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Abstract

Multi-layered panels are often used to improve the acoustics in cars, airplanes, rooms,
etc. For such an application these panels include porous and/or fibrous layers. The proposed
numerical method is an approach to simulate the acoustical behavior of such multi-layered
panels.

The model assumes plate-like structures and, hence, combines plate theories for the dif-
ferent layers. The poroelastic layer is modelled with a recently developed plate theory. This
theory uses a series expansion in thickness direction with subsequent analytical integration
in this direction to reduce the three dimensions to two. The same idea is used to model
either air gaps or fibrous layers. The latter are modeled as equivalent fluid and can be han-
dled like an air gap, i.e., a kind of ’air plate’ is used. The coupling of the layers is done by
using the series expansion to express the continuity conditions on the surfaces of the plates.
The final system is solved with finite elements, where domain decomposition techniques in
combination with preconditioned iterative solvers are applied to solve the final system of
equations.

In a large frequency range, the comparison with measurements shows very good agree-
ment. From the numerical solution process it can be concluded that different precondition-
ers for the different layers are necessary. A reuse of the Krylov subspace of the iterative
solvers pays if several excitations have to be computed but not that much in the loop over
the frequencies.
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1 Introduction

The acoustical design of buildings, aircrafts, cars, etc. has become a challenging task in en-
gineering. It is especially of interest for automobile and aeronautical industry, since a good
acoustical behavior not only improves the travel experiences of passenger, but also represents
the quality of the product. Multi-layered panels are commonly used in these branches, as they
can be very stiff and simultaneously light-weighted [11]. For the purpose of noise reduction, the
panel can be reinforced by integrating layers made of fibrous or porous materials. For example,
the fuselage of an aircraft usually contains an outer layer of aluminum, a noise insulation layer
made of fibrous materials, and an inner layer, i.e., the cabin lining. In general, a multi-layered
panel can be composed of a broad range of materials, which enables the panel to have rich acous-
tical and mechanical properties. However, this also brings up the question how to optimize the
layers for a specific usage.

Measurements of the sound transmission loss of multi-layered panels are certainly one option
and frequently used. The test facility consists of a reverberant room, an anechoic chamber, and
a window between the two rooms holding the specimen. The specimen is excited by a diffuse
sound field in the reverberant room and the transmitted sound energy is measured in the anechoic
chamber, whose surfaces are covered with sound absorbing materials, such that the reflected
waves cannot disturb the measurement. These measurements are usually time-consuming and
expensive, especially when different combinations and configurations of material layers need to
be tested for optimizing the design of a multi-layered setup.

To avoid measurements as much as possible simulation techniques have become more and
more important. There are several numerical methods available (e.g., [2]), but it can be stated
that the Finite Element Method (FEM) is mostly used also in an industrial environment. With a
three-dimensional (3d) simulation different configurations can be tested before the first measure-
ment is necessary. For the structural and acoustic part FE formulations are available [25, 13] and
also for the porous noise insulating material [4, 15]. Hence, with the correct realisation of the
coupling conditions they are ready to use. However, from structural mechanics it is well known
that plate-like structures can be modelled more efficiently by special plate formulations. Not
only the computing time is reduced, the meshing effort is in favor of plate or shell formulations
as well.

For the above sketched multi-layered panel the outer skins can be modeled by well known for-
mulations but the porous part and the air gap have to be considered differently. Based on Biot’s
theory of poroelasticity Nagler and Schanz [20] have proposed a plate theory and its correspond-
ing FEM formulation. This formulation is based on a series expansion in thickness direction of
the plate. Beside the porous layer, often such panels have also an air gap in between the different
layers, which is mostly discretized by an expensive 3d FEM layer. This can be avoided by trans-
ferring the idea of the porous material, i.e., to apply a series expansion in thickness direction,
to the air gap. This results in a ‘air plate’ as presented in [22]. In fact, a multi-layered panel
can be simulated in a rather efficient way by a coupling of the different plate formulations. The
surrounding air can be modelled in the standard way with a diffuse sound field and/or infinite
elements.

To present such a numerical model and to validate it by measurements is the content of the pa-
per at hand. The details of the poroelastic and the air plate theories can be found in [20] and [22],
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respectively. Hence, after recalling the essential steps of the poroelastic plate formulation, the
special case of the elastic and the air plate are shown briefly. Next, the coupling conditions of
different material combinations are discussed and the specialities for the different plate formu-
lations are given. The final system of equations is not easy to be solved and, consequently, a
strategy to use the structure of the system by a domain decomposition technique is presented.
As well the efficient solution over a frequency range is studied. The essential part is the com-
parison of the numerical solution with a measurement. Besides, the numerical behavior of the
solving process is reported.

