figure 4) with parameters as given in (23). Essential prerequisites for
this study are analytic functions in space and time that describe the displacements and tractions
respectively. While the displacement function u(x, t) allows to prescribe the Dirichlet datum

12
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(illustrated in figure 5), the traction function t(x, t) is used for the error computation. Such
functions are also known as full-space functions and the definition is given in A.3. Note that
t` (x, t) denotes the computed approximation for the `-th level of the mesh refinement.

Memory The computations shown in this section are based on parameters listed in table 1a,
where Nt denotes the number of timesteps that are computed, ne refers to the number of elements
of the triangulation and nt is the relevant number of timesteps (i.e., the number of timesteps until
the shear wave has left the domain – the temporal cut-off). Two measures that both make use of
this cut-off are defined in bytes:

1. memdns refers to the amount of memory consumed for dense storage.

2. meme f f utilizes the efficient storage scheme introduced in 5.3.

Storage requirements are shown in table 1b for different levels of mesh refinement where the
fourth level yields a reduction of 51%.

Error The absolute and relative space-time error is defined by

err`abs =

(
∆t

Nt

∑
n=0
||t(x,n∆t)− t` (x,n∆t) ||2L2(Γ)

)1/2

, (24a)

err`rel = err`abs

(
∆t

Nt

∑
n=0
||t(x,n∆t) ||2L2(Γ)

)−1/2

with x ∈ Γ. (24b)

The order of convergence

eoc = log2

(
err`rel

err(`+1)
rel

)
(25)

is listed in the tables for several spatial refinement levels ` as well. In the proposed formula-
tion two approximations are introduced: the efficient storage and the spline interpolation. The
influence of both are studied in table 2 by showing the space-time errors of three different for-
mulations:

1. A first formulation uses none of both approximations, i.e., neither the spline interpolation
for the weight evaluation nor an efficient storage is used. This formulation serves as
reference and is denoted as exact, dense (see table 2a).

2. The second formulation uses the efficient storage but no spline interpolation. The results
of this formulation are presented in table 2b and are denoted by exact, efficient. They
reveal the fact that the negligence of zero blocks works properly and, consequently, no
additional error is induced.

3. Finally, the third formulation that makes use of both the spline interpolation as well as the
efficient storage scheme. The results in table 2c denoted by interpolation, efficient show
that the order of convergence is preserved for the chosen number of interpolation points
nr.

13
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t = 7.50s t = 8.75s t = 10.00s t = 11.25s

t = 12.50s t = 13.75s t = 15.00s t = 16.25s

Figure 5: Prescribed displacement boundary conditions |u(x, t) |

A counterexample is given in table 3 where due to an improper choice of interpolation points
the convergence cannot be achieved any more. The efficient storage schemes presented in here
rely on a support detection accuracy of εsupp = 10−3.

` Nt ∆t ne

0 100 1/3 12
1 200 1/6 48
2 400 1/12 192
3 800 1/24 768
4 1600 1/48 3072

(a) Parameters

nt meme f f memdns ratio
23 4.21E+05 4.15E+05 1.02
36 9.13E+06 9.46E+06 0.96
57 1.89E+08 2.33E+08 0.81
98 3.97E+09 6.32E+09 0.63

171 8.55E+10 1.75E+11 0.49
(b) Memory

Table 1: Dirichlet Problem

6.2 Singular Value Decomposition Tests

A possible improvement is investigated in this section – a further reduction of memory via low
rank approximations of fully populated blocks. The distinction whether a block is fully popu-
lated or not is known prior to the computation of its entries and identified within the setup of
the blockclustertree. Again, the Dirichlet Problem is investigated in terms of low rank compres-
sion of fully populated blocks. Table 4 shows the results meme f f ,SV D for the computed levels
and different SVD accuracies εSV D. The compression is slightly improved in the fourth level
with εSV D = 10−3 – a reduction of about 6 percent – still, the order of convergence is preserved.
Larger problems however might require a higher accuracy of the SVD to maintain the order of

14
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` errabs errrel eoc
0 1.02E-1 5.43E-1 -
1 5.31E-2 2.83E-1 0.94
2 2.58E-2 1.38E-1 1.04
3 1.25E-2 6.67E-2 1.05
4 6.00E-3 3.20E-2 1.06

(a) Exact, dense

errabs errrel eoc
1.02E-1 5.46E-1 -
5.36E-2 2.86E-1 0.93
2.61E-2 1.39E-1 1.04
1.25E-2 6.67E-2 1.06
6.00E-3 3.20E-2 1.06

