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Abstract

An efficient scheme for solving boundary integral equations of the heat equation based
on the Galerkin method is introduced. The parabolic fast multipole method (pFMM) is
applied to accelerate the evaluation of the thermal layer potentials. In order to remain
attractive for a wide range of applications, a key issue is to ensure efficiency for a big
variety of temporal to spatial mesh ratios. Within the parabolic Galerkin FMM (pGFMM)
it turns out that the temporal nearfield can become very costly. To that end, a modified
fast Gauss transform (FGT) is developed. The complexity and convergence behavior of
the method are analyzed and numerically investigated on a range of model problems. The
results demonstrate that the complexity is nearly optimal in the number of discretization
parameters while the convergence rate of the Galerkin method is preserved.
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1 Introduction

Solving linear diffusion problems with the boundary element technique is an attractive alterna-
tive to the more standard PDE-based approaches, such as Finite Difference- and Finite Element
Methods. By now, the boundary integral formulations of the heat equation and the mapping
properties of their operators are well understood. In particular, the thermal single layer operator
is coercive in an appropriate anisotropic Sobolev space [1, 4]. Likewise, the thermal double
layer operator is compact in the proper setting [4, 11]. These results are the background for the
analysis of Galerkin methods in both space and time.

While the focus in this work is on the Galerkin method, we note that other possible discretiza-
tion schemes are feasible, e.g. the collocation method [2] and the Nyström method [18]. These
methods can be used both in space and time, while either of them may be combined with the
convolution quadrature method [13, 16] for the the temporal discretization. However, Galerkin
methods have distinct advantages because of their stability and applicability to non-smooth sur-
faces. The different discretization options for parabolic integral equations and their theoretical
foundations of are surveyed in [5].

Since integral operators are non-local, discretizations lead to dense matrices which makes fast
methods imperative to handle large scale problems efficiently. This is a very well studied subject
in the elliptic case [14], and has recently attracted considerable interest for parabolic boundary
integral equations. A possible approach in this direction is to employ Fourier techniques, which
was initiated in [8] and later extended in [7] and [12]. Nevertheless, the focus here is on cluster-
ing techniques, because of their success in the elliptic case. Typical examples of such methods
are the Fast Multipole Method and H-matrices. Their idea is to agglomerate source- and evalu-
ation panels and approximate admissible (i.e. well separated) interactions by a truncated series
expansion.

In contrast to the elliptic case, discretizations of thermal layer potentials involve a temporal in
addition to a spatial mesh, hence the clustering must be done in space and time. This scheme was
originally described in [17] and [19]. The admissibility condition is that the temporal separation
of two spatio-temporal clusters is proportional to their temporal size. Moreover, the scaling of
the Green’s function dictates that the temporal cluster size is proportional to the square of the
spatial cluster size. Since the heat kernel is singular in time, nearby time steps must be evaluated
directly.

The cost of the temporal nearfield evaluation is a major factor for the overall efficiency of the
method. In our previous work, we considered a specific Nyström discretization method where
the temporal and spatial mesh sizes satisfy ht ∼ h2

s . In this case the nearfield can be evaluated
in optimal complexity due to the exponential decay of the heat kernel in space. However, one
of the reasons to use the Galerkin scheme is to allow for more general mesh ratios. This is
often the case in realistic problems with complicated geometries where one would like to have
a fine spatial mesh but relatively large time steps. In such a setting many panels in the temporal
nearfield have to be considered, which effects the overall complexity of the scheme and thus
makes an acceleration of the nearfield important.

The contribution of a single time step can be regarded as a Gauss transform, a computation that
arises frequently in many different areas. The original method [9] is based on a Taylor expansion
of the Gaussian (sometime better known as Hermite expansion), while more recent versions are
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based on exponential [10] and Chebyshev expansions [20]. In the context considered here, the
latter approach is more interesting because it has better convergence properties for large spatial
clusters.

Unfortunately however, the relevant kernels in the Galerkin method are not Gaussians, but
integrated versions, which imposes a number of technical difficulties. First, the kernels are
rather complicated and, hence, it is tedious and impractical to derive the discrete translation
operators. More importantly, the integrated kernels do not separate into spatial directions and
thus the evaluation of translation operators becomes very expensive. To overcome these issues,
we replace the integral by a high-order quadrature rule and thus evaluate a series of fast Gauss
transforms.

The outline of this paper is as follows. In Sections 2 and 3, we briefly review parabolic
boundary integral equations and the parabolic FMM. The purpose of these sections is only to
introduce the subject and set the notations; a reader who is not familiar with these issues is
encouraged to refer to [17, 19]. Section 4 describes the efficient evaluation of the temporal
nearfield and contains the main new contributions of this work. Finally, Section 5 concludes with
a number of simple but relevant numerical examples that illustrate the theoretical development
of the previous sections.

2 Parabolic BEM

Green’s formula relates the Dirichlet and Neumann data on the boundary S of a Lipschitz domain
Ω. For the heat equation ∂tu = ∆u with homogeneous initial conditions it can be stated as

±cu(x, t) = K u(x, t)−V
∂u
∂n

(x, t) , x ∈ S , t > 0 . (1)

Here, c is the jump term of the double layer potential with the plus sign applying for an exterior
and the minus sign for an interior problem. The single- and double layer potentials are given by

V g(x, t) =

t∫
0

∫
S

G(x− y, t− τ)g(y,τ)dsydτ ,

K g(x, t) =

t∫
0

∫
S

∂

∂ny
G(x− y, t− τ)g(y,τ)dsydτ ,

respectively, and the Green’s function of the heat equation in R3 is

G(r,δ) =
1

(4πδ)
3
2

exp

(
−|r|

2

4δ

)
. (2)

For δ > 0 it is a Gaussian in space that becomes increasingly peaked as δ gets smaller and in the
limit as δ→ 0, it converges to the delta distribution. Moreover, it exhibits the following scaling
property we will often use

G(r,λδ) = λ
− 3

2 G
(

r√
λ
,δ

)
. (3)
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We consider a Bubnov-Galerkin discretization scheme with space-time tensor product spaces
Qds,dt

h := Qds
hs
⊗Qdt

ht
, where Qds

hs
is a space of piecewise polynomial functions subject to a con-

forming triangulation of the boundary with mesh-width hs. We denote the nodal basis functions
by ϕs

k, then

Qds
hs
= span

{
ϕ

s
1, . . .ϕ

s
Ns

}
.