In the following, all equations are stated in the frequency domain under the assumption that
all quantities have a time-harmonic behavior (xi being the spatial and t the time coordinate), i.e.,

f̂ (xi, t) = f (xi)eiωt

with the imaginary unit i and the angular frequency ω. Further, index-notation is used assuming
an orthonormal Cartesian basis. Herein, a summation on repeated indices is imposed, a comma
(),i denotes the spatial derivative and, as usual, the Kronecker delta is denoted by δi j. Throughout
the paper, latin indices i, j,k take the values 1,2,3 and greek indices α,β the values 1,2.

2 Two-dimensional Layers

The geometry of any layer is considered to be plate-like, hence the extension in thickness direc-
tion x3 is relatively small compared to its extension in the plane (x1,x2), i.e.,

Ω = [(x1,x2,x3) ∈ R3 | x3 ∈
[
−h

2
,
h
2

]
,(x1,x2) ∈ A⊂ R2] ,

with xi being the 3d spatial coordinates, h the thickness and A the middle surface. Such a layer
is depicted in Fig. 1. In the following, the superscripts ()e and ()a will be used to distinguish
between the elastic and the acoustic domains, respectively. The poroelastic domain will be
denoted with ()p, however, at the solid displacement ui and the pore pressure p the superscript
is skipped.

x1

x2

x3

A

B
C

h

Figure 1: Geometry and coordinate system of a plate-like layer
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2.1 Poroelastic Layer

Within a multi-layered system, the poroelastic layer represents the most complex one regarding
its formulation. The main steps towards its reduction from 3d to 2d are outlined in this section,
whereas details have been presented in [20].

The starting point is given by Biot’s equations of poroelasticity [7, 8]. A poroelastic con-
tinuum consists of a solid skeleton and an interconnected fluid-filled pore system. Here, full
saturation is assumed which allows the definition of the porosity as the ratio of the fluid volume
to the overall volume φ = V f/V . A dynamic excitation of such a continuum causes the two phases
to move relative to each other introducing friction and, thus, damping. Here, the so-called u-p–
formulation is used. This means that the poroelastic continuum is completely expressed by the
displacement field ui of the solid skeleton and the pore pressure field p of the interstitial fluid.
In index notation, the system of governing equations in frequency domain is

µui, j j +(λ+µ)u j,i j− (α+β) p,i +ω
2(ρ+βρ

f )ui =−( fi +β f f
i ) (1a)

β

ω2ρ f
p,ii−

φ2

R
p− (α+β)ui,i =

β

ω2ρ f
f f
i,i , (1b)

where µ and λ are the Lamé parameters, α, β and R are poroelastic quantities, ρ=(1−φ)ρs−φρ f

is the mean density of the continuum with ρs and ρ f representing the densities of the solid and
the fluid phases, respectively. Similarly, fi = (1−φ) f s

i −φ f f
i is the mean body force with f s

i and
f f
i representing the respective body forces of the solid and the fluid phases.

The 3d equations (1) are transformed into a variational formulation. This is achieved by the
usual procedure, namely a multiplication of both equations with the appropriate test-functions
ūi and p̄, respectively, and an integration over the considered domain Ω. A subsequent suitable
integration by parts yields∫

Ω

[[
µ(ui, j +u j,i)+(λuk,k−α p)δi j

]
ūi, j +

[
β

(
p,i− f f

i −ω
2
ρ

f ui

)
−
(

fi +ω
2
ρui
)]

ūi

− β

ω2ρ f

[
p,i−ω

2
ρ

f ui− f f
i

]
p̄,i−

[
αuk,k +

φ2

R
p
]

p̄

]
dΩ−

∫
ΓN

[
σi jn jūi +

1
iω

qini p̄
]

dΓN = 0 .

(2)

In the integral over the Neumann boundary ΓN the quantity σi jn j represents the prescribed sur-
face tractions (deduced from the total stress tensor [7]) and qini the prescribed surface flux in
normal direction. Due to the plate-like geometry, the domain integral in (2) can be split accord-
ing to ∫

Ω

(·)dΩ =
∫
A

∫
h

(·)dx3 dA . (3)

Similarly, the boundary integral can be split into an integral over the upper and the lower surfaces
located at x3 =±h/2 (represented by A±) as well as an integral over the outer margin (see Fig. 1)∫

