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Abstract

Time domain boundary element formulations can be established either directly in time
domain or via Laplace or Fourier domain. Somewhere in between are the convolution
quadrature based boundary element formulations which utilize the Laplace domain funda-
mental solution but establish a time stepping procedure. Up to now in applications mostly
backward differential formulas of second order are used as the underlying multistep method.
However, in recent mathematical literature also Runge-Kutta methods have been applied.
Here, the use of Runge-Kutta methods is explained in detail and some numerical studies are
given. In these studies the backward difference based procedures are compared to Runge-
Kutta methods for a non-smooth problem. An `2 norm of the error is used as the basis
of comparison, the convergence of which is investigated theoretically as well. The results
confirm that the usage of the new techniques is preferable with regard to less numerical
oscillations in the solution and better representation of wave fronts.
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1 Introduction

The Boundary Element Method (BEM) in time domain is especially important for treating wave
propagation problems in semi-infinite or infinite domains. In this application the main advan-
tage of this method becomes obvious, i.e., its ability to model the radiation condition correctly.
Certainly this is not the only advantage of a time domain BEM but very often the main motiva-
tion as, e.g., in earthquake engineering or scattering problems. The mathematical background of
time-dependent boundary integral equations is summarized by Costabel [11].

The proposed methodologies to treat time dependent problems with the BEM can be split in
two main groups: direct computation in time domain (e.g., [25, 13]) or inverse transformation
combined with a computation in Laplace domain (e.g., [12]). Not only due to the dependency
of numerical inverse transformations on some sophisticated parameter, but also due to physical
reasons it is more natural to work in the real time domain and observe the phenomenon as it
evolves. But, as all time-stepping procedures, such a formulation requires an adequate choice
of the time step size. An improperly chosen time step size leads to instabilities or numerical
damping [30, 9, 15]. An improved and stable version of the underlying integral equation has
been published by Bamberger and Ha-Duong [3] and Aimi and Diligenti [2]. Both rely on an
energy principle and require two temporal integrations.

Beside these improved approaches there exists the possibility to solve the convolution integral
in the boundary integral equation with the so-called Convolution Quadrature Method (CQM)
proposed by Lubich [20, 21]. Applications to hyperbolic and parabolic integral equations can
be found in [24, 22]. The CQM utilizes the Laplace domain fundamental solution and results
not only in a more stable time stepping procedure but also damping effects in case of visco-
or poroelasticity can be taken into account (see [34, 35, 32]). The motivation to use the CQM
in these engineering applications is that only the Laplace domain fundamental solutions are
required. This fact is also used for BE formulations in cracked anisotropic elastic [37] or piezo-
electric materials [17]. Another aspect is the better stability behavior compared with the above
mentioned formulation. For acoustics this may be found in [1] and for elastodynamics in [33].
Recently work has begun in investigating CQM for electromagnetism [36]. In the framework of
fast BE formulations the CQM is used in a Panel-clustering formulation for the Helmholtz equa-
tion by Hackbusch et al. [18] and in a Multipole formulation by Saitoh et al. [31]. Recently, some
newer mathematical aspects of the CQM have been published by Lubich [23]. Further, interest
in high order Runge-Kutta based CQM has lately increased due to its good performance in ap-
plications, see [4] for numerical experiments in acoustics and [5, 8, 10] for convergence results.
In this paper, the Runge-Kutta based CQM is described in an engineering way and emphasis is
put on the numerical experiences. The mathematical background can be found in [4, 7].

In the following, matrices and vectors are denoted by sans serif characters, e.g., A, and tensors
by bold faced letters. The Laplace transform of a function f (t) is denoted by f̂ (s) with the
complex Laplace parameter s ∈ C s.t. ℜs > 0.

2



Preprint No 03/2011 Institute of Applied Mechanics

2 Convolution Quadrature with Runge-Kutta methods

The Convolution Quadrature Method (CQM) approximates a convolution integral by a finite
sum

y(t) = f ∗g(t) =
t∫

0

f (t− τ)g(τ)dτ  y(n∆t)≈ yn =
n

∑
k=0

ω∆t
n−k
(

f̂
)

gk (1)

with the integration weights ω∆t
n−k

(
f̂
)

determined by the Laplace transform of the function f̂ (s)
and the underlying multistep method. The time step size is denoted by ∆t, which is assumed to
be a uniform decomposition of the total time T . An index ()n denotes here and in the following
the function at the discrete time step n∆t. The derivation of the formula (1) will be recalled in its
essential steps. Details are given at those points in the derivation which are different for Runge-
Kutta methods. The other details may be found in [33]. A more abstract derivation avoiding the
inverse Laplace integral can be found for the Runge-Kutta methods in [4].

However, before the CQM is given some notation and the characteristic function of Runge-
Kutta methods have to be provided.

2.1 Runge-Kutta methods

A comprehensive presentation of Runge-Kutta methods may be found in the book by Hairer and
Wanner [19]. Here, only the necessary aspects for the CQM will be given.

Let a Runge-Kutta method of (classical) order p and stage order q be given by its Butcher

tableau
c A

bT with A ∈ Rm×m, b,c ∈ Rm and m is the number of stages. A Runge-Kutta

method is said to be A-stable if the stability function

R(z) = 1+ zbT (I− zA)−1
1, 1 := (1,1, . . . ,1)T , (2)

is bounded as

|R(z)| ≤ 1, for ℜz≤ 0 and I− zA is non-singular for all ℜz≤ 0. (3)

The experience with the multistep based CQM in the application on BEM shows that the as-
sumption of A-stability is necessary (see, e.g., [33]). In order to be able to make use of the
convergence results proved in [8], the following assumptions will be made on the Runge-Kutta
method.

Assumption 2.1. 1. The Runge-Kutta method is A-stable with (classical) order p ≥ 1 and
stage order q≤ p.