Likewise, Qdt
ht

is to be understood as the space of piecewise polynomial ansatz functions on
a uniform partition of the time interval [0,T ] into Nt time steps with step size ht = T/Nt . For
simplicity of exposition we only consider piecewise constant functions in the intervals [ti−1, ti].
Then the discretization matrix of the single layer potential is

V(k,`),(i, j) =

ti∫
ti−1

∫
S

t j∫
t j−1

∫
S

G(x− y, t− τ)ϕs
k(x)ϕ

s
`(y)dsydτdsxdt , (4)

and for the double layer potential accordingly. Note that the order of integration is irrelevant,
because Fubini’s Theorem applies. Thus we can perform the two time integrals first and the
spatial integrals later. This leads to the representation

V(k,`),(i, j) =
∫
S

∫
S

Vi− j(x− y)ϕs
k(x)ϕ

s
`(y)dsydsx , (5)

where Vd(x− y) is a space-dependent kernel also depending on the difference d = i− j. With
r = x− y it is given by

Vd(r) =
ti∫

ti−1

t j∫
t j−1

G(r, t− τ)dτdt .

We introduce the change of variables t = ht(i− 1
2 + t ′) and τ = ht( j− 1

2 + τ′) to end up with the
Galerkin kernel in time [15]

Vd(r̃) =
√

ht

1
2∫

− 1
2

1
2∫

− 1
2

G(r̃,d + t ′− τ
′)dτ

′dt ′ (6)

=
√

ht

[
G(−2)(r̃,d +1)−2G(−2)(r̃,d)+G(−2)(r̃,d−1)

]
,

where r̃ = r/
√

ht and G(−2) is the second anti-derivative of the heat kernel with respect to time

G(−2)(r,δ) =

√
δ

4π

[(
|r|√
4δ

+

√
δ

|r|

)
erfc

(
|r|√
4δ

)
− 1√

π
exp

(
−
∣∣r2
∣∣

4δ

)]
.

Since G(−2)(r,0) = 0 expression (6) is valid for d ≥ 1, while for d = 0 we have

V0(r̃) =
√

ht

1
2∫

− 1
2

t ′∫
− 1

2

G(r̃, t ′− τ
′)dτ

′dt ′ =
√

htG(−2)(r̃,1) . (7)
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Thus the discretization of (1) leads to the following time stepping scheme

(∓cM0 +K0)ui−V0vi =
i

∑
d=1

(Vdvi−d−Kdui−d) (8)

where Vd := V(·,·),(i, j) is the Ns×Ns-matrix whose coefficients are given by (5), Kd is the anal-
ogous matrix for the double layer operator and M0 is the mass matrix. The vectors v j and u j

contain the expansion coefficients of the solution in the j-th time step. Thus the i-th time step
involves evaluating the right hand side, which is a convolution over the time evolution, and the
solution of a linear system for either ui or vi, depending on whether a Dirichlet or Neumann
problem is solved.

Since all operators in (8) are dense, the total cost of the time stepping method is at least of
order N2

t N2
s if the matrix-vector products are evaluated naively. Fortunately, the complexity can

be reduced with the parabolic Fast Multipole Method. Here, the first few terms of the right hand
side (temporal nearfield) are evaluated directly, exploiting the fact that the matrices are sparse
due to the exponential decay of the kernel. The remaining terms are evaluated by clustering and
truncated kernel expansions. The method was originally developed for Nyström discretizations
of parabolic layer potentials [17, 19], but the modifications for the Galerkin method are rather
straightforward.

However, the cost of evaluating the temporal nearfield depends strongly on the ratio of the
temporal to the spatial mesh-width. In fact, in the following discussion we will show that order
NtNs complexity (up to logarithmic factors) can be obtained only if ht ∼ h2

s . If the spatial mesh is
finer, then the cost of the temporal nearfield will become dominant. To overcome this difficulty
we will introduce a variant of the fast Gauss transform to obtain optimal complexity for arbitrary
mesh ratios.

3 The Parabolic FMM

The key idea of the Fast Multipole Method is to agglomerate source- and evaluation panels and
to use a suitable expansion of the kernel to accelerate the computation of the cluster interactions.
For parabolic problems, the clustering is done in space and time. We briefly review this construc-
tion only to the extent necessary for the discussion of the temporal nearfield. The description of
all the details in the parabolic FMM can be found in [17, 19].

3.1 Space-Time Clustering

Interacting space-time clusters must satisfy an admissibility condition to ensure that the expan-
sion converges sufficiently fast for source- and evaluation points. The heat kernel is smooth in
space unless t = τ. When τ approaches t, it becomes more peaked and eventually approaches the
delta distribution in R3. The proper admissibility condition can be derived from the space-time
scaling expressed in equation (3).

Space and time are clustered using uniform hierarchic subdivisions in cubes and intervals.
The root level cube contains the entire surface and is Ls times uniformly refined. Note that in
a Galerkin scheme the supports of test- and trial functions need to be fully contained within
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ht . . . temporal mesh width
hs . . . spatial mesh width

h(`t)
t . . . half length of cubes in level `t of temporal tree

h(`s)
s . . . half length of cubes in level `s of spatial tree
Lt . . . temporal leaf level of the pGFMM
Ls . . . spatial leaf level of the pGFMM
ρL . . . cluster ratio at the leaf level of the pGFMM
nt . . . number of time steps in the leaves of the temporal tree
n f . . . number of neighbor cubes in a linear direction

Table 1: Characteristic variables in the pGFMM.

the cluster they belong to. Hence we assign test- and trial functions to cubes according to their
center position and enlarge their half side length by rmax

s such that the supports of the functions
are fully contained within the cluster they belong to. Thus we generate overlapping cubes with
half a side length in level `s given by

h(`s)
s = 2−`sh(0)s + rmax

s

and for reasonable spatial discretization parameters, i.e. rmax
s � h(`s)

s � h(0)s , we conclude

h(`s)
s ∼ 2−`sh(0)s . (9)

Here, A ∼ B means that there is a constant c > 1 such that A/c ≤ B ≤ cA, further A & B and
A . B mean A ≤ cB and A ≥ B/c, respectively. The characteristic variables of the algorithm are
summarized in Table 1.