ΓN

(·)dΓN =
∫

A±

(·)dA±+
∫
C

∫
h

(·)dx3 dC . (4)
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In order to evaluate the integrations over h, the primary variables ui and p as well as the test-
functions ūi and p̄ are replaced by power series in thickness direction

ui(x1,x2,x3) =
∞

∑
k=0

k
ui(x1,x2)xk

3

p(x1,x2,x3) =
∞

∑
k=0

k
p(x1,x2)xk

3 ,

(5a)

ūi(x1,x2,x3) =
∞

∑
`=0

`

ūi(x1,x2)x`3

p̄(x1,x2,x3) =
∞

∑
`=0

`

p̄(x1,x2)x`3 .
(5b)

In (5), it can be observed that the unknown dependency on x3 is approximated by a polynomial.
On the other hand, new unknown quantities of the order k and ` are introduced which, however,
only depend on the two in-plane coordinates x1 and x2. With (5) in (2) and with the integrals
split according to (3) and (4), the integration over the thickness can be analytically evaluated,
leaving an expression which is entirely defined on the domain A, i.e., the middle surface, and
its boundary curve C. A detailed derivation of the two-dimensional poroelastic equations can be
found in [20] and [19]. However, a few interesting aspects shall be pointed out.

A remarkable observation is the decoupling of the out-of-plane (plate) and the in-plane (disc)
formulation, i.e., the two problems can be solved independently of each other. In linear elasticity,
only the plate formulation would be considered any further as long as the load acts perpendicular
to the middle surface of the structure. In the poroelastic case, however, this simplification was
shown to be not appropriate. Indeed, it turns out that the solution of the pore pressure field
crucially depends on whether the load is applied on one surface only or is split in two parts
one acting on the upper and the other on the lower surface. Hence, for obtaining the overall
solution both the out-of-plane and the in-plane formulation need to be considered. Moreover,
when coupling several layers, the neutral axis with respect to pure bending does not coincide
with the middle surfaces of the individual layers. This makes it necessary to consider the disc
problem in each layer even for the elastic case.

Before starting any calculations, the power series (5) need to be truncated. It turns out that
only very few coefficients are required to adequately model even relatively thick structures. In-
deed, if considering all quantities up to k = ` = 3, various effects are considered such as the
thickening of one half and the thinning of the other half during bending, a change in thick-
ness due to a stretching as well as a warping of the cross section. The truncation allows great
flexibility. Indeed any quantity can be approximated by an individual amount of coefficients,
e.g., the vertical displacement may be approximated up to the second order, while the in-plane
displacement is considered only linearly and the pore pressure up to the cubic term.

2.2 Elastic Layer

The procedure for obtaining a two-dimensional formulation for an elastic layer coincides with
the one for the poroelastic layer, except that it is less cumbersome, since it only features the
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displacement field ue
i . The governing equation may be obtained by setting φ = α = β = 0 in (1a)

and neglecting (1b)
µue

i, j j +(λ+µ)ue
j,i j +ω

2
ρue

i =− fi . (6)

The variational formulation is a simplified version of (2), namely∫
Ωe

[[
µ
(
ue

i, j +ue
j,i
)
+λue

k,kδi j

]
ūe

i, j−
[

fi +ω
2
ρue

i

]
ūe

i

]
dΩ

e−
∫

Γe
N

σ
e
i jn

e
jū

e
i dΓ

e
N = 0 . (7)

Above, σe
i jn

e
j again represents the prescribed surface tractions, this time however, deduced from

the solid stress tensor.
The unknown field quantity and the test-function are replaced by power series in thickness

direction

ue
i (x1,x2,x3) =

∞

∑
k=0

k
ue

i (x1,x2)xk
3

ūe
i (x1,x2,x3) =

∞

∑
`=0

`

ūe
i (x1,x2)x`3 .

(8)

The uncoupling of the disc and the plate formulations is again observed. As mentioned earlier,
when considering a single elastic layer under vertical load, the disc problem could be omit-
ted (still, a small error is introduced). However, when combining several layers, the neutral
bending-axis is shifted from the individual middle surfaces and both formulations are required
for obtaining the overall solution.

In [19], the elastic plate-equations have been analyzed regarding the needed amount of coef-
ficients for obtaining a suitable model. Therein, it is shown that including the coefficients

0
ue

3,
2
ue

3 and
1
ue

α (with α = 1,2) leads to a plate equation settling somewhere between the Kirchhoff
and the Mindlin model. Including additionally

3
ue

α, an ’enhanced’ Mindlin model is deduced.
It should be remarked that the above sketched plate formulation is very similar to the work
of Kienzler [16, 17].