2. The stability function satisfies |R(iy)|< 1 for all real y 6= 0.

3. R(∞) = 0.

4. The Runge-Kutta coefficient matrix A is invertible.

3
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To simplify expressions assume further that bT A−1 = (0,0, . . . ,1) holds, i.e., that the method
is stiffly accurate [19] or also called L-stable. This in turn implies that cm = 1. Radau IIA and
Lobatto IIIC are examples of Runge-Kutta methods satisfying all of the above conditions. In a
Runge-Kutta method computations are done not only at the equally spaced points tn = n∆t but
also at the stages tn + c`∆t, `= 1,2, . . . ,m. Note that cm = 1 implies tn + cm∆t = tn+1.

The description of a Runge-Kutta method with one formula is not straightforward due to the
implicit definition of the stages. Hence, in the following the Runge-Kutta method is given for
the specific differential equation

x′ (t) = sx(t)+g(t) with x(t = 0) = 0 (4)

which shows up in the derivation of the CQM. An m-stage Runge-Kutta method for this equation
is

xn+1 = xn +∆tbT (sXn +gn) (5a)

Xn = xn1+∆tA(sXn +gn) . (5b)

In (5), the right hand side g(tn + ci∆t) at the stages ci is collected in the vector gn. Further, Xn

denotes the vector of approximations at the stages and time step n.
For the derivation of the CQM it is necessary to find the characteristic function of the method.

In case of multistep methods it is the quotient of the characteristic polynomials. For Runge-
Kutta methods a similar expression can be given. For this, (5) is reformulated as difference of
stages

1
∆t

(Xn+1−Xn) = A(sXn+1 +gn+1)−
(
A−1bT )(sXn +gn) (6)

by inserting the solution xn+1− xn of (5a) into (5b). Next, a formal z-transform is performed
yielding the infinite series

z−1−1
∆t

∞

∑
n=0

Xnzn =
((

z−1−1
)

A+1bT )
[

s
∞

∑
n=0

Xnzn +
∞

∑
n=0

gnzn

]

∆(z)
∆t

∞

∑
n=0

Xnzn = s
∞

∑
n=0

Xnzn +
∞

∑
n=0

gnzn

(
∆(z)
∆t
− sI

) ∞

∑
n=0

Xnzn =
∞

∑
n=0

gnzn

(7)

with z ∈ C and the assumption that Xn and gn for n ≤ 0, i.e., t ≤ 0 is zero. The characteristic
function is defined as

∆(z) =
(

A+
z

1− z
1bT

)−1

. (8)

Under the assumption of A- and L-stability, as mentioned above, the characteristic function can
be simplified to

∆(z) = A−1− zA−1
1bT A−1 . (9)

The solution of the differential equation (4) at tn+1 is given by the solutions at the stages Xn

which can be calculated with
xn+1 = bT A−1Xn . (10)

This expression can be found by inserting (5b) in (5a).
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2.2 Runge-Kutta based convolution quadrature

The explicit formula for computing the integration weights in (1) is derived in the same manner
as in the original work of Lubich [20]. The function f (t) in the convolution integral is replaced
by the inverse Laplace transform of its Laplace transformed function f̂ (s), i.e.,

y(t) =
1

2πi

c+i∞∫
c−i∞

f̂ (s)
t∫

0

es(t−τ)g(τ)dτds . (11)

The integral inside the complex integral is a solution of the differential equation (4) and, hence,
can be approximated by the Runge-Kutta solution (10) after the discretisation of the total time
T in N equidistant time steps ∆t. To insert the discrete solution (10) in (11) as well a formal
z-transform is applied. This yields

∞

∑
n=0

yn+1 zn =
1

2πi

c+i∞∫
c−i∞

f̂ (s)bT A−1
(

∆(z)
∆t
− sI

)−1

ds
∞

∑
n=0

gnzn

= bT A−1 f̂
(

∆(z)
∆t

) ∞

∑
n=0

gnzn .

(12)

In the last step, the residue theorem has been applied. Note, different to the CQM for a multistep
method the argument of the function f is a matrix and, hence, the expression itself as well. The
next step is the power series expansion

f̂
(

∆(z)
∆t

)
=

∞

∑
n=0

W∆t
n
(

f̂
)

zn (13)

with the computation of the coefficients

W∆t
n
(

f̂
)
=

1
2πi

∮
|z|=R

f̂
(

∆(z)
∆t

)
z−n−1 dz =

R−n

2π

2π∫
0

f̂

(
∆
(
Reiϕ)

∆t

)
e−inϕ dϕ

≈ R−n

L

L−1

∑̀
=0

f̂

(
∆
(
Rζ−`

)

∆t

)
ζn` with ζ = ei 2π

L , 0 < R < 1.

(14)

The remaining steps are to insert the series (13) into (12), using Cauchy’s formula for the product
of two infinite series, and comparing the coefficients of the final series to obtain

yn+1 = bT A−1
n

∑
k=0

W∆t
n−k
(

f̂
)

gk . (15)

This is formally the same result as for multistep methods but the essential difference is that the
integration weights are now matrices with the size of the stages. Further, the results are given for
time step (n+1)∆t and not for n∆t. This results from (10) and is, obviously, the consequence
from collecting the results at all stages in the next time step. Last, it should be recalled that
bT A−1 = (0,0, . . . ,1) has been assumed.
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3 A simple analytical study

In this section, the convolution

t∫
0

δ(t− τ−1)g(τ)dτ = g(t−1) (16)

is considered. Here, δ(t) is the Dirac delta distribution.