In order to preserve uniformity of the time discretization (see Section 2), we group nt time
steps into leaf clusters with half length

h(Lt)
t =

ntht

2
. (10)

Under this assumption we extend the time interval of interest [0,T ] to the root level interval
[0,T0]⊃ [0,T ] with

T0 = 2Lt ntht = 2h(0)t ≥ T (11)

leading to a temporal tree exceeding the original time interval. Then we compute the depth of
this tree from (11)

Lt =

⌈
log2

(
T

ntht

)⌉
and similar to (9) the `th

t level’s interval half length

h(`t)
t = 2−`t h(0)t . (12)
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We now consider the expansion of the heat kernel in two space-time clusters. We assume that
the source- and evaluation clusters are in the same space-time levels (`s, `t). Further, the space-
time centers of the source and evaluation clusters are (ȳ, τ̄) and (x̄, t̄), respectively. We introduce
local variables with the transformation

x = x̄+ x′h(`s)
s , y = ȳ+ y′h(`s)

s , −1≤ x′i,y
′
i ≤ 1, i ∈ {1,2,3}

t = t̄ + t ′h(`t)
t , τ = τ̄+ τ

′h(`t)
t , −1≤ t ′,τ′ ≤ 1.

(13)

In the local variables, the heat kernel is

Gloc(x′,y′, t ′,τ′) = (4π(t− τ))−
3
2 exp

(
− |x− y|2

4(t− τ)

)

=
(

4πh(`t)
t (d + t ′− τ

′)
)− 3

2
exp

(
−ρ
|r+ x′− y′|2

d + t ′− τ′

)
, (14)

and the constants d > 0, r ∈ R3 and ρ > 0 are given by

d =
(t̄− τ̄)

h(`t)
t

, (15)

r =
(x̄− ȳ)

h(`s)
s

, (16)

ρ =

(
h(`s)

s

)2

4h(`t)
t

. (17)

The fast evaluation of potentials is based on separation of variables of the local heat kernel,
which is accomplished by series expansion in the local variables [17, 19]. The series will con-
verge rapidly only if the kernel is smooth and not too peaked. The form of (14) suggests that
two space-time clusters are admissible if they are separated by either one or two time intervals
in the same level in which case d ∈ {4,6}. Moreover, the rate of convergence depends on the
magnitude of the factor ρ, because it determines how peaked the local kernel is. To ensure the
same accuracy of all cluster interactions, the space and time levels are selected such that ρ is
uniformly bounded. From (9) and (17) it follows that

ρ∼

(
2Ls−`sh(Ls)

s

)2

2Lt−`t 4h(Lt)
t

= 22(Ls−`s)−(Lt−`t)ρL . (18)

where ρL = (h(Ls)
s )2/4h(Lt )

t . Thus the factor ρ is bounded for all clusters as long as Ls−`s is smaller
than half of Lt − `t . The precise relationship is

`s = max
(

Ls−
⌊

Lt − `t

2

⌋
,0
)
. (19)

7
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From (18) and (19) it follows that the value of ρ alternates between the values ∼ ρL and ∼ ρL/2

when `t decreases until `s = 0. After that, the value of ρ decreases and the geometry is only
contained within one cube.

The factor ρL controls the accuracy of the parabolic FMM in two ways. First, ρL determines
the convergence speed of the expansion of (14) in the local variables. For a fixed expansion
order a smaller value of ρL will result in a smaller error. On the other hand, the heat kernel
decays exponentially with increasing spatial distance. Therefore at most n f neighboring clusters
in each linear direction have to be included in a potential calculation. The resulting truncation
error can be bounded as follows

exp

(
−ρ
|r+ x′− y′|2

d + t ′− τ′

)
& exp

(
−ρL

2
(2n f )

2

d +2

)
≥ exp

(
−ρL

n2
f

4

)
. (20)

We conclude with the following observations:

1. By increasing the factors n f or ρL we control the spatial farfield truncation error.

2. Because of the scaling in (14) the expansion orders of the heat kernel must be increased
when ρL is increased.

3. The kernels in the dth step of the temporal nearfield, c.f. (8), decay in space like
exp(−r2/4dht). Distant interactions may be truncated if the resulting error is of the same
magnitude as the bound given in (20). This implies that the cut-off radius satisfies

r =
√

ρLn2
f dht . (21)

If hs decreases faster than
√

ht , the number of panels per leaf level cube increases with
mesh refinements affecting the complexity of the overall algorithm. In this case fast meth-
ods for the temporal nearfield must be employed, which will be described in the following
section.

4 The FGT in the Temporal Nearfield

In the original parabolic FMM the interaction of well separated temporal clusters is evaluated
using Chebyshev expansion of (14) in space and time, while the contribution of the first two leaf
time clusters is computed directly, taking only nearby interactions into account. However, (21)
implies that this is only efficient if the spatial mesh-width is not too small.

In applications, one is often interested in complicated geometries, which have to be resolved
with a fine mesh, while still maintaining a relatively large time step size. In this case the direct
calculation of the temporal nearfield becomes the dominant factor. To remedy this situation, we
consider using a fast method for the temporal nearfield. Since the kernels (6) are integrated quan-
tities of a Gaussian, it should be possible to use some modified form of the fast Gauss transform.
However, there are two difficulties we encounter. First, the form of Vd is rather complicated, thus
the translation operators of fast algorithms are difficult to derive and implement. Second, and
more importantly, the kernel does not separate into its spatial directions as it is the case for the

8
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heat kernel, which makes translating series expansion very expensive if a high spatial expansion
order q is desired.

To resolve both issues, we do not use the analytic kernel (6) for the time steps in the temporal
nearfield, but instead replace it by a kernel that is derived from a numerical quadrature rule.
Thus we obtain a sequence of Gauss kernels for which one of the well known FGT algorithms
can easily be adopted. The FGT [9] enables a fast computation of such Gauss transforms by
evaluating the spatial influence of clustered sources onto clustered targets. Since the Gauss
kernel is smooth everywhere and exponentially decaying, only a constant number of such close
by cluster interactions within one level need to be evaluated. It is important to observe that
due to the proposed quadrature in time, the spatial interactions in the FGT benefit form the fact
that the variables of the kernel still separate into spatial directions, which enables an efficient
implementation of M2L translations in tensor product form [20]. However, since the integrands
leading to (6) are singular, or nearly singular in time, it is important that the quadrature method
is chosen appropriately, which will be discussed in this section.