2.3 Air Layer

Since the multi-layered panel may include some air layer between any two poroelastic and/or
elastic layers, it may be reasonable to model it two-dimensionally as well. The equation gov-
erning wave propagation in a homogeneous and compressible fluid is the wave equation. In the
frequency domain, it is transformed to the Helmholtz equation

pa
,ii +

ω2

c2 pa = 0 , (9)

with pa being the acoustic pressure and c the wave speed. The respective variational formulation
is again deduced by the standard procedure. In view of the coupling, the variational form is
additionally multiplied by −1/ω2ρa for convenience. This leads to∫

Ωa

[
1

ω2ρa pa
,i p̄

a
,i−

1
c2ρa pa p̄a

]
dΩ

a−
∫

Γa
N

1
ω2ρa pa

,in
a
i p̄a dΓ

a
N = 0 . (10)
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The acoustic pressure and its test-function are once again replaced by the power series

pa(x1,x2,x3) =
∞

∑
k=0

k
pa(x1,x2)xk

3

p̄a(x1,x2,x3) =
∞

∑
`=0

`

p̄a(x1,x2)x`3 .
(11)

Again, a decoupling occurs, this time extra simple, since the field under consideration is scalar.
The quantity pa

,in
a
i on Γa

N represents the prescribed pressure gradient, i.e., the fluid flux in normal
direction. Details of this formulation of an ‘air plate’ and a validation can be found in [22].

3 Coupling of layers and surrounding fluid

With the poroelastic layer, the elastic layer, and the air layer a complete panel can be assembled.
In order to couple the layers among each other over their surfaces, suitable coupling conditions
have to be formulated for guaranteeing equilibrium of stresses, continuity of displacements and
equilibrium of pressure at the interfaces. The coupling between three-dimensional poroelastic,
elastic and acoustic continua has been presented in [4]. The coupling conditions on the acoustic-
poroelastic interface are

ua
i na

i =−up
i np

i

pa
δi jna

j = σi jn
p
j

pa = p .

(12)

On the acoustic-elastic interface, it is

ua
i na

i =−ue
i ne

i

pa
δi jna

j = σ
e
i jn

e
j .

(13)

Since the acoustic fluid is expressed by means of the sound pressure pa rather than the particle
displacement ua

i , this latter quantity is replaced by ua
i = 1/ω2ρa pa

,i. The field up
i is defined as

the mean displacement of a ’poroelastic particle’, similarly as the mean density in (1), namely
up

i = (1−φ)ui +φu f
i = ui + 1/iω qi, with qi = iωφ(u f

i −ui) being the flux of the pore-fluid. Note
that the displacement conditions only enforce continuity in the normal direction since the fluid
cannot prevent relative displacements in tangential direction. Finally, on the elastic-poroelastic
interface one needs to fulfill the conditions

ue
i = up

i

σ
e
i jn

e
j = σi jn

p
j

qin
p
i = 0 .

(14)

This time, the displacements need to be continuous in the tangential direction as well. Due to
the impermeable elastic layer, no fluid flux appears on the interface.
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The coupling integrals may now be deduced by combining the boundary integrals of the vari-
ational formulations (2), (7) and (10). Indeed, the parts of the integrals living on the same inter-
face occupy the very same surface in physical space. For example, on the acoustic-poroelastic
interface, this yields

Iap =−
∫

Γap

[
1

ω2ρa pa
,in

a
i p̄a +σi jn

p
j ūi +

1
iω

qin
p
i p̄
]

dΓ
ap . (15)

By incorporating the conditions (12) into (15) under consideration of the above mentioned re-
placements for ua

i and up
i , one obtains

Iap =−
∫

Γap

[
paūina

i −uin
p
i p̄a
]

dΓ
ap . (16)

The expression above covers the Neumann-type interface conditions, whereas the continuity of
the pressure (Dirichlet-type condition) has to be additionally enforced as it will be explained at
the end of this section. The acoustic-elastic interface is governed by the very similar expression

Iae =−
∫

Γae

[
paūe

i na
i −ue

i ne
i p̄a
]

dΓ
ae . (17)

The elastic-poroelastic interface gives
Iep = 0 (18)

and the coupling between these two layers is therefore natural. Only the Dirichlet-type interface
conditions, namely the continuity of displacements, has to be additionally enforced.