3.1 Backward Euler discretization

Firstly, the above convolution (16) is discretised with the simplest convolution quadrature based
on the backward Euler method. Note that backward Euler is also often called the backward
differentiation formula of order 1 (BDF 1), but is also equivalent to the 1-stage Radau IIA Runge-
Kutta method. Its characteristic function is given by

∆(ζ) = 1−ζ

and since the Laplace transform of δ(t−1) is e−s, the convolution weights for (16) are given by
the expansion

e−(1−ζ)/∆t =
∞

∑
j=0

w∆t
j ζ j, with w∆t

j =
1
j!

e−
1
∆t ∆t− j. (17)

To further simplify matters let g(t) = H(t), i.e., the Heaviside function defined by

H(t) =

{
1 if t ≥ 0
0 otherwise.

(18)

The convolution quadrature approximation of (16) is then given by

y∆t
n+1 =

n

∑
j=0

w∆t
j H(tn+1− t j) =

n

∑
j=0

w∆t
j = e−

1
∆t

n

∑
j=0

1
j!

∆t− j . (19)

The standard theory of convolution quadrature cannot be applied to this case, the main reason be-
ing that H(t) is not a smooth function of t ∈R. However, the simple setting allows to investigate
the properties of the discrete solution directly. The results are summarized in the following.

Proposition 3.1. Let ∆t > 0. Then, with the above definitions, it can be proved that:

(a) With ∆t > 0 fixed,
lim
n→∞

y∆t
n = 1.

(b) w∆t
j > 0 for all j ≥ 0 and, hence, with ∆t > 0 fixed, y∆t

n is a strictly increasing sequence
with 0 < y∆t

n < 1.

6
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(c) For any fixed t ∈ [0,1)∪ (1,∞),

lim
∆t→0
|y∆t

t/∆t+1−H(t−1)|= 0,

where it is implicitly assumed that ∆t is always chosen so that t/∆t ∈ N.

Proof. Part (a) follows directly from (19) and part (b) from (17) and (a).
To prove (c), let first t = 1+ ε for some ε > 0 and let n = (1+ ε)/∆t. Then

1− y∆t
n+1 = e−

1
∆t

(
e

1
∆t −

n

∑
j=0

1
j!

1
∆t j

)
= e−

1
∆t

∞

∑
j=n+1

1
j!

1
∆t j

≤ e−
1
∆t

∞

∑
j=n+1

1√
2π j

(
e

j∆t

) j

≤ 1√
2πn

∞

∑
j=n+1

(
1

j∆t
e1− 1

j∆t

) j

,

where use is made of Stirling’s approximation. It is easy to check that f (x) = x−1e1−x−1
< 1 is

a decreasing function for x > 1 and, hence,
∞

∑
j=n+1

(
1

j∆t
e1− 1

j∆t

) j

≤
∞

∑
j=n+1

f (n∆t) j =
f (n∆t)n+1

1− f (n∆t)
=

f (1+ ε)n+1

1− f (1+ ε)
→ 0,

as n→ ∞. From this it follows that

|1− y∆t
n+1|= 1− y∆t

n+1→ 0

as ∆t→ 0. With that, the result for t > 1 is proved.
Finally let t = n∆t < 1. Then

y∆t
n+1 = e−n/t

n

∑
j=0

1
j!

(n
t

) j
≤ e−n/t + e−n/t

n

∑
j=1

(
ne
jt

) j

= e−n/t +
n

∑
j=1

(
n
jt

e1− n
jt

) j

= e−n/t +
n

∑
j=1

[(
n
jt

e1− n
jt

) jt/n
]n/t

.

Similarly as above, notice that g(x) = (xe1−x)1/x = ex−1(1+logx)−1 < 1 and g′(x) < 0 holds for
x > 1 and, hence, g(n/( jt))≤ g(1/t) for j = 1, . . . ,n and

y∆t
n+1 ≤ e−n/t +n

(
e1−1/t

t

)n

→ 0

as n→ ∞, i.e., as ∆t→ 0.

The principal reason for such nice properties of the discrete solution in the above example is
the fact that in this case all the weights are positive. For instance, the consequence of this is
that there is no over or undershoot, the discrete solution remains in the interval [0,1]. However,
as soon as more complicated methods are considered this positivity of weights is lost. Such
examples are studied in section 4, whereas in Fig. 1 only a numerical comparison between the
convolution quadrature based on backward Euler approximation and the BDF 2 based results
is shown. For the latter method the overshoot is obvious and does not seem to disappear with
decreasing ∆t.
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Figure 1: In the left column, the weights of the BDF 1 (backward Euler) and the BDF 2 based
convolution quadrature weights for the function f̂ (s) = e−s are shown. In the right
column, the respective convolution quadrature approximations of (16) are displayed.

3.2 An L2(R) convergence result

In a weaker norm such as L2(R), it is possible to prove convergence for a larger family of
Runge-Kutta convolution quadratures. To do this, let g(t) ∈ L2(R) with g(t) ≡ 0 for t < 0 and
let

|(L g)(s)| ≤C|s|−µ, ∀ℜs > 0,

with µ > 1/2.
The following definitions will be used

y(t) =
t∫

0

δ(t− τ−1)g(τ)dτ = g(t−1)

and

y∆t(t) = bT A−1
∞

∑
j=0

W∆t
j g(t− t j +(c−1)∆t),

where W∆t
j ∈ Rm×m are the weights of a RK method with generating function ∆(z)

e−∆(z)/∆t =
∞

∑
j=0

W∆t
j z j

8
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and g(t + c∆t) ∈ Rm denotes the vector

g(t + c∆t) = (g(t + c1∆t),g(t + c2∆t), . . . ,g(t + cm∆t))T ∈ Rm,

in particular
g(tn + c∆t) = gn,

with gn as in (5). Note that in grid points the definition matches the CQ approximation of∫ t
0 δ(t− τ−1)g(τ)dτ as defined in the previous sections

yn+1 = bT A−1
n

∑
k=0

W∆t
n−kgk = bT A−1

∞

∑
j=0

W∆t
j gn− j = y∆t(tn+1).