4.1 Numerical quadrature in time

This section discusses how the integrals (6) are evaluated by numerical quadrature. Since the
integrand only depends on the difference t ′− τ′, it is possible to reduce the integration to one
dimension. Moreover, the smoothness of the integrand depends on the difference d = i− j,
hence, the quadrature rule will be adjusted accordingly. With the transformation

ξ = t ′− τ
′, η = t ′+ τ

′

integral (6) becomes

Vd(r̃) =
√

ht

2

∫
A

G(r̃,d +ξ)dA , d ≥ 1 ,

where A is a diamond-shaped polygon in the ξ,η-plane with vertexes (±1,0) and (0,±1). For
the case d = 0 the same transformation as applied to (7) leads to

V0(r̃) =
√

ht

2

∫
A0

G(r̃,ξ)dA0 ,

where A0 is the triangle in the ξ,η-plane with vertexes (1,0) and (0,±1). Since the η-integrals
are trivial, they are evaluated analytically. It follows that

Vd(r̃) =

{
V−d−1(r̃)+V+

d (r̃) , d ≥ 1 ,
V+

0 (r̃) , d = 0 ,

where

V±d (r̃) =
√

ht

1∫
0

G(r̃ ,d±+ξ)ϕ±(ξ)dξ , (22)

with ϕ+(ξ) := 1−ξ , ϕ−(ξ) := ξ , d+ := d and d− := d−1. With these definitions the following
two cases need to be distinguished.

9



Preprint No 01/2012 Institute of Applied Mechanics

The case d± ≥ 1 The integrand in (22) is smooth and a gth order Gauss-Legendre rule can be
applied. We transform integral (22) to the standard interval [−1,1] and use the scaling (3) with
λ = 1/2. Then

V±d (r̂) =
√

2ht

1∫
−1

G(r̂, d̂ + x)ϕ̂±(x) dx

=
√

2ht

g−1

∑
j=0

G(r̂, d̂ + x j)ϕ̂
±(x j)w j +

√
2htE±g (r̂, d̂) (23)

where x j and w j are the Gauss-Legendre quadrature points and weights, E±g is the quadrature
error and

r̂ =
√

2r̃, d̂ = 2d±+1, and ϕ̂
±(x) =

1
2
(1∓ x) .

Thus the kernel in (23) is expressed as a sum of kernels with variables separating into spatial
directions.

The case d±= 0 The integrands are singular and a composite quadrature rule must be applied.
To this end, we introduce a new parameter 0 < µ < 1 and consider the following dyadic splitting
of the interval

[0,1] =
M⋃

m=0

Im (24)

where
IM = [0,µM] and Im =

[
µm+1,µm] , m = 0, . . .M−1 .

The kernels V±0 (r̃) can now be written as a sum of the kernels

V±0,m(r̃) :=
√

ht

∫
Im

G(r̃,x)ϕ±(x)dx , m = 0, . . .M . (25)

This splitting is motivated by the following considerations. The factor M is selected such that
the kernel V±0,M(r̃) is sufficiently local in space and hence, the layer potentials with this kernel
can be evaluated directly with O(Ns) cost because only nearby interactions must be computed.
The integrands of the remaining kernels V±0,m(r̃) for m < M are smooth, and approximated by a
Gauss-Legendre quadrature rule, similar to (23). Transforming Im to the standard interval leads
to

V±0,m(r̂) =

√
2ht√

µm−µm+1

1∫
−1

G(r̂, d̂ + x)ϕ̂±(x)dx

=

√
2ht√

µm−µm+1

g−1

∑
j=0

G(r̂, d̂ + x j)ϕ̂
±(x j)w j +

√
2ht√

µm−µm+1
E±m,g(r̂, d̂), (26)

where

r̂ =

√
2r̃√

µm−µm+1
, d̂ =

1+µ
1−µ

10
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and

ϕ̂
+(x) = 1−

(
µm +µm+1

2
+

µm−µm+1

2
x
)
,

ϕ̂
−(x) =

µm +µm+1

2
+

µm−µm+1

2
x .

The accuracy of the quadrature is controlled by the parameters µ, d̂, M and g. To find reasonable
choices we must understand how they influence the quadrature error. This will be done next.

4.2 Gauss-Legendre quadrature

Estimates of the error of the Gauss-Legendre quadrature applied to functions with analytic ex-
tension into the complex plane have been derived in [3]. Unfortunately, the results there assume
that either the quadrature order or the region of analyticity are sufficiently large and are thus
not directly applicable when these values are specified, as needed in this work. However, the
methodology can be modified to derive a similar result which is more suitable for the following
discussion.

For a function f : [−1,1]→ R that has an analytic extension into the complex plane the error
Eg( f ) of the Gauss-Legendre rule

1∫
−1

f (x)dx =
g−1

∑
j=0

f (x j)w j +Eg( f )

can be expressed in terms of an integral over a simply closed contour γ that encloses the interval
[−1,1] and is contained in a region of the complex plane where f is analytic

Eg( f ) =
1
πi

∫
γ

Qg(z)
Pg(z)

f (z)dz (27)

and Qg(z) is the Legendre function of the second kind, defined by

Qg(z) =
1
2

1∫
−1

Pg(x)
z− x

dx, z 6∈ [−1,1] .

Because of the properties of the Legendre polynomials Pg(x) it is convenient to let the contour
γ be the ellipse ερ that is the image of the circle of radius ρ in the complex ζ-plane under the
transformation z = 1/2(ζ+ 1/ζ), i.e.

ερ =

{
1
2

(
ζ+

1
ζ

)
: |ζ|= ρ

}
. (28)

11
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Lemma 4.1. If f is analytic in a domain that contains ερ for some ρ >
√

2, then the error of the
Gauss-Legendre quadrature can be bounded by

|Eg( f )| ≤C0
√

g
ρ2

ρ2−2
M(ρ)ρ−2g. (29)

where M(ρ) = max | f (z)| on ερ and C0 =
3
2
√

πexp
(1

6

)
= 3.1408 . . . .