The conditions for coupling two-dimensional structures are obviously the same as for cou-
pling three-dimensional ones. In the former case, however, it must be accounted for the fact
that the interfaces are located at a certain distance from the middle surface of the layers while
all quantities incorporated into the formulation are solely defined on the middle surface itself.
Moreover, as pictured in Fig. 2, each layer has its own coordinate system with origin on its mid-
dle surface. This requires to replace the unknown quantities by the corresponding power series
evaluated at the respective location of each local coordinate system. For the acoustic-poroelastic
interface the power series take the form

ui =
∞

∑
k=0

k
ui

(
hp

2

)k

pa =
∞

∑
k=0

k
p
(
−ha

2

)k

(19a)

ūi =
∞

∑
`=0

`

ūi

(
hp

2

)k

p̄a =
∞

∑
`=0

`

p̄
(
−ha

2

)k

. (19b)

As it can be seen from Fig. 2, the normal vectors at the interface are na
i ei = [0,0,1]> and np

i ei =
[0,0,−1]>. Using this, together with the expressions (19) in (16), the coupling integral for the
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xp
α

xp
3

xa
α

xa
3

xe
α

xe
3

Ωint

Ωp

Ωa

Ωe

Ωext

Γint

Γap

Γae

Γext

hp

ha

he

Figure 2: Coupled system consisting of two acoustic domains separated by a multi-layered struc-
ture. The structure features a poroelastic, an acoustic and an elastic layer. Each layer
has its own local coordinate systems.

two-dimensional layers becomes

Iap =
∞

∑
`=0

∞

∑
k=0

∫
Γap

[(
hp

2

)`(
−ha

2

)k
k
pa `

ū3

+

(
−ha

2

)`(hp

2

)k
k
u3

`

p̄a
]

dΓ
ap .

(20)

The very same considerations apply on the acoustic-elastic interface of Fig. 2. Of course, this
time, the acoustic pressure pa is evaluated at ha/2, whereas the elastic displacement field ue

i is
evaluated at −he/2. This yields

Iae =−
∞

∑
`=0

∞

∑
k=0

∫
Γae

[(
−he

2

)`(ha

2

)k
k
pa `

ūe
3 +

(
ha

2

)`(
−he

2

)k
k
ue

3
`

p̄a
]

dΓ
ae . (21)

An elastic-poroelastic interface does not appear in Fig. 2. Even if it did, the respective coupling
integral (18) would be zero anyway. In view of a finite element discretization, each expres-
sion resulting from any combination of k and ` in the double sums of (20) and (21), represents
coupling matrices located at specific off-diagonal positions in the overall system matrix.

The coupling of the outermost layers with the adjacent three-dimensional acoustic fluid do-
mains Ωint and Ωext follows the exact same pattern as presented above, with the only difference
that the displacement fields in (16) or (17) are replaced by the respective power series.

The last point to be discussed in this section regards the imposition of the Dirichlet-type
interface conditions. As already mentioned, the two-dimensional formulation only provides
degrees of freedom on the middle surface, whereas the coupling needs to be imposed at the

9
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interface. This means that once again, the power series evaluated at the respective interface need
to be used. The condition itself is imposed by means of Lagrangian multipliers. For example,
the condition enforcing equilibrium of pressure p− pa = 0 at Γap in Fig. 2 is stated in the form

Π
ap =

∫
Γap

υ(p− pa)dΓ
ap , (22)

with υ being the Lagrangian multiplier. The first variation of (22) is given by

δΠ
ap =

∫
Γap

[(p ῡ+υ p̄)− (pa
ῡ+υ p̄a)]dΓ

ap . (23)

Inserting the power series for p and pa evaluated at the interface yields

δΠ
ap =

∞

∑
k=0

(
hp

2

)k ∫
Γap

[
(

k
p ῡ+υ

k
p̄)
]

dΓ
ap−

∞

∑
k=0

(
−ha

2

)k ∫
Γap

[
(

k
pa

ῡ+υ
k
p̄a)

]
dΓ

ap . (24)

Similarly, the continuity of displacements ui−ue
i = 0 on an elastic-poroelastic interface Γep (not

appearing in Fig. 2) is enforced by

δΠ
ep =

∞

∑
k=0

(
−hp

2

)k ∫
Γep

[
(

k
ui ῡi +υi

k
ūi)

]
dΓ

ep−
∞

∑
k=0

(
he

2

)k ∫
Γep

[
(

k
ue

i ῡi +υi
k
ūe

i )

]
dΓ

ep . (25)

On the acoustic-elastic interface, no Dirichlet-type interface conditions need to be imposed.
In a Finite Element formulation for each order k off-diagonal coupling matrices are obtained

which are assembled into the overall system matrix. Therewith, all required expressions have
been presented for coupling any of the presented layers among each other.