Theorem 3.2. Let ∆(ζ) be the generating function of an A-stable RK method of order p, that
satisfies the further assumptions listed in Assumption 2.1. Then, under the above assumptions
on g, it holds that

‖y∆t − y‖L2([0,T ]) = O(∆tβ)

with

β = min
{
(2µ−1)p
2(p+1)

, p
}
.

Proof. Clearly y∆t and y are L2([0,T ]) functions and their Laplace transforms are given respec-
tively by

(
L y∆t)(s) = bT A−1

(
∞

∑
j=0

W∆t
j e−st j

)
es∆t(c−1)(L g)(s)

= bT A−1e−∆(e−s∆t)/∆tes∆t(c−1)(L g)(s)

(see also (12)) and
(L y)(s) = e−s(L g)(s).

Let s = σ+ iω with σ > 0 constant and ω ∈ R. Then by Parseval’s identity

‖y− y∆t‖2
L2[0,T ] ≤Ce2σT

∞∫
−∞

1
|s|2µ

∣∣∣e−s−bT A−1e−∆(e−s∆t)/∆tes∆t(c−1)
∣∣∣
2

dω

=Ce2σT




∫
|ω|≤(∆t)−p/(p+1)

· dω+
∫

|ω|>(∆t)−p/(p+1)

· dω




=Ce2σT (I1 + I2).

Due to the assumptions made on the RK method (in particular the A-stability) the bound

‖e−∆(e−s∆t)/∆t‖ ≤ const

9
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holds in any matrix norm ‖ · ‖. Therefore integral I2 can be estimated as

I2 ≤ const
∫

|ω|>(∆t)−p/(p+1)

1
|s|2µ dω = O(∆t(2µ−1)p/(p+1)).

To estimate integral I1 the approximation property

bT A−1e−∆(e−s∆t)/∆tes∆t(c−1) = e−s + sp+1O(∆t p)

proved in [8, Lemma 4] can be used to show that

I1 ≤ const ∆t2p
∫

|ω|<(∆t)−p/(p+1)

|s|2p+2−2µ dω = O(∆t(2µ−1)p/(p+1))+O(∆t2p).

With this the proof is complete.

Remark 3.3. The above proof can easily be modified to obtain the same result for linear mul-
tistep methods. Discrete `2 error estimates for linear multistep based CQ have been given in
[22]. These, however, require more smoothness of g than the numerical examples in this paper
possess.

Let g(t) = H(t), then clearly g satisfies the assumptions of the theorem with µ = 1, therefore
the expected convergence order is p/(2p+ 2). Numerical experiments confirming this result
are illustrated in Fig. 2 with one difference: instead of the L2(R) error, the discrete `2 error is
computed

e∆t =

(
∆t

N

∑
j=0

(y(tn)− y∆t
n )2

)1/2

, tN = T . (20)

As can be seen from Fig. 2, the numerically computed rates closely match the rates predicted by
the above theorem. Only for the 3-stage method there is a slight discrepancy. Here the expected
rate is 5/12≈ 0.42 and the numerically computed is 0.45. The rate is however decreasing with
∆t so that this does not contradict the theoretical result.

4 Numerical study for a model convolution integral

To keep the study as simple as possible, only two functions are convoluted, which have focus
on the application in boundary element formulations for wave propagation problems. Hence, in
principle a wave in time is simulated with the two functions

f (t) = δ(t−a) g(t) = H (t)−H (t−b)

⇒
t∫

0

f (t− τ)g(τ)dτ = H (t−a)−H (t−a−b) .
(21)

10
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Figure 2: The convergence of the `2 error and the numerically computed rates for m-stage Radau
IIA based CQ of non-smooth data; see (16). Note that the order of the m-stage method
is p = 2m−1.
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√
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√
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√
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(c) 3-stage Radau IIA
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Table 1: Butcher tableaus of the used Runge-Kutta methods
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In the following, the behavior of the CQM with respect to the chosen Runge-Kutta method
compared to the multistep method Backward Differential Formula of order two (BDF 2) is nu-
merically studied. The used Runge-Kutta methods are the 2-stage and 3-stage Radau IIA and
Lobatto IIIC methods. The respective Butcher tableaus can be found in Tab. 1.

Before discussing the results a remark must be added on how to compute the integration
weights in (15). The Laplace transform of function f (t) = δ(t−a) in (21) is an exponential
function. Hence, the expression

e−a
∆(Rζ−`)

∆t = Y diag
(

e−
a
∆t λ1 , . . . ,e−

a
∆t λm
)

Y−1 (22)

has to be computed. The relation (22) is true if there exists an invertible matrix Y and a diagonal
matrix Λ = diag(λ1, . . . ,λm) such that ∆

(
Rζ−`

)
= YΛY−1 holds. In [4], it has been shown that

there is only a single value of Rζ−`, respectively two such values, for which ∆
(
Rζ−`

)
is not

diagonalizable in the case of the 2-stage Radau IIA method and, respectively, the 3-stage Radau
IIA method. These particular values are very unlikely to be hit during a computation, still the
condition number of the basis of eigenvectors Y should, as a precaution, be examined. In this
unlikely case, a slight change of R will solve the problem.

First, the above mentioned Runge-Kutta methods are compared, where RN =
√

10−5 is used
(see, [20]). The total time is set to T = tN = 4.5s and the parameters are chosen with a = 0.5
and b = 3. The total amount of time steps has been chosen to be N = 512 for the BDF 2, which
results in a time step size of ∆t = 0.0088s. As for an m-stage Runge-Kutta method the functions
have to be evaluated not only at the time steps but also at the stages, for a fair comparison
(results’ quality compared to effort) in case of the 2-stage method N/2 = 256 time steps and for
the 3-stage method N/3 = 170 time steps are selected. This results obviously in larger time step
sizes. Still, also with this choice the numerical effort for the Runge-Kutta methods are slightly
higher due to the matrix evaluations.