(b) Exact, efficient

nr errabs errrel eoc
120 1.02E-1 5.43E-1 -
240 5.31E-2 2.83E-1 0.94
480 2.58E-2 1.38E-1 1.04
960 1.24E-2 6.61E-2 1.06
1920 6.10E-3 3.25E-2 1.02

(c) Interpolation, efficient

Table 2: Convergence rates for different formulations

` errabs errrel eoc
0 1.02E-1 5.43E-1 -
1 5.31E-2 2.83E-1 0.94
2 2.58E-2 1.38E-1 1.04
3 1.25E-2 6.67E-2 1.05
4 6.00E-3 3.20E-2 1.06

(a) Exact, dense

nr errabs errrel eoc
10 1.32E-1 7.02E-1 -
20 7.60E-2 4.05E-1 0.79
40 4.50E-2 2.40E-1 0.76
80 2.89E-2 1.54E-1 0.64
160 2.01E-2 1.07E-1 0.52

(b) Interpolation, efficient

Table 3: Counterexample for improperly chosen number of interpolation points nr

convergence since the number of approximated blocks increases significantly. For the presented
problem sizes, a compression does not pay off but when it comes to larger problems, methods
like the ACA (see [5]) might be advantageous.

` meme f f ,SV D ratio eoc
0 4.21E+05 1.02 -
1 9.13E+06 0.96 0.94
2 1.89E+08 0.81 1.04
3 3.97E+09 0.63 1.06
4 8.53E+10 0.49 1.02

(a) εSV D = 10−9

meme f f ,SV D ratio eoc
4.21E+05 1.02 -
9.13E+06 0.96 0.94
1.89E+08 0.81 1.04
3.97E+09 0.63 1.06
8.47E+10 0.48 1.02

(b) εSV D = 10−6

meme f f ,SV D ratio eoc
4.21E+05 1.02 -
9.13E+06 0.96 0.94
1.89E+08 0.81 1.04
3.91E+09 0.62 1.06
7.62E+010 0.43 1.02

(c) εSV D = 10−3

Table 4: Memory and convergence results for SVD compression

6.3 Mixed Problem

Domain and Parameters A rod of dimensions 1 m×3 m×1 m (figure 6) is investigated with
the same parameters as for the Dirichlet problem (23). At x2 = 0m the displacements are zero and
at x2 = 3m, the surface is loaded by t2 = 1H (t) N/m2 with H (t) being the Heaviside function. On
the remaining boundary the tractions are set to zero. For this kind of setting the one-dimensional
analytic solutions for the displacements u2 (x, t) and tractions t2 (x, t) are known (see [16] for
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Figure 6: Mixed Problem

instance). To compare the numerical results with the analytic solutions a vanishing Poisson’s
ratio ν = 0 is required.

Memory Like in the previous section, the memory consumption is listed for different levels
in table 5b (parameters are chosen according to table 5a). The memory consumption is signifi-
cantly reduced by 56% in the third level with a support detection accuracy of εsupp = 10−3. The
number of interpolation points nr is chosen according to the results of subsection 6.1. A fur-
ther illustration is given in figure 11a where the semilogarithmic representation and the different
incline of the two curves have to be taken into account.

Remark 6. Note that due to the results of subsection 6.2 the numerical examples of this subsec-
tion do not make use of low rank approximation techniques. Solely the efficient storage scheme
developed in subsection 5.3 is used.

Error The difference between the analytical displacement solution and the center point at the
loaded end (x2 = 3 m) is measured as well as the difference between the analytical tractions and
the center point of the clamped end (x2 = 0 m)

e`u (n∆t) = u`2 (3,0,0,n∆t)−u2 (3,n∆t) (26a)

e`t (n∆t) = t`2 (0,0,0,n∆t)− t2 (0,n∆t) . (26b)

The qualitative results for the displacements and tractions are shown in figures 7, 8, 9 and
10 as well as their corresponding errors. The expected behavior, an error reduction between
the levels becomes visible for the displacements. Regarding the tractions it must be said that
the approximation of the discontinuity certainly causes troubles – nevertheless, apart from the
overshoot at the rising and falling edges, the overall result is better for the third level.