4 Numerical realisation

In the previous sections, the variational principles for the layers as well as for the coupling
conditions have been provided. The FEM realisation is done by means of standard elements and
does not need to be discussed here. However, for realistic systems it is a difficult task to solve
the equation system. Further, for various mechano-acoustical applications, like the prediction of
sound transmission through multi-layered panels, often the response not only for one frequency
but for a frequency range has to be determined. This means that for each frequency step a whole
system has to be solved. If the difference between two frequencies is small, their assembled
system matrices are usually rather similar. This property might be used in combination with an
iterative equation solver.

An iterative solution process can be accelerated by using the subspace recycling method
GCRO-DR. In general, GCRO-DR is an iterative projection solver based on Krylov subspaces [21].
It is composed of an inner solver GMRES, with deflated restarting (GMRES-DR), and an outer
solver GCR with an orthogonalization (GCRO) [9]. The algorithm starts solving the first system
of equations with the inner solver. Following the general solving scheme of the iterative projec-
tion method, GMRES-DR attempts to minimize the residual. When the solver converges, it also
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A1

A2

A3

A4

E1

E2

E3

F1

F2

F3

Figure 3: Sparse pattern of a finite element model of the multi-layered panel.

generates a solution subspace which contains the information about the approximated solution.
The GCRO-DR extracts a set of harmonic Ritz vectors that provide an optimal approximation of
the most representative interior eigenvectors of the solution subspace and passes it to the outer
solver GCRO. This set of harmonic Ritz vectors is orthogonalized by GCRO, such that a recy-
cling subspace is generated. In other words, the recycling subspace preserves the most important
part of the solution subspace and can be reused by the inner solver for a new system of equa-
tions. As mentioned above, system matrices are rather similar for adjacent frequencies. It can be
assumed that these systems can be solved on a similar solution subspace as well. Therefore, the
solution process can be accelerated with the help of the obtained recycling subspace. In practice,
GCRO-DR has been treated as a multi-frequency solver for acoustical problems in [6]. In this
work, it is used for the sound transmission problem of the multi-layered panel.

As one of the Krylov subspace methods, GCRO-DR suffers from the common convergence
problem when a system matrix is badly conditioned. Especially, the sound transmission problem
of a multi-layered panel can consist of different material models, where the formulation of the
Helmholtz equation in an acoustical domain leads to an indefinite system matrix. Moreover, the
system matrix of the poroelastic plate is often ill-conditioned [3, 13, 20]. Therefore, for applying
GCRO-DR successfully a suitable preconditioner is essential. In the preconditioning strategy a
rather helpful characteristic of a multi-layered panel problem should be taken into account: The
layers of a panel are coupled subsequently, thus, the resulting system matrix usually reveals a
special sparse pattern as shown in Fig. 3, where sub-matrix Ai represent the system matrix of
each layer, and Ei and Fi the respective coupling matrices. It can be seen that each sub-matrix
is only coupled with its direct neighbors. Therefore, any adjacent two sub-matrices Ai and Ai+1
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and their respective coupling matrices Ei and Fi form a 2 by 2 block matrix. Because of this
nature of the system matrix, a preconditioning algorithm based on the hybrid (direct/iterative)
solver HIPS (Hierarchical Iterative Parallel Solver) [12] and the ARMS (Algebraic Multilevel
Solver) [23] is used in this work. Both, HIPS and ARMS are domain decomposition solvers
based on the Schur complement. The original ARMS utilizes a graph partitioning method to
sort the system matrix into a 2 by 2 block form, which is not necessary in the actual application
(see the structure in Fig. 3). Such a 2 by 2 block system can be factorized by using the Schur
complement [12] [

B E
F C

]
≈
[

LB 0
FU−1

B LC

]
×
[

UB L−1
B E

0 UC

]
. (26)

Usually, the upper left sub-matrix B has a rather small size, such that it can be easily decom-
posed into a pair of upper und lower triangular matrices UB and LB by incomplete factorization
(ILU). While the lower right sub-matrix C still contains a large number of degrees of freedom,
its respective triangular matrices UC and LC can be obtained by appling the same algorithm
recursively. HIPS can be regarded as an extension of ARMS. It uses both ILU and complete
factorization (LU) to factorize the sub-matrix B. In general, LU can provide more stability to
the solving process but it is more expensive than ILU. However, the method still performs well
as long as the size of B is limited. As aforementioned, the multi-layered panel problem is struc-
tured in a series of 2×2 blocks due to its geometrical property. Therefore, the Schur complement
method can be directly used to factorize the system matrix. Furthermore, the factorization pro-
cess can be simplified. Since the material layers are only coupled to its direct neighbours, each
2×2 block can be factorized independently following (26), such that[

Ai Ei

Fi Ai+1

]
≈
[

Li 0
FiU−1

i Li+1

]
×
[

Ui L−1
i Ei

0 Ui+1

]
. (27)

It should be noted that each sub-matrix Ai or Ai+1 needs to be factorized only once. In the
subsequent 2×2 block, the current lower right sub-matrix Ai+1 is shifted to the upper left block
and the lower right block is occupied by the new sub-matrix Ai+2. This means that the LU/ILU
decomposition of Ai+1 can be reused to factorize the new 2×2 block.