In Fig. 3, the results for the test functions (21) are displayed for the BDF 2, the Radau IIA,
and Lobatto IIIC method. Both Runge-Kutta methods are displayed for their 2-stage version
because the principal behavior is the same for the 3-stage version. It is obvious that all methods
have oscillations around the jump. They differ only in the influence of these oscillations and
when they appear. In Fig. 3b, a zoom at the jump is displayed for the same setting. It shows
that the oscillations are the smallest in amplitude and area of influence for Radau IIA. This
method has some effects before and after the jump. The BDF 2 has only some influence after
the jump, however with a large amplitude. Comparable in size of these disturbances is Lobatto
IIIC but in this case the disturbances are concentrated in front of the jump. The 3-stage variants
of both Runge-Kutta methods have smaller disturbed areas and slightly smaller amplitudes. This
is shown in Fig. 4 again with a zoom at the jump. The conclusion out of these studies is that
Radau IIA seems to be the preferable method for functions with jumps.

The reason for this result can be found if the complex frequencies used for determining the
integration weights are explored. For the Runge-Kutta methods these weights are defined in
(14). Essentially, the eigenvalues of the matrix function ∆(Rζ−`)/∆t determine the used complex
frequencies s`. In case of the BDF 2 this matrix function degenerates to a scalar function. These
complex values are plotted in Fig. 5. Obviously, Radau IIA include the highest frequencies and,
hence, is better suited to represent such a transient function as a jump. The 2-stage Lobatto
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(b) Zoom at the jump

Figure 3: Convolution f ∗ g from (21) for different Runge-Kutta methods and the multistep
method BDF 2

13



Preprint No 03/2011 Institute of Applied Mechanics

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0

0.2

0.4

0.6

0.8

1

1.2

time t [s]

f∗
g

Radau IIA, 2-stage
Radau IIA, 3-stage
Lobatto IIIC, 2-stage
Lobatto IIIC, 3-stage
Exact

Figure 4: Approximations for different stages of the Runge-Kutta methods

IIIC has the smallest frequencies and this results in the large oscillations. The exception is the
BDF 2. It also has large frequencies but compared to Radau IIA (3-stage) the relation ℜs`/ℑs` is
larger. It may be concluded that the 3-stage Radau IIA is the best choice. However, having in
mind the application in BEM this might be not the case. In a BE formulation the fundamental
solution consists of exponential functions like g in (21) and must be integrated, i.e., an oscillating
function has to be integrated. Further, thinking on fast methodologies higher frequencies may
cause problems. Fortunately, the real part of the complex frequency acts like a damping factor.
Consequently, it is interesting to know how the complex frequencies are distributed in the area
with small real part. A zoom close to ℜs = 0 is displayed in Fig. 5b. It is observed that the
distance to a zero real part is equal for all methods. This distance is governed by two factors. If
the value of R tends to its limit 1 the graph comes closer to the imaginary axis. This happens
if either N is increased or ε tends to 1. The second influencing factor is the time step size
∆t. Decreasing of ∆t increases overall the frequencies which is somehow clear if the CQM is
seen as an inverse transformation. Whereas changing R within some limits (10−40 < ε < 1, for
ε= 10−40 all calculations broke down) does not influence the final result at all, changing the time
step size must have some influence. In Fig. 6, the solution of the test example is displayed for
different time step sizes ∆t (2-stage Radau IIA). The results confirm the expectation that smaller
time steps resolve the jumps better, however, they influence the amplitude of the oscillations.
It should be remarked that this effect is much less pronounced for the Runge-Kutta methods
compared to BDF 2. This is directly correlated to the higher imaginary parts of the frequencies
used (see (14) for the scaling of the argument of f̂ with ∆t). Finally, it should be remarked that
an increase of N pushes R→ 1 and has no influence on the results as long as realistic values are
chosen.
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Figure 5: Real part versus the imaginary part of the used complex frequencies s` for the data in
the above study
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Figure 6: Convolution f ∗g from (21) for different time step sizes (2-stage Radau IIA)

5 Boundary element formulation with Runge-Kutta methods

Next the application of the Runge-Kutta based CQM in a collocation boundary element formu-
lation is presented. Certainly, the same can be done for a Galerkin formulation. To keep the
presentation as simple as possible the scalar wave equation is used as model problem. Obvi-
ously, the principle can be transferred to other hyperbolic problems, e.g., for elastodynamics it
can be found in [7].

5.1 Governing equations

Describing with x and t the position in the three-dimensional Euclidean space R3 and the time
point from the interval (0,∞) the scalar wave equation for the pressure field p(x, t) is

c2∇2 p(x, t)− ∂2 p
∂t2 (x, t) = 0 (x, t) ∈Ω× (0,∞)

p(y, t) = gD(y, t) (y, t) ∈ ΓD× (0,∞)

q(y, t) = gN(y, t) (y, t) ∈ ΓN× (0,∞)

p(x,0) =
∂p
∂t

(x,0) = 0 (x, t) ∈Ω× (0) .

(23)

The wave velocity is defined by

c =

√
K
ρ

(24)

with the compressibility K and the density ρ of the inviscid fluid. The co-normal derivative
defines the normal flux

q(y, t) = (T p)(y, t) = lim
Ω3x→y∈Γ

[∇p(x, t) ·n(y)] , (25)

16



Preprint No 03/2011 Institute of Applied Mechanics

with the outward normal n. The spatial domain Ω has the boundary Γ which is subdivided into
two disjoint sets ΓD and ΓN at which boundary conditions are prescribed. The Dirichlet bound-
ary condition is given with gD and the Neumann boundary condition with gN . The boundary
conditions have to hold for all times. In the last statement of (23), the condition of a quiescent
past is given which implies homogeneous initial conditions.