Proof. It is well known that the Legendre polynomials have the representation

Pg(z) =
g

∑
j=0

ag− ja jζ
g−2 j , a j =

(2 j)!
( j!)24 j ,

moreover, ag− ja j ≤ ag, see [6, Section 12.4]. Using Stirling’s formula, we can estimate

1√
π j

e
−1
6 j ≤ a j ≤

1√
π j

e
1

24 j , j ≥ 1 .

We have

Pg(z) = agζ
g

(
1+

g

∑
j=1

ag− ja j

ag
ζ
−2 j

)
,

and thus for z ∈ ερ and ρ >
√

2

|Pg(z)| ≥ agρ
g

(
1−

g

∑
j=1

ρ
−2 j

)
≥ agρ

g ρ2−2
ρ2−1

.

An estimate of the Legendre functions of the second kind is given in [3, eq. (15)]

|Qg(z)| ≤
2ρ

ρ2−1
ρ
−g, z ∈ ερ.

From the contour integral formula (27) it follows with the length `(ερ) of ερ that

|Eg( f )| ≤
`(ερ)

π

2
ag

ρ

ρ2−2
M(ρ)ρ−2g =Cg

ρ

√
g

ρ2

ρ2−2
M(ρ)ρ−2g

where

Cg
ρ =

`(ερ)

πρ

2
√

gag
.

Clearly, the factor Cg
ρ is uniformly bounded in g and ρ. The given upper bound C0 can be derived

with elementary arguments.

Lemma 4.2. Let d̂ ≥ 2, g ≥ 1 and ϕ(x) = α+βx be a linear function with coefficients |α| ≤ 1
and |β| ≤ 1. Then for the function f (x) = G(r, d̂ + x)ϕ(x) the estimate

|Eg( f )| ≤C1g2d̂
(

d̂ +
√

d̂2−1
)−2g

holds, where C1 =
45

9 C0.

12



Preprint No 01/2012 Institute of Applied Mechanics

Proof. Since f (x) has a singularity for x = −d̂ the value of ρ for the ellipse ερ in Lemma 4.1
must be in the interval ρ∈ (

√
2, d̂+

√
d̂2−1). To obtain a value that leads to a tight error bound

we choose ρ with the goal to minimize M(ρ)ρ−2g. To that end, we note that for z ∈ ερ the
estimate ∣∣∣∣∣ 1

(d̂ + z)
3
2

exp
(
− r2

d̂ + z

)∣∣∣∣∣≤
(

d̂− 1
2

(
ρ+

1
ρ

))− 3
2

holds, for any r, hence we minimize (d̂− 1
2(ρ+ 1

ρ
))−

3
2 ρ−2g. Simple calculus shows that the

optimal ρ is ρ0(x0) defined by

ρ0(x) =
d̂ +

√
d̂2−1+ x2

1+ x
and x0 =

3
4g

.

It is easy to see that the function ρ0(x) is monotonically decreasing for positive x, hence ρ0(x0)
is in the aforementioned interval of ρ. Moreover ρ0(x) is concave up

ρ0(x)≥
(

d̂ +
√

d̂2−1
)
(1− x) ,

where the right hand side is the linearization of ρ0(x) at x = 0. Thus we can estimate

ρ
−2g
0 (x0)≤

(
d̂ +

√
d̂2−1

)−2g
(

1− 3
4g

)−2g

. (30)

The second term is a monotonically decreasing function of g and hence can be bounded by 16
when g≥ 1.

Since t→ 1
2(t +

1
t ) is increasing and concave up for t > 1 and ρ0(x) is concave up, it follows

that the composition d0(x) := 1
2(ρ0(x)+ 1

ρ0(x)
) is of also concave up, hence the estimate

d0(x)≤ d0(0)+(d0(1)−d0(0))x = d̂− 1
2

(
d̂− 1

d̂

)
x

follows, which implies that

(
d̂−d0(x0)

)− 3
2 ≤ x

− 3
2

0

(
1
2

(
d̂− 1

d̂

))− 3
2

= g
3
2

(
3
8

(
d̂− 1

d̂

))− 3
2

. (31)

Since we assume that d̂ ≥ 2 the second term is bounded by (4/3)3.
With ρ0 (x0)> ρ0(1) = d̂ and d̂ ≥ 2 we also have the estimate

ρ2
0 (x0)

ρ2
0 (x0)−2

≤ d̂2

d̂2−2
≤ 2 . (32)

Moreover, for z ∈ ερ we have

|ϕ(z)| ≤ 1+ |z| ≤ 1+
1
2

(
ρ0 (x0)+

1
ρ0 (x0)

)
= 1+d0 (x0)

≤ 1+d0(0) = 1+ d̂ = d̂
(

1+
1
d̂

)
, (33)

13
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where the second term can be estimated by 3/2. Finally, the assertion follows from Lemma 4.1
and the estimates (30)-(33).

The integrals for the kernels V±d (r̃) and V±0,m(r̃) are of the form of Lemma 4.2. Note that the
estimates suggest that the largest error occurs for r̃ = 0, which we also observe numerically. We
briefly illustrate the behavior of the actually computed error below.

The case d± ≥ 1 Note that for we have d̂ = 2d±+1 = 3,5,7 . . . and thus Lemma 4.2 directly
applies as is confirmed by the semi-logarithmic plots in Figure 1.

The case d± = 0 In order to reproduce the error of the kernels V±d (r̂) in the worst case we
must have d̂ = 3, thus µ = 1/2. However, we also have to account for the factor (µm−µm+1)−

1
2

in (26), which we do by investigating the error of the composite quadrature rule given by√
2ht

M−1

∑
m=0

(
µm−µm+1)− 1

2 E±m,g(r̂, d̂) .

In Table 2 we observe that the error decays exponentially in g as predicted by Lemma 4.2, while
it grows only very slowly with M.