The most challenging part of solving a multi-layered system is that it contains different finite
element formulations. By using the domain decomposition method, fortunately, the material
models can be preconditioned separately. Under some conditions (see section 5), the subspace
recycling method GCRO-DR solves effectively the problem over a frequency range.

All FE models are implemented by using the finite element library libMesh [18] and the linear
solver package PETSc [5]. The calculations are executed on a computer with Intel R© CoreTM2
Quad Processor Q9650 and 8GB RAM.

5 Example: Five-layer panel

In this example, the transmission loss of a five-layer panel, which includes all the described plate
models, is calculated and validated by measurement. The setup of the panel is shown in Fig. 4.

The first layer is a 2mm aluminum plate where a 2.5cm fibrous blanket is placed on top. This
fibrous blanket is shown in Fig. 5 and can be regarded as a specific acoustic fluid (see [1]) in
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Alu. Plate

Poroelastic plate
Air gap

Fibrous blanket

Diffuse field

Acoustical domaim
(Absorbing boundary)

Figure 4: A pictorial view of the five-layer panel.

Figure 5: Photo of the Microlite R© AA fibrous blanket

the simulation. The respective experimental setup of this part of the panel is shown in Fig. 6.
The fibrous blanket is constrained by a metal net, such that its thickness is somewhat controlled.
Next, a 2.5cm thick wooden frame is mounted in the open window, in this way, an air gap
is created between the fibrous blanket and the upcoming layers. Subsequent to the air gap, a
poroelastic layer (plate) is placed on the wooden frame. Finally, the other 2mm aluminum plate
is placed on the poroelastic plate. A photo of the poroelastic plate and the cover plate is shown
in Fig. 7. The used material parameters can be found in Tab. 1, Tab. 2, and Tab. 3.

All the layers are discretized by 30× 30 QUAD4 elements and the acoustical domain by 5
layers of 30× 30 HEX8 elements. The infinite extension of the acoustic domain is modelled
with infinite elements as proposed in [10]. The first aluminum plate is modeled with the formu-

Table 1: Acoustical properties of air and the material properties of the aluminum plate.
Acoustics in air Aluminum plate

Speed of sound Density Young’s modulus (E) Density Poisson’s ratio
343.3 m/s 1.21 kg/m3 7.1 ·1010 N/m2 2700 kg/m3 0.33

13



Preprint No 02/2013 Institute of Applied Mechanics

Restraining 
metal net

Fibrous
blanket

Wood
frame

Absorbing boundary
of air gap

Open window of 
the reverberant 

room

Figure 6: A pictorial view of the experimental setup of the five-layer panel (the aluminum plate
on the excitation side, the fibrous blanket, and the air gap).

Aluminum plate Poroelastic layer

Figure 7: A pictorial view of the experiment setup of the five-layer panel (the poroelastic layer
and the cover aluminum plate).

Table 2: Material properties of the Microlite R© AA fibrous blanket as specific acoustical fluid.
The data is referred to [24].

Speed of sound Density
120 m/s 7 kg/m3
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Table 3: Material properties of the poroelastic layer.
Density Poisson ratio Young’s modulus Porosity Fluid resistance
5.6 kg/m3 0.43 1.28 ·104 N/m2 0.995 4.63 ·104 Ns/m4

Acoustic

Alu. 
Plate #1

Poroelastic
Plate

Air gap

Fibrous
blanket

Alu.
Plate #2

Figure 8: The matrix sparsity pattern of the five-layer model. The aluminum plate No.1 is formu-
lated by the poroelastic plate model, with the DOFs of pore pressure being eliminated,
the air gap and the fibrous blanket are formulated by the acoustic plate model, and the
aluminum plate No.2 by the Mindlin plate formulation.

lation. The acoustic plate model is used for the fibrous blanket and the air gap. For the fibrous
blanket complex material data are used as suggested in [1]. The poroelastic layer is computed
with the poroelastic plate model. It should be noted that both the poroelastic plate formulation
and the poroelastic disc formulation, as described in section 2, are included in the model. For
testing purposes, the cover aluminum plate is formulated by the poroelastic model as well, as
proposed by Nagler [19], where the model is modified by simply eliminating the DOFs of the
pore pressure. In this way, the in-plane (disc) motion of the plate is also considered. Moreover,
third order approximations are used for all the poroelastic plate models and the acoustic plate
model. This yields a linear system with 41562 DOFs, whose sparsity pattern is shown in Fig. 8.

