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Abstract

In this paper a symmetric Galerkin boundary element formulation for 3D linear poro-
elasticity is presented. By means of the Convolution Quadrature Method the time domain
problem is decoupled into a set of Laplace domain problems. Regularizing their kernel
functions via integration by parts, it is possible to compute all operators for rather general
discretizations, only requiring the evaluation of weakly singular integrals. At the end some
numerical results are presented and compared with a collocation BEM. Throughout these
studies, the symmetric Galerkin BEM performs better than the collocation method, espe-
cially for not optimal discretizations parameters, i.e. a bad relation of mesh to time-step
size. The most obvious advantages can be observed in the fluid flux results. However, these
advantages are obtained at a higher numerical cost.
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1 Introduction

Biot’s theory of linear poroelasticity describes a coupled system of a linear elastic isotropic
material with an acoustic one. Since this is a linear theory, boundary element methods can be
used for the numerical simulation of problems exhibiting such properties, e.g. wave propagation
in soil mechanics, geophysics, petroleum industry and so on.

In this article a symmetric Galerkin (SG) approach is chosen, even though talking about en-
gineering applications before. This is motivated by the fact that for a realistic simulation of
such applications often a coupling with, e.g. finite element methods (FEM) is required. The
SG scheme applied within this paper is not only advantageous with respect to this coupling [8],
but also known for having nicer properties in general compared to other formulations [6], e.g.
theoretical properties from operator theory apply in a rather natural fashion. Moreover, since
the simplest description of a poroelastic material in a closed form is only available in either
frequency or Laplace domain, the convolution quadrature method (CQM) [14, 15] is the natu-
ral choice to be used for the discretization of the arising time convolution when working with
boundary integral equations. For this scheme a Laplace domain description of the problem is
sufficient to overcome the drawback of a practically missing time domain fundamental solution.
This leads to the proposed CQM-based SGBEM for mixed initial boundary value problems in
linear poroelasticity. As a good introduction to symmetric Galerkin boundary element methods
the paper by Bonnet et al. [6] is recommended. It gives a good overview including the gen-
eral advantages of SGBEMs over collocation BEMs (CBEM). On the other hand, the paper by
Schanz [22] may serve as a good introduction to linear poroelasticity.

Using the second boundary integral equation (BIE) for the SG formulation involves the hyper-
singular operator (HSO), for which it is troublesome to find a meaningful implementation. In the
two separated fields, potential problems on one side and linear elasticity on the other one, there
are different regularization strategies available, which one may hope to be able to transfer to the
combined problem of linear poroelasticity. To give a short overview, these approaches are split
into three different categories: Analytical integration, e.g. [25], the first of whom, is limited to
only a few types of shape functions. This is a rather strong restriction when looking for a general
implementation. Then, there are numerical schemes, e.g. [9] – based on the fact that the dif-
ference between a steady state and the corresponding transient fundamental solution is regular.
This approach is more general than the previous one, however, from a numerical stability point
of view, such differences should be avoided. Finally, there are strategies relying on integration
by parts, which contrary to the previous approach, treat the kernel as a whole. Chronologically,
Maue [17] was the first one to present a regularization for the Laplace equation, even before
the other two strategies had appeared. This may be motivated by the fact that his regularization
is performed on an analytical level and was not developed for a pure numerical purpose. The
same holds for linear elastostatics, where already Kupradze [13] provided all essential ingredi-
ents for the regularization later presented by Han [10]. These advantages, together with the fact
that throughout the regularization of the HSO one also obtains a regularization for the double
layer operator, are in favor of this last approach. Therefore, the initially mentioned observation
that the singularity of the steady state fundamental solution carries over to the transient one, is
stressed again. However, in this case not a difference is involved, but the procedure is simply
extended to the dynamic case as, e.g. it has been done in [11] for 3d-linear elastodynamics.
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The same strategy can be used for linear poroelasticity, where the Laplace domain fundamen-
tal solution required within a CQM-based time discretization can be decomposed such that the
regularization of the fluid part follows [26] and for the solid part the procedure from [10] is
adopted.