For the wave equation (23), a representation formula can be derived (see, e.g., [29]) and
the trace to the boundary yields the boundary integral equation. Using operator notation, this
boundary integral equation reads

(V q)(x, t) = C (x)p(x, t)+(K p)(x, t) (x, t) ∈ Γ× (0,∞) . (26)

The introduced operators are the single layer operator V , the integral-free term C , and the double
layer operator K which are defined as

(V q)(x, t) =
t∫

0

∫
Γ

P(x−y, t− τ)q(y,τ)dΓy dτ (27a)

C (x) = I + lim
ε→0

∫
∂Bε(x)∩Ω

(TyPstatic)(x−y)dΓy (27b)

(K p)(x, t) = lim
ε→0

t∫
0

∫
Γ\Bε(x)

(TyP)(x−y, t− τ)p(y,τ)dΓy dτ . (27c)

The surface measure dΓy carries its subscript in order to emphasize that the integration variable
is y. Similarly, Ty indicates that the normal derivative involved in the computation of the surface
flux is taken with respect to the variable y. The function P(x−y, t− τ) denotes the fundamental
solution for the wave equation (23). In the expressions (27), Bε(x) denotes a ball of radius ε
centered at x and ∂Bε(x) is its surface. In (27b), the integral free term is only determined by the
static counterpart of the operator, i.e., Pstatic =

1
4πr with r = |x− y|. It corresponds to the solid

angle at the boundary point with the value 1
2 for smooth boundaries. Note that the single layer

operator (27a) involves a weakly singular integral over Γ. Further, it should be remarked that the
operator notation in (27a) and (27c) includes the convolution operator in time.

5.2 Semi-discrete equations

Let the boundary Γ of the considered domain be represented in the computation by an approxi-
mation Γh which is the union of geometrical elements

Γh =
E⋃

e=1

τe . (28)

τe denote boundary elements, e.g., surface triangles as in this work, and their total number is E.
Now, the boundary data p and q are approximated with continuous shape functions ϕi or dis-
continuous shape functions ψ j, which are defined with respect to the geometry partitioning (28),
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and time dependent coefficients pi(t) and q j(t). This yields

p(y, t) =
Me

∑
i=1

pi(t)ϕi(y) and q(y, t) =
Ne

∑
j=1

q j(t)ψ j(y) . (29)

Inserting these spatial shape functions in the boundary integral equations (26) and applying a
collocation method results in the semi-discrete equation system

V ∗q = Cp+K∗p . (30)

In the equation (30), the time is still continuous and the convolution has to be performed. Further,
the notation of matrices/vectors with sans serif letters denotes that in these matrices the data at
all nodes and all degrees of freedom are collected.

5.3 Application of CQM

Next, the temporal discretization by the CQM has to be introduced. The CQM is used for the
time discretisation of the semi-discrete equation system (30), i.e., for Runge-Kutta methods (15)
is used or for multistep methods the respective counterpart (1). This results in the time stepping
procedure

bT A−1
n

∑
k=0

W∆t
n−k
(
V̂
)

q(k∆t) = Cp̃((n+1)∆t)+bT A−1
n

∑
k=0

W∆t
n−k
(
K̂
)

p(k∆t) , (31)

where the vectors q (size mNe) and p (size mMe) now contain all the data at each node and at
each stage of the Runge-Kutta method. Equation (31) is formulated at the final stage of each
time step and, consequently, in the vector p̃ (size Me) only the results at each node are collected.

Using (10), the first term on the right hand side in (31) can be written as

Cp̃((n+1)∆t) = CbT A−1p(n∆t) = bT A−1C̃p(n∆t) , (32)

i.e., by a proper arrangement of C into C̃ this term can as well be written at the stages. Taking
this representation into account and separating the actual time step from the time history, the
representation of the time stepping algorithm at the stages of the Runge-Kutta method is given
with

W∆t
0
(
V̂
)

q(n∆t) =C̃p(n∆t)+W∆t
0
(
K̂
)

p(n∆t)+
n−1

∑
k=0

[
W∆t

n−k
(
K̂
)

p(k∆t)−W∆t
n−k
(
V̂
)

q(k∆t)
]
.

(33)

Second, in the actual time step the boundary data are sorted in unknown and given boundary
data, where the latter are approximated by the shape functions. The collocation is performed on
the Dirichlet boundary ΓD at the center of the element (for constant shape functions) and on the
Neumann boundary ΓN at the nodes. This yields the quadratic block system

[
W∆t

0

(
V̂DD

)
−W∆t

0

(
K̂DN

)

W∆t
0

(
V̂ND

)
−
(
C̃+W∆t

0

(
K̂NN

))
][

qD

pN

]
(n∆t) =

[
fD

fN

]
(n∆t) , (34)
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where the vectors fD and fN contain the product of the given boundary data with the weights of
the first time step and the complete history. Certainly, instead of computing the above formula
the reformulated version of the CQM as presented in [6] can be used. This is discussed in more
detail and from a mathematical point of view in [7].

A remark must be made on computing the matrix valued integration weights W∆t
n
(
V̂
)
. For

acoustics the fundamental solution in Laplace domain is P̂(r,s) = 1
4πr e−

rs
c with the distance

r = |x−y|. Hence, the integration weight for the collocation point xi is

W∆t
n
(
V̂[i, j]

)
=

R−n

L

L−1

∑̀
=0

ζn`
∫

supp(ψ j)

1
4πr

e−
r
c

∆(Rζ−`)
∆t ψ j (y)dΓy . (35)

To compute the exponential function of a matrix the same decomposition as discussed in (22) is
used.