2 3 4 5

1e-09

1e-06

0.001
d

-
=1

d
-
=2

d
-
=3

g

∣ ∣ E− g
(0
,d
−
)∣ ∣ /∣ ∣ V

− d
(0
)∣ ∣

(a)
∣∣E−g (0,d−)

∣∣/∣∣V−d (0)
∣∣ vs. g

2 3 4 5

1e-09

1e-06

0.001
d

+
=1

d
+
=2

d
+
=3

g

∣ ∣ E+ g
(0
,d

+
)∣ ∣ /∣ ∣ V

+ d
(0
)∣ ∣

(b)
∣∣E+

g (0,d+)
∣∣/∣∣V+

d (0)
∣∣ vs. g

Figure 1: Maximal quadrature error at r̂ = 0 vs. quadrature order.

M = 1 M = 4 M = 7 M = 10 M = 13
g = 2 9.70×10−5 2.48×10−4 3.02×10−4 3.21×10−4 3.27×10−4

g = 3 2.42×10−6 6.21×10−6 7.55×10−6 8.02×10−6 8.19×10−6

g = 4 6.31×10−8 1.61×10−7 1.96×10−7 2.08×10−7 2.13×10−7

g = 5 1.68×10−9 4.31×10−9 5.24×10−9 5.57×10−9 5.69×10−9

Table 2:
√

2ht ∑
M−1
m=0

(
µm−µm+1

)− 1
2
∣∣E−g,m(0, d̂)∣∣/∣∣∣V−0,m(0)∣∣∣ for µ = 1/2.
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Choosing M The operator V±0,M(r̃) is evaluated directly, by adding panel contributions in-
stead of resorting to series expansions. From (25) it can be seen that the decay in space is like
exp(−r2/4ht µM). To obtain linear complexity in Ns only contributions in a neighborhood of radius
proportional to hs should be considered. The resulting truncation error should be of the same or-
der as the farfield error in the coarser levels. A comparison with (20) shows that, if the nearfield
radius is n f hs, then M should satisfy

(n f hs)
2

4htµM ∼ ρL
n2

f

4
.

This leads to

M ∼ logµ

(
h2

s

htρL

)
. (34)

4.3 Spatial level in FGT

From the previous discussion it follows that the kernel Vd(r̃) can be approximated by some
composite of the Gauss-Legendre quadrature rule. We write this as

Vd(r̂)≈


∑

g−1
j=0 G(r̂,2d−1+ x j)ŵ−j +∑

g−1
j=0 G(r̂,2d +1+ x j)ŵ+

j , d ≥ 2 ,
V−0,M(r̂)+∑

M−1
m=0 ∑

g−1
j=0 G(r̂, 1+µ

1−µ + x j)ŵ−j,m +∑
g−1
j=0 G(r̂,3+ x j)ŵ+

j , d = 1 ,

V+
0,M(r̂)+∑

M−1
m=0 ∑

g−1
j=0 G(r̂, 1+µ

1−µ + x j)ŵ+
j,m , d = 0 .

where x j ∈ [−1,1] are the Gauss points and ŵ±j and ŵ±j,m are a combination of the Gauss weights,
ϕ̂±(x j) and the pre-factors in (23) and (26). The layer operators with singular kernels V±0,M(r̂)
are local and evaluated directly, while the kernels G(r̂,d+x j) are Gaussians and evaluated using
the FGT.

We now determine the spatial level in which the fast Gauss transform with a given variance
δ should be computed. Since nearby temporal interactions are more peaked, the interactions
have to be computed in a finer spatial level than the smooth part of the pGFMM. Therefore we
introduce uniform refinements above level Ls, where the half length of a cube follows from (9),
too.

The appropriate level for a given variance δ is again determined from the scaling in the expo-
nential function. We have

exp

(
−|x− y|2

δ

)
= exp

(
−

(
h(`s)

s

)2

δ

∣∣r′+ x′− y′
∣∣2)

and as in the pGFMM we drop cube interactions in the FGT that are separated by more than
n f cube lengths. The truncation error for the argument of the exponential function can then be
bounded from below by

|x− y|2

δ
≥ 2−2`s

(
h(0)s

)2

δ
(2n f )

2 .
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This value should be larger than the corresponding value for the pGFMM in (20). From (10) and
(18) it follows that the spatial level Ls for the FGT is

Ls ≤ Ls + log4

(
32ntht

δ

)
. (35)

By setting

δ =

{
4ht(d +1) , d ≥ 1
4htµm , d = 0

in (35) as an upper bound for all quadrature nodes we finally get

Ls =

Ls +
⌊
log4

( 8nt
d+1

)⌋
, d ≥ 1

Ls +
⌊

log4

(
8nt
µm

)⌋
, d = 0 .

(36)

5 Numerical Results

In this section we investigate initial Dirichlet boundary value problems for Ω⊂ R3 with bound-
ary S over the time interval I := [0,0.5] by a direct Galerkin boundary integral approach. Thus
seek the solution qh ∈ Qds,dt

h (S× I) of

〈V qh,wh〉S×I = 〈
( I

2 +K
)

gD,wh〉S×I ∀wh ∈ Qds,dt
h (S× I) (37)

for which the a priori estimate [15, eq. (7.25)]

‖q−qh‖L2(S×I) ≤C max

(h2
s

ht

)1
4
,

(
h2

s

ht

)−1
4

(hds+1
s +hdt+1

t )‖q‖Hds+1,dt+1(S×I) (38)

holds. In all examples we impose an impulse point source located at x0 = (1.5,1.5,1.5)> 6∈Ω of
the form gD(y, t) = G(x0−y, t) with (y, t) ∈ (S× I). The simple motivation for this choice lies in
the fact that in this case we know the exact solution of (37), namely q(y, t) = ∂/∂nyG(x0−y, t) with
(y, t) ∈ (S× I), which allows us to verify the estimate (38). Moreover, we also know the exact
solution of the initial Dirichlet boundary value problem in the interior, i.e. u(ỹ, t) = G(x0− ỹ, t)
with (ỹ, t) ∈ (Ω× I), which enables us to compute the error at the interior, too.