While so far all BE formulations in linear poroelasticity were based on the first BIE – Manolis
and Beskos [16] got time domain results via an inverse Laplace transformation, Wiebe and Antes
[27] established a reduced BE formulation in time domain and Schanz [21] introduced a CQM-
based scheme – here, for the first time the second BIE has been incorporated into the simulation
of linear poroelastic problems by means of an SGBEM. Simultaneously, Schanz et al. [24] did all
the mathematical proofs for this formulation, some of which will be validated in the numerical
examples section, also a novelty in the context of linear poroelasticity and boundary element
methods. Even though Schanz et al. [24] showed ’optimality’ of the SG formulation, it will
be interesting to compare this formulation with the previously established collocation BEM
formulation of the authors Messner and Schanz [18] themselves. In some sense, this article may
even be conceived as a finalization of this previous work. Thus, for a better understanding it is
strongly recommended to have [18] at hands, because it will repeatedly be referred to throughout
this paper.

Notation Operator notation is used throughout the article, with only a few exceptions, where
operations are written out component wise. ˆ(·) is used to identify the Laplace transform of a
quantity, whereas (·) in general either belongs to time domain or is time independent at all. For
Euclidean coordinates coordinates x̃,x,y are used, while elements of physical fields are denoted
by bold lower case letters. Upper case letters are reserved for the fundamental solution. In
general, bold letters are used to mark tensorial quantities, where the order should be clear from
the context.

2 Problem Statement in Laplace Domain

2.1 Biot’s Theory

Considering a linearized three-dimensional setting, Biot’s theory [3, 4] leads to a set of second
order partial differential equations describing the state of a saturated poroelastic continuum in
some domain Ω⊂ R3 for all times t ∈ R+.

However, having the later use of the CQM in mind, it is not only efficient but also sufficient [5]
to state the (û, p̂) - formulation in Laplace domain with s ∈ CR+ := {C |ℜ(s)≥ 0}. Assuming
homogeneous initial conditions, a homogeneous mixed boundary value problem (BVP) in linear
poroelasticity in terms of the generalized displacement field ûg = (û, p̂)> is stated by

L̂x̃ûg (x̃) =0 ∀ x̃ ∈Ω

ûg (x) =ĝD ∀ x ∈ ΓD

t̂g (x) =ĝN ∀ x ∈ ΓN .

(1)
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The differential operator is defined by

L̂x̃ =

[
Ls

x̃ + s2(ρ−βρ f )I (α−β)∇x̃

s(α−β)∇>x̃
β

sρ f L f
x̃ + sφ2

R

]
(2)

and the generalized tractions by

t̂g (x) :=
[

t̂(x)
q̂(x)

]
= lim

Ω3x̃→x∈Γ
T̂x̃ûg (x̃) := lim

Ω3x̃→x∈Γ

[
T s

x̃ −αnx

sβn>x
β

sρ f
∂

∂nx̃

][
û(x̃)
p̂(x̃)

]
. (3)

Ls
x̃ is the differential operator of linear elastostatics and T s

x̃ = λnx∇>x̃ + µ
(
∇x̃n>x +∇>x̃ nx

)
its

Neumann trace reflecting Hooke’s law (λ,µ are the Lamé constants). Furthermore, ρ is the bulk
density and ρ f the fluid density. Biot’s effective stress coefficient is introduced as α= φ(1+Q/R)
with the porosity φ and the factors Q and R describing the coupling between fluid and solid.
Finally, the factor β = β(s,κ,φ,ρ f ) additionally depends on the permeability κ.

Remark 1. Note that with this definition of the Neumann trace (3), the inward flux is positive.
Since the classical sign convention is opposite, its sign will be reverted in the final results.

2.2 Boundary Integral Formulation

2.2.1 Boundary Integral Equations

For the derivation of the boundary integral equations, Green’s second formula in Laplace domain
is recalled

ˆ
Ω

v̂∗> (x̃) L̂x̃ûg (x̃)dx̃+
ˆ

Γ

v̂∗> (x̃) T̂x̃ûg (x̃)dsx̃ =

ˆ
Γ

(
T̂ ∗x̃ v̂∗

)>
(x̃) ûg (x̃)dsx̃+

ˆ
Ω

(
L̂∗x̃ v̂∗

)>
(x̃) ûg (x̃)dx̃ ,

(4)

where T̂ ∗x̃ is defined as the Neumann trace related to the adjoint operator L̂∗x̃