The remaining part is the numerical realisation of the above given procedure. All regular
integrals are performed with Gaussian quadrature formulas. The weakly singular integrals are
solved with the formulas by Erichsen and Sauter [14]. Finally, the block equation system (34) is
solved by inserting the first equation into the second to obtain the Schur complement. Solving
this system gives the pressure data and subsequently the data for the flux are computed. This
procedure can be performed by a nested iterative solution with GMRES or with direct solvers
(see, e.g. [27]).

6 Numerical studies

The above sketched solution procedure is tested with different Runge-Kutta and multistep meth-
ods using a 3-d benchmark example with known analytical 1-d solution for comparison. All
computations were performed by using the HyENA C++ library for the numerical solution of
partial differential equations using the boundary element method [28]. For the Fourier like
transformations the FFTW routines [16] are taken. To speed up the calculation the fast method-
ology based on the Adaptive Cross Approximation (ACA) as presented in [26] for a symmetric
Galerkin formulation is used. In contrast to this publication, here as discussed above, a colloca-
tion approach is used.

A 3-d column of size `1 = 3.0m and `2 = `3 = 1.0m, as depicted in Fig. 7, is considered. It
has zero pressure on one end and on the other end the normal flux q=−1H(t)N/m2 is prescribed.
The material parameters of air (c = 346 m/s) are taken. The column shown in Fig. 7 is discre-
tised with 12032 triangular boundary elements of mesh size h = 0.05m on 5529 nodes. The
pressure and flux are approximated by piecewise constant and continuous linear polynomials,
respectively. In order to compare different time discretizations the dimensionless value

β =
c∆t
mh

(36)

is introduced. The parameter m denotes as in the previous sections the number of stages, i.e., for
the Runge-Kutta methods β represents a time step size related to the stages and not to the time
steps. This is introduced to have a fair comparison with the multistep method with regard to the
numerical effort (see the discussion of this aspect in section 4).
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Figure 7: System, boundary conditions, and mesh

6.1 Behavior of Runge-Kutta CQM

The first comparison is performed for the BDF 2, 2-stage Radau IIA, and 3-stage Radau IIA. The
flux results at that end where the pressure is set to zero are displayed in Fig. 8 versus time. The
chosen time step size is a nearly optimal choice for all three methods. Obviously, all methods
produce good results, however, the BDF 2 has large overshoots at the jumps, i.e., at the wave
fronts. These oscillations are also visible for the Runge-Kutta methods but with much smaller
values and in a narrower region. This is in accordance with the experiences of section 4. Further,
it can be stated that the 3-stage Radau IIA method produces the best results. This corresponds
obviously to the higher frequencies which are used during the calculation (see Fig. 5).

It can be as well observed that the solution of the 3-stage method is not a straight line but it
slightly oscillates. This indicates that the time step size is for this method close to the instability
limit, i.e., this method does not allow very small time steps. A study concerning the time step
sizes is presented in Fig. 9 for both Radau IIA methods. Overall, it can be observed that the time
step size has not too much influence. Certainly, a smaller time step resolves the jumps better
than a larger one. Contrary to the experiences with the BDF 2, the overshoots at the jumps show
no clear dependence on the time step size. However, as already noted above, the 3-stage Radau
IIA can not go much beyond β = 0.3, whereas the 2-stage Radau IIA can still compute with a
β = 0.2. At this point it must be recalled that the used β (36) is related to the stage size and not
to the time step size which is by a factor of m larger.

To have a deeper insight in the influence of the time step size a closer look on the last third of
the plots in Fig. 9 is presented in Fig. 10. There, additionally, the results for a BDF 2 solution
are plotted to compare. The zooms confirm the observations from above. The higher the order
of the Runge-Kutta method, the better are the results, i.e., the area of the oscillations becomes
narrower. On the other hand the method becomes more sensitive on the lower limit for the time
step size. An overall observation is that the Runge-Kutta based solutions are not such affected by
a too coarse time step size as the BDF 2 based solutions. In principle the solutions suggest that

20



Preprint No 03/2011 Institute of Applied Mechanics

0 1 2 3 4 5 6 7 8
·10−2

−2

−1

0

time t [s]

ac
ou

st
ic

flu
x
[N
/m

2 ]

Radau IIA, 3-stage, β = 0.3
Radau IIA, 2-stage, β = 0.2
BDF 2, β = 0.1
analytical solution

Figure 8: Flux at the free end versus time for the 2- and 3-stage Radau IIA method compared to
the BDF 2 solution

for Runge-Kutta based CQM the sensitivity on the time step size is smaller than for multistep
based CQM. Certainly, the time step must be small enough to resolve the physical effect in time.

Summarizing, the quality of the BEM results is improved by the Runge-Kutta method. How-
ever, it is clear that one Runge-Kutta time step is more expensive than a BDF 2 step. Hence, the
question arise whether the numerical costs are as well better or not.

6.2 Computational cost

The comparison of numerical costs is a difficult task because it is not obvious what has to
be measured. Beside, in the authors opinion a BEM formulation without fast methods is not
suitable for real world problems. Consequently, a study on numerical costs must take a fast
method into account, though an additional approximation is introduced. In the following, first
the influence of this approximation is shown and the efficiency of the fast algorithm is studied,
i.e., the performance of the ACA is presented. Further, the convergence behavior compared to
the specific analysis in section 3 is presented. Last, the numerical costs are compared.

In the proposed BEM formulation ACA is used to speed up the calculation. This algebraic
technique allows to compute only the necessary matrix entries to achieve a pre-selected accuracy
εACA. As shown in [26], an εACA = 10−3 results in a deviation of the results for larger times. The
same holds if Runge-Kutta methods are used as displayed in Fig. 11. In the same paper, the
results suggest that εACA = 10−5 is sufficient for good long-time behavior. This holds as well for
the Runge-Kutta based formulation. In Fig. 12, the long-time behavior is studied for the 3-stage
Radau IIA using β = 1.1. Even for this long observation time the result follows closely the
analytical solution. Based on this study all other results have been computed with εACA = 10−5.