Timings The speedup of the formulation is compared with the standard CQM routine imple-
mented in HyENA (see [34] for details). Integration orders for singular and regular integration
are kept equal for both formulations and the matrices are assembled up to the number of relevant
timesteps of the efficient formulation (i.e., the same cut-off is used). tass,e f f denotes the as-
sembling time with the proposed algorithm, likewise the timings for the HyENA standard CQM
formulation are denoted tass,H (both quantities are measured in seconds). It can be seen in table 6
that the efficient formulation – already for the 3rd level – takes only half the computational time
for the matrix assemblage compared to the HyENA standard formulation. A further illustration
of the assembly timings is given in figure 11b where it becomes obvious that the break even
point is reached in level 1.
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` Nt ∆t ne

0 360 1/6 112
1 720 1/12 448
2 1440 1/24 1792
3 2880 1/48 7168

(a) Parameters

nt meme f f memdns ratio
55 1.15E+07 1.37E+07 0.84
94 2.75E+08 3.88E+08 0.71

160 6.36E+09 1.08E+10 0.59
296 1.41E+11 3.24E+11 0.44

(b) Memory

Table 5: Mixed Problem
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Figure 7: Displacement results for refinement level 2
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Figure 8: Displacement results for refinement level 3

` ne nt tass,e f f tass,H ratio
0 112 55 10 8 1.23
1 448 94 137 158 0.87
2 1792 160 1329 2571 0.52

Table 6: Assembly times for efficient and standard formulation
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Figure 9: Traction results for refinement level 2
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Figure 10: Traction results for refinement level 3
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Figure 11: Plot of memory consumption and assembly timings
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7 Conclusion

This paper has established a boundary element formulation for the treatment of time-dependent
problems in linear elastodynamics with the aid of the convolution quadrature method. The ap-
proach of direct weight computation was successfully extended to the elastodynamic problem
and the local support information was utilized to avoid the computation and storage of ’zero’-
blocks in the matrix assemblage. This could be achieved by detecting such blocks prior to the
matrix computation. The strategy of direct evaluation avoids the use of Cauchy’s integral for-
mula, thus the approximation of this integral becomes obsolete. However, from a computational
point of view, the direct weight evaluation is costly and was thus sped up via an interpolation
scheme, hence, another approximation was introduced. The results of the Dirichlet problem
though show that if the interpolation parameters are chosen appropriately the order of conver-
gence is preserved.

A second example with mixed boundary expressions was presented as well and significant
improvements in terms of memory consumption and assembling times have been achieved.

Acknowledgement The authors gratefully acknowledge the financial support by the Austrian
Science Fund (FWF) under Grant P-22510.

A

A.1 Derivation of the Recurrence Relation for
(n)

P0
α (r)

As a starting point serves equation (14)

(n)

P0
α (r) =

1
n!

(
r

2cα∆t

) n
2

exp
(
− 3r

2cα∆t

)
Hn

(√
2r

cα∆t

)
.

The increment n+1 in combination with the recursive definition of the Hermite polynomial [1]
yields

(n+1)

P0
α (r) =

1
(n+1)!

(
r

2cα∆t

) n+1
2

exp
(
− 3r

2cα∆t

)
Hn+1

(√
2r

cα∆t

)

=
1

(n+1)
1
n!

√
r

2cα∆t

(
r

2cα∆t

) n
2

exp
(
− 3r

2cα∆t

)
Hn+1

(√
2r

cα∆t

)

=
1

(n+1)
2r

cα∆t
1
n!

(
r

2cα∆t

) n
2

exp
(
− 3r

2cα∆t

)
Hn

(√
2r

cα∆t

)
︸ ︷︷ ︸

(n)

P0
α(r)

19



Preprint No 01/2014 Institute of Applied Mechanics

− 1
(n+1)

r
cα∆t

1
(n−1)!

(
r

2cα∆t

) n−1
2

exp
(
− 3r

2cα∆t

)
Hn−1

(√
2r

cα∆t

)
︸ ︷︷ ︸

(n−1)

P0
α (r)

=
1

(n+1)
r

cα∆t

(
2
(n)

P0
α (r)−

(n−1)

P0
α (r)

)
.

Deriving the recurrences for the expressions
(1)

P0
α (r) and

(2)

P0
α (r) follows the same strategy but is

rather cumbersome. For the sake of readability it is therefore omitted.

A.2 Traction Fundamental Solution

The traction fundamental solution is defined by

T̂i j (r,s) = T jk (∂y,n(y))Ûki (r,s) , (27)

where Ti j (∂y,n(y)) is the traction operator (i.e., Hooke’s law) and n(y) denotes the outward
normal vector located at point y and i, j,k = 1,2,3. Contrary to the standard notation, a repre-
sentation that involves the Günter derivatives [17] is given by

Ti j (∂y,n(y)) = 2µMi j (∂y,n(y))+(λ+2µ)ni (y)
∂

∂y j
−µn j (y)

∂

∂yi
+µδi j

∂

∂n(y)
(28)

with

Mi j (∂y,n(y)) = n j (y)
∂

∂yi
−ni (y)

∂

∂y j
and y ∈ Γ . (29)