In the following we divide this section into two types of examples regarding the space-time
scaling condition

hα
s ∼ ht . (39)

In Subsection 5.1 we show that our method maintains the optimal convergence rate at optimal
complexity for α = 2, in which case (38) simplifies to

‖q−qh‖L2(S×I) ≤C(hds+1
s +hdt+1

t )‖q‖Hds+1,dt+1(S×I) . (40)

We would like to emphasize that the Galerkin scheme does not require smooth domains, but
can deal with piecewise Lipschitz domains, too. Therefore we choose our domain to be a cube,
where we can still show (40).
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In Subsection 5.2 we intend to demonstrate that our method maintains optimal complexity
even for α� 2. Such a setting occurs in applications where complicated geometries need to
be resolved, while a rather coarse time discretization may still be sufficient to approximate the
solution. We investigate the limit where α→ 0 and thus (38) reduces to

‖q−qh‖L2(S×I) ≤C‖q‖Hds+1,dt+1(S×I) . (41)

This limit motivates the dyadic splitting and the application of the composite quadrature to ap-
proximate the time integrals of the Galerkin scheme with the FGT in space to solve the problem
efficiently. Moreover, it shows that the Galerkin scheme does not suffer from the geometrical
stiffness reported in [12].

Finally, we would like to remark that the solution of the linear systems (8) was obtained by
using a CG solver with a block diagonal preconditioner.

5.1 Heat diffusion with uniform refinement in space and time

In this subsection we solve (37) with Ω = [−0.5,0.5]3. Even though the estimate (40) for a
uniform refinement in space and time with α = 2 suggest to choose the polynomial ansatz orders
to be ds = 1 and dt = 0 in order to achieve quadratic convergence in the spatial variable, we show
results for the simpler case of qh ∈ Q0,0

h yielding linear order of convergence. In order to show
faster convergence, we evaluate the representation formula for u(x̃, t) with (x̃, t) ∈ (Ω× I) and
compute the rel. `2(I×T) error ‖u−uh‖`2(I×T)/‖u‖`2(I×T) with

‖u−uh‖`2(I×T) :=

(
∑

t j∈T
∑

x̃i∈I
(u(x̃i, t j)−uh(x̃i, t j))

2

) 1
2

(42)

where we choose a fixed set I := {x̃ : vertices of [−0.25,0.25]3} ⊂ Ω of spatial points and a
fixed set T := { j/64}32

j=1 ⊂ I of temporal points.
The coarsest discretization of S× I in our example consists of a uniform mesh with Ns = 384

triangles and Nt = 32 equidistant time steps. With nt = 1 this leads to Lt = 5 while we start with
the spatial root luster Ls = 0 leading to ρL = 8. It turns out that we can control the truncation error
by neglecting all interactions from spatial cubes further apart than n f = 3 and the interpolation
error by choosing the spatial- and temporal expansion orders to be q= 29 and p= 7, respectively.
These values had to be chosen this high, to resolve the error at the interior, while for the error on
the boundary much lower values would have been sufficient.

lev. NsNt Ls/Lt rel. L2(S× I) rel. `2(I×T) it. sol. [sec] mem. [GB]
0 12,288 0/5 1.23 10−1 8.08 10−4 13 1.92 102 1.48 10−1

1 196,608 1/7 6.02 10−2 2.57 10−5 13 6.12 102 4.60 10−1

2 3,145,728 2/9 2.99 10−2 3.22 10−6 12 1.08 104 1.99 100

3 50,331,648 3/11 1.49 10−2 5.70 10−7 12 1.85 105 1.07 101

Table 3: pGFMM results for uniform refinement in space and time.
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Table 3 shows the results for this uniform refinement in space and time. We compare the total
number of unknowns NsNt with the relative L2(S× I) error, the relative `2(I×T) error, the
solution time and the memory requirement, respectively. The relative L2(S× I) error clearly
reproduces the theoretical convergence rate O(

√
ht) of (40), while the relative `2(I×T) shows

O(ht) convergence of the interior solution. With n f = 3 the spatial truncation comes into play
at `s = 3. Hence, we should be able to observe optimal computational complexity O(NsNt) as
is confirmed in Figure 2. Moreover, due to causality we only need to keep track of moment-
and local expansions in two temporal clusters per level, i.e. neglecting logarithmic terms the
memory requirement behaves like O(Ns).
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Figure 2: Solution time vs. number of unknowns for uniform refinement in space and time.

5.2 Heat diffusion with refinement in space and fixed time discretization

In this subsection we investigate different spatial refinements for a fixed temporal discretization.
Violating the scaling in (39) with α� 2 results in a smaller and smaller ρL. Hence, we conclude
from (20) that we can not truncate the kernel in the computation of the temporal nearfield,
which results in O(N2

s ) complexity in terms of computation and storage. However, with the
approach proposed in Section 4 we can keep n f constant and derive from (34) with µ = 1/2 that
the number of FGTs in the temporal nearfield is O(log2 Ns). Neglecting this logarithmic part
and since we have localized the direct evaluations to O(Ns) we indeed end up with an O(Ns)
algorithm. Furthermore, from Figure 1 and Table 2 we conclude that g = 4 should be sufficient
for all quadratures in the temporal nearfield.
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5.2.1 Uniform spatial spatial refinement of 125 spheres

We solve (37) for 125 spheres with a diameter of 0.125, placed on a uniform grid with spacings
of 0.25, and centered at the origin. In refinement level zero each sphere is discretized by Ntr = 36
triangles. This is clearly too coarse of an approximation of the spheres, hence, in each further
level they are uniformly refined (see Figure 3). We choose Ls/Lt = 0/5 with nt = 1 to get ρL = 8
and find that n f = 2 is sufficient to control the truncation error. Moreover, the expansion orders
p/q = 3/23 lead to a bounded interpolation error.

In level zero we choose M = 2 to localize the direct evaluations of the nearfield. With Ls = 2
each cluster for the direct evaluation of the nearfield contains approximately two spheres in
refinement level zero, while in all subsequent levels M follows from (34) due to the refinement
in space. Contrary to the example with uniform refinement in space and time in Subsection

(a) coarsest discretization (36 triangles/sphere) (b) finest discretization (2304 triangles/sphere)

Figure 3: Heat diffusion through different spatial refinements of 125 spheres on a uniform grid.