An essential criterion for the numerical costs is the compression rate, i.e., the size relation
of the used H -matrix to the dense matrix without using ACA. In the CQM based BEM, ACA

21



Preprint No 03/2011 Institute of Applied Mechanics

0 1 2 3 4 5 6 7 8
·10−2

−2

−1.5

−1

−0.5

0

time t [s]

ac
ou

st
ic

flu
x
[N
/m

2 ]

β = 0.2
β = 0.5
β = 0.9
analytical solution

(a) 2-stage Radau IIA
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Figure 9: Flux at the free end versus time: Influence of the time step size for the 2- and 3-stage
Radau IIA method
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Figure 10: Flux at the free end versus time: Zoom on the last third of Fig. 9
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Figure 11: Flux at the free end versus time: Reduced accuracy (εACA = 10−3) of the approxima-
tion (ACA) and solver
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Figure 12: Flux at the free end versus time: Long time behavior of the 3-stage Runge-Kutta
method
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Figure 13: Compression of KN versus complex frequencies s` for β = 0.3

is applied in each frequency step. Hence, the compression rate is different at each complex
frequency s`. For the largest matrix block K̂NN (the double layer operator for the Neumann
boundary) the compression rate is plotted in Fig. 13 for the Radau IIA methods compared to the
BDF 2. On the horizontal axis half of the used complex frequencies s` have been plotted starting
from small real parts to larger real parts. These are the only ones to be calculated because the
other half are the complex conjugate (see Fig. 5). Obviously, the compression rate is large in the
beginning and then decreases to a nearly constant value. In view of Fig. 5 such a behavior has
to be expected. The bad compression rates correspond to small real parts but large imaginary
parts. As seen on the frequency distribution in Fig. 5b the Radau IIA methods has a larger ratio
ℑs`/ℜs` and, hence, a worse compression compared to the BDF 2.

Certainly, if a larger time step size would have been used for Fig. 13 the compression rates
would have been better. This effect is studied in Fig. 14. In this figure, the overall compression is
plotted versus the time step size for the Radau IIA methods and the BDF 2. Overall compression
means the summed compression rates over all frequencies. It is in principle a measure of the
computing time because the used memory corresponds in ACA directly to the computed matrix
entries. Hence, the storage is proportional to the computing time. The strongest effect can be
observed for the 3-stage Radau IIA method, whereas nearly no effect can be seen for the BDF 2.
As discussed above the used frequencies cause this behavior. In combination with the experience
on the sensitivity of the different methods on β the Radau IIA method seems to be promising. In
principle the higher order of this method becomes visible here.

Collecting all studied effects the question arise which method is the best? The above results
show different effects and overall the Radau IIA (3-stage) seems to be the method of choice.
However, it is clear that this method is the most expensive one if the time step size and precision
is fixed in a comparison. But, it is clear as well that a fair comparison should check the relation
numerical effort to quality of the results. Unfortunately, a measure for the quality of the results is
difficult. In section 3, it has been proven that for the test convolution (16) the L2 error converges.
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Figure 14: Overall compression of KN versus time step size

As the acoustic problem under consideration has a similar form, i.e., the fundamental solution in
time domain is also a Dirac distribution with a retarded argument, the L2 error may converge as
well. The discrete `2 error (20) is plotted in Fig. 15 versus β in a logarithmic scale. Additionally,
as dashed lines the theoretical convergence rate for the Runge-Kutta methods of section 3 are
presented. Two observations can be made: First, the error converges and, second, the theoretical
values are nearly obtained. Further, the BDF 2 seems to have the worst convergence rate and the
Radau IIA (3-stage) the best. This fits to the presented results from above.

To answer the question which method is the most cost efficient, all three methods are com-
pared in their numerical costs for the same quality. The quality can now be measured with
the above plotted `2 error. The horizontal dotted line in Fig. 15 indicates an error ε∆t ≈ 10−1.
In Tab. 2, the costs for the different methods are compared for computations with this error.
Additionally, the β-values which are required to achieve the error and the necessary number of

Time stepping scheme required β ε∆t Nβ/2 speed up
BDF 2 0.2 1.06 ·10−1 1500 1
Radau IIA, 2-stage 0.7 1.05 ·10−1 432 3.19
Radau IIA, 3-stage 1.1 1.08 ·10−1 303 4.30

Table 2: Cost for a point wise relative `2 error ε∆t ≈ 10−1 (see the dotted line in Fig. 15 for the
required β)

time steps Nβ are given. As discussed above, the number of frequencies to be computed is half
of the time step number. That is why in the fourth row Nβ/2 is displayed. The last row compares
the numerical costs of the different methods, where the BDF 2 calculation is used as basis. In
this measure the matrix entries necessary for the ACA are counted and summed up over all Nβ/2
time (frequency) steps. This determines in principle the necessary storage but as well the speed
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because the CPU time is proportional to the amount of necessary matrix entries to be computed.
The preferable feature of these numbers is their independence of the used CPU. Evidently, the
Radau IIA in its 3-stage version is the most efficient technique.

7 Conclusions

The application of Runge-Kutta methods in the Convolution Quadrature Method has been dis-
cussed. The principal behavior is studied with two specific functions representing a wave front.
The proposed methodology is applied on a collocation BEM.

The results of both, the test example and the BEM, show that the Runge-Kutta methods im-
prove the behavior at the jumps at wave fronts. The oscillations around these fronts become
smaller and the area of influence decreases as well. There is still a lower stability limit which
increases slightly for higher order Runge-Kutta methods. The sensitivity on the time step size is
slightly improved compared to the BDF 2. Finally, it can be concluded that the usage of Runge-
Kutta methods pays off but the BDF 2 results are still good. Nevertheless, there are possible
examples where the use of Runge-Kutta methods is necessary.
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