Thus, the traction fundamental solution for elastodynamics results in

T̂i j (r,s) = 2µM jk (∂y,n(y))
(

Ûki (r,s)−
1

4π
δki

1
r

exp
(
−sr
c1

))
+

1
4π

ni (y)
∂

∂y j

(
1
r

exp
(
−sr
c1

)
− 1

r
exp
(
−sr
c2

))
+

1
4π

δi j
∂

∂n(x)

(
1
r

exp
(
−sr
c2

))
(30)

= 2µM jk (∂y,n(y))
(

Ûki (r,s)−
1

4π
δki

1
r

exp
(
−sr
c1

))
+

1
4π

1
r2

ni (y)r j

r

(
−
(

1+
sr
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)
exp
(
−sr
c1

)
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(
1+
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)
exp
(
−sr
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+

1
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nk (y)rk

r
δi j

(
−1− sr

c2

)
exp
(
−sr
c2

)
. (31)
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This representation is suitable to perform an integration by parts technique in the sequel. The
theoretical framework can be found in [37] and applications in elastodynamics in [19, 15, 20].
Note that the last two terms in equation (30) exhibit a weakly singular behavior if r tends to zero.

Similar to the approach in section 4, the approximation of the convolution involving the trac-
tion fundamental solution is defined by∫

Γ

Ti j (r, t)∗u j (y, t)dsy ≈
n

∑
m=0

∫
Γ

θ
n−m
i j (r,n(y))u j (y,m∆t)dsy . (32)

Applying the same strategies, the weights θn
i j (r,n(y)) are obtained

θ
n
i j (r,n(y)) = 2µM jk (∂y,n(y))

(
ω

n
ki (r)−

1
4π

1
r

δki

(n)

P0
1 (r)

)
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1
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1
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ni (y)r j

r
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P0
1 (r)−

r
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1 (r)+
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2 (r)+
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2 (r)
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nk (y)rk
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(
−

(n)

P0
2 (r)−

r
c2

(n)

P−1
2 (r)

)
. (33)

Provided that ui (y,n∆t) is differentiable with respect to y and Γ is closed, a weakly singular
representation of the double layer potential can be established (i.e., the Günter derivatives are
shifted towards the displacements via a partial integration)∫

Γ

θ
n−m
i j (r,n(y))u j (y,m∆t)dsy (34)

=
∫
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The additional expression
(n)

P−1
α (r) can be computed

(n)

P−1
α (r) =

1
∆t

2

∑
i=0

Fi

(n−i)

P0
α (r) with (36)

F0 =
3
2

, F1 =−2 , F2 =
1
2

and
(−2)

P0
α (r) =

(−1)

P0
α (r) = 0 .
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A.3 Full-Space Solutions u(x, t) and t(x, t)

Two basic singular solutions ui j (x, t,ξ| f ) and ti jk (x, t,ξ| f ) with i, j,k = 1,2,3, provided in [14],
serve as a starting point for the construction of u(x, t) and t(x, t). According to the notation
found in [14], ξ denotes the source point and x the observation point while f (t) is a twice
continuously differentiable function with respect to t.

The solutions given in [14] are formulated for a generic source function f in time. The nu-
merical examples presented in section 6.1 use

f (t) = exp
(
−a(t−ab)2

)
(37)

with constant parameters a and b. To evaluate ui j (x, t,ξ| f ) and ti jk (x, t,ξ| f ) the function itself
as well as the temporal derivatives are required. Moreover, an integration is required that is listed
for the sake of completeness

1/c2∫
1/c1

β f (t− rβ)dβ =
1

2ar2

(
exp
(
−q2

1 (r)
)
− exp

(
−q2

2 (r)
)

+
√

aπ(ab− t)(erf(q1 (r))− erf(q2 (r)))
)

, (38)

where erf(x) denotes the Error Function

erf(x) =
2√
π

x∫
0

exp
(
−t2)d t and

qα (r) =
√

a
cα

(abcα + r− cαt) . (39)

Having ui j (x, t,ξ| f ) and ti jk (x, t,ξ| f ) at hand, the analytic functions are constructed with the
aid of a direction vector d = (1,1,1)T and the outward normal n(ξ) by

ui (x, t) = ui j (x, t,ξ| f )d j and ti (x, t) = ti jk (x, t,ξ| f )n j (x)dk , (40)

where finally all directions are aggregated to get u(x, t) and t(x, t). Note that for the presented
example, the parameters are set to a = 0.1 and b = 100, the chosen source point is P(1,1,1) and
ξ = OP (vector d and point P are illustrated in figure 4).

Remark 7. The source point P has to be chosen such that the homogeneous boundary conditions
are met (i.e., far enough from the domain).
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