5.1 we observe that the number of iterations does not remain constant in this example. Thus in
Figure 4 we plot the solution time/iterations vs. the number of spatial unknowns which shows
the optimal complexity of the method. Moreover, we observe that the relative L2(S× I) error is
bounded, which is in agreement with (41).

lev. Ntr Ns(Nt = 32) M rel. L2(S× I) it. sol. [sec] mem. [GB]
0 36 4,500(32) 2 3.63 10−2 13 1.17 102 1.09 100

1 144 18,000(32) 4 2.51 10−2 17 1.41 103 4.84 100

2 576 72,000(32) 6 2.23 10−2 20 6.60 103 2.09 101

3 2304 288,000(32) 8 2.11 10−2 26 3.55 104 1.00 102

Table 4: pGFMM results for 125 spheres with spatial refinement (with fast
nearfield evaluation).

For comparison we show in Table 5 the results obtained without the fast nearfield evaluation pre-
sented in Section 4. In refinement level two we already observe the quadratic complexity, which
is the reason why we could not solve level three efficiently anymore. Another observation is that
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Figure 4: Solution time/iterations vs. number of spatial unknowns Ns for uniform spatial refine-
ment of 125.

without the fast nearfield evaluation the number of iterations in the CG is bounded (compare
columns 6 in Table 5 and 4). This is due to the fact that with the fast nearfield evaluation we also
weaken the block diagonal preconditioner used within the CG solver.

lev. Ntr Ns(Nt = 32) M rel. L2(S× I) it. sol. [sec] mem. [GB]
0 36 4,500(32) 0 3.63 10−2 12 3.98 101 1.06 100

1 144 18,000(32) 0 2.51 10−2 13 2.77 102 9.88 100

2 576 72,000(32) 0 2.23 10−2 13 1.47 104 1.34 102

Table 5: pGFMM results for 125 spheres with spatial refinement (without fast
nearfield evaluation).

5.2.2 Different number of spheres (Nsp) with const. number of triangles per sphere

In this example we want solve (37) for different agglomerations of spheres with a constant
number of triangles per sphere, i.e. we place more and more spheres with a constant ratio of
radius/distance on a uniform grid in [−0.5,0.5]3. Again we want to keep the temporal dis-
cretization fixed by splitting I := [0,0.5] into Nt = 8 equidistant time steps.

With such a refinement scheme we get Ns =O(Nsp) instead of Ns =O(h−2
s ). Hence we can not

determine M from (34) but we have M = O(logµ N−1
sp ) and with µ = 1/2 we get M = O(log2 Nsp).

Therefore, the spatial level where to perform the direct evaluations for the nearfield jumps with
every other M which somehow dictates the refinement scheme.

We start by placing one sphere with r = 0.4 at the center of the unit cube and discretize it with
642 uniform triangles. In each subsequent refinement level we double the number of spheres in
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linear direction scaling their radius by a factor of 1/2 and keeping the number of elements per
sphere constant. This way we end up with more and more spheres. We choose Ls/Lt = 0/3 to
end up with ρL = 2 and compared to Example 5.2.1 we find that n f = 3 and q/p = 19/3 are
sufficient to control the truncation- and interpolation error, respectively.

Figure 5 and Table 6 illustrate that we can also maintain almost optimal complexity if we
increase the number of geometric features rather than refine the mesh.
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Figure 5: Solution time/iterations vs. number of spatial unknowns Ns for a different number Nsp

of spheres.

lev. Nsp Ns(Nt = 8) M rel. L2(S× I) it. sol. [sec] mem. [GB]
0 1 642(8) 0 9.04 10−2 11 1.17 102 9.67 10−2

1 8 5,136(8) 2 8.52 10−2 15 3.36 102 1.10 100

2 64 41,088(8) 4 8.33 10−2 25 1.10 103 1.72 101

3 512 328,704(8) 6 8.31 10−2 41 1.21 104 1.95 102

Table 6: pGFMM results for a different number Nsp of spheres.

5.2.3 Ellipsoid with increasing curvature

In our last example we solve (37) where we choose our domain Ω to be the ellipsoid(x1

ε

)2
+
(x2

ε

)2
+ x2

3 <
1
4

and ε−1 ∈ {1,2,4,8,16}. Since the curvature of the domain increases we have to refine the
spatial discretization accordingly, i.e. we increase Ns = O(ε−1), while we keep the temporal
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discretization constant at Nt = 32. We choose the space time clustering parameters to be Ls/Lt =
0/5 leading to ρL = 8 and therefore p/q = 3/23 and n f = 2 as in Subsection 5.2.1. With µ = 1/2

we start with an initial M = 0, which we increase with every refinement level. This leads to
an additional spatial cluster level in every other refinement. Thus the number of elements per
FGT cluster is bounded, which leads to an optimal computational cost for the evaluation of the
nearfield.

lev. ε−1 Ns(Nt = 32) M rel. L2(S× I) it. sol.[sec] mem.[GB]
0 1 600(32) 0 8.08 10−2 7 5.75 101 7.61 10−2

1 2 1,210(32) 1 6.09 10−2 10 8.29 101 1.58 10−1

2 4 2,178(32) 2 5.68 10−2 11 1.67 102 3.01 10−1

3 8 4,312(32) 3 5.52 10−2 13 3.60 102 7.72 10−1

4 16 8,822(32) 4 5.43 10−2 15 1.02 103 2.02 100

5 32 17,024(32) 5 5.38 10−2 18 2.20 103 4.62 100

Table 7: pGFMM results for ellipsoid with increasing curvature.

From the data in Table 7 it can be concluded that the complexity is again almost optimal. More-
over, we see that while the spatial mesh must be refined with increasing curvature, it does not
appear to be necessary to refine the temporal step size at the same time.
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Figure 6: Solution time vs. number of unknowns Ns for an ellipsoid with increasing curvature ε.

6 Conclusion

We presented an efficient implementation of a Galerkin BEM for the transient heat equation
using the parabolic FMM algorithm. Due to the improved evaluation of the temporal nearfield
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by a combination of numerical quadrature and the FGT our method allows a fast application
of the resulting layer potentials for any relation between temporal- and spatial discretization
parameters.

For simplicity we only presented results of the homogeneous initial Dirichlet boundary value
problem obtained in the simplest possible conforming test- and trial space, which is the space-
time tensor product space of piecewise constant functions in space and time.

Of course our method can be extended to higher orders by using higher order test- and trial
functions. However, note that when going to higher orders in time, one has to use piecewise
discontinuous polynomial test- and trial functions in order to preserve a block Toeplitz structure.
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