The condition number of the linear system has a magnitude of order 1041. As discussed in
section 4, each layer is separated into an individual sub-domain and can be factorized with a
different method. For the acoustic plate models and the acoustical domain, an ILU precondi-
tioner with a drop threshold of τ = 10−3 is used. The Mindlin plate is preconditioned with an
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Figure 9: Validation of the transmission loss calculation of the five-layer panel, which is com-
posed of two aluminum outer plates, a poroelastic layer, an air gap, and a fibrous
blanket in between.

ILU with 1 fill-in level. Unfortunately, none of the incomplete factorizations seems to work with
the poroelastic plate models. In order to obtain the preconditioner for further calculations, the
respective sub-matrices are directly factorized by LU.

GMRES is used to solve the transmission loss problem first. The predicted results are com-
pared with the measurement in Fig. 9. It can be seen that the calculation shows a perfect agree-
ment in the frequency range from 600 to 1400Hz. Above 1400Hz, the calculated results are
about 5dB smaller than the measurement. Except for the fact that the ISO-measurement typi-
cally has a 3dB error margin [14], the setup of the multi-layered panel is relatively complicated.
Therefore, the 5dB difference can be still considered as a good agreement. However, the calcu-
lation and the measurement differ significantly below 500Hz. This can be caused partially by the
measurement, since the diffuse field generated in the reverberant room may have a rather poor
quality in the frequency range close to the Schroeder frequency (in this case 290Hz). In fact, the
same effect can be observed in other examples. The required iteration steps and computational
time of GMRES are shown in Fig. 10 and 11. It can be seen that GMRES converges at about
900 iterations and it takes about 30 minutes for each frequency.

Furthermore, GCRO-DR is applied to solve the current example. Since the solution subspace
generated by GMRES has the size of about 900, a recycling subspace with 100 vectors is tested
first. The preconditioner is updated every 30Hz. However, the solver stagnates after several
frequency steps. In order to make it work, the size of the recycling subspace cannot be set larger
than 30, which is only about 3% of the solution subspace. With the size of the recycling subspace
being 30, the iteration number and the respective computational time required by GCRO-DR are
shown in Fig. 12 and 13.
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Figure 10: The iteration number required by GMRES for solving the transmission loss of the
five-layer panel.
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Figure 11: The computational time required by GMRES for solving the transmission loss of the
five-layer panel.
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Figure 12: The iteration number required by GCRO-DR for solving the first three excitations of
the five-layer panel problem at 5Hz resolution.
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Figure 13: The computational time required by GCRO-DR for solving the first three excitations
of the five-layer panel problem at 5Hz resolution.
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6 Conclusions

Based on Biot’s theory of poroelasticity a plate formulation to describe the acoustical behavior
of plate-like structures has been discussed. The dimension reduction from 3d to 2d is performed
with a series expansion in thickness direction and a subsequent analytical integration. The same
technique can be applied to elastic plates resulting in similar theories like Reissner and Mindlin.
Not only structural elements can be formulated in such a way but also a ’air plate’ has been
constructed to ease the formulation of air gaps in multi-layered panels. The coupling between
different layers, i.e., different materials, is similar to the 3d case but the degrees of freedom from
the mid plane have to be transfered to the surface of each panel by using the series expansion.

The overall system is discretized with standard finite elements. However, the final system of
equations is large in the case of higher frequencies and not well conditioned. But taking the
structure of the geometry and the different domains via a domain decomposition into account,
different preconditioners for each domain can be used and a nested iterative solution procedure
can be applied.

The final model has been validated by an experimental setup for measuring the transmission
loss factor. Over a large frequency range the agreement between the measurement and the com-
putation is very good. Only for small frequencies larger differences can be observed. However,
in this range the measuring setup may not produce a diffusive sound field and, hence, the nu-
merical results cannot match. Further, the numerical behavior of the iterative solver and the
preconditioner has been studied. It can be concluded that ILU based preconditioners are suffi-
cient if each layer is handled by its own. The only exception is the poroelastic plate where a
working preconditioner is an open question. Further, a recycling of the subspaces of the Krylov
solver is advantageous if the same problem is computed for several excitations.
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