L̂∗x̃ :=

[
Ls

x̃ + s2(ρ−βρ f ) −s(α−β)∇x̃

−(α−β)∇>x̃
β

sρ f L f
x̃ + sφ2

R

]
T̂ ∗x̃ :=

[
T s

x̃ sαnx

−βn>x
β

sρ f
∂

∂nx̃

]
. (5)

Replacing v∗ (x̃) in (4) by the adjoint fundamental solution

Û∗(r) =

[
Ûs(r) Û f (r)(

P̂s
)>

(r) P̂ f (r)

]
with r := |y− x̃| (6)

yields the representation formula related to the homogeneous BVP (1)

ûg (x̃) = (V̂ t̂g)Ω (x̃)− (Ŵ ûg)Ω (x̃) ∀x̃ ∈Ω (7)
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with

(V̂ t̂g)Ω (x̃) =
ˆ

Γ

Û∗> (x̃,y) t̂g (y)dsy

(Ŵ ûg)Ω (x̃) =
ˆ

Γ

(
T̂ ∗y Û∗

)>
(x̃,y) ûg (y)dsy .

Taking the Dirichlet trace Ω 3 x̃→ x ∈ Γ and the Neumann trace T̂x̃→x of (7) to the boundary
yields the first and the second boundary integral equation, respectively

(V̂ t̂g)Γ (x)− (C + K̂ )Γûg (x) = 0 ∀x ∈ Γ (8)

(−I +C + K̂ ′)Γt̂g (x)+(D̂ûg)Γ (x) = 0 ∀x ∈ Γ , (9)

with all the boundary integral operators defined by

SLP :=(V̂ t̂g)Γ (x) = lim
Ω3x̃→x∈Γ

ˆ
Γ

Û∗> (x̃,y) t̂g (y)dsy

DLP :=(K̂ ûg)Γ (x) = lim
Ω3x̃→x∈Γ

ˆ
Γ

(
T̂ ∗y Û∗

)>
(x̃,y) ûg (y)dsy

ADLP :=(K̂ ′t̂g)Γ (x) = lim
Ω3x̃→x∈Γ

T̂x̃

ˆ
Γ

Û∗> (x̃,y) t̂g (y)dsy

HSO :=(D̂ûg)Γ (x) =− lim
Ω3x̃→x∈Γ

T̂x̃

ˆ
Γ

(
T̂ ∗y Û∗

)>
(x̃,y) ûg (y)dsy .

Exchanging the traces with the integration does not cause any trouble for the SLP, which is
defined as a weakly singular integral. However, for the DLP and the ADLP this would lead to a
strongly- and for the HSO to a hyper-singular kernel function. To work around such problems,
in section 2.3 a regularization will be presented.

2.2.2 Symmetric Variational Formulation

Finally, inserting appropriate extensions [26] of the given boundary data from (1)

ûg
◦ = ûg− ĝD

◦ ∈ [H
1/2
◦ (ΓN)]

4 t̂g
◦ = t̂g− ĝN

◦ ∈ [H−1/2 (ΓD)]
4 (10)

into (8) and (9), the symmetric variational formulation reads as [26]:
Find (ûg

◦, t̂g
◦) ∈ [H

1/2
◦ (ΓN)]

4× [H−1/2 (ΓD)]
4 and s ∈ CR+ such that

〈V̂ t̂g
◦,s

g
◦〉ΓDD−〈K̂ ûg

◦,s
g
◦〉ΓND =〈

(
C + K̂

)
ĝD
◦ ,s

g
◦〉ΓDD−〈V̂ ĝN

◦ ,s
g
◦〉ΓND

〈K̂ ′t̂g
◦,w

g
◦〉ΓDN + 〈D̂ûg

◦,w
g
◦〉ΓNN =〈

(
I −C − K̂ ′

)
ĝN
◦ ,w

g
◦〉ΓNN −〈D̂ ĝD

◦ ,w
g
◦〉ΓDN

(11)

holds for all (wg
◦,sg
◦) ∈ [H

1/2
◦ (ΓN)]

4× [H−1/2 (ΓD)]
4. In the bilinear forms above, the first sub-

script (at Γ) identifies the boundary related to the ansatz- and the second to the test function.
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2.3 Regularization of the Hypersingular Bilinear Form

The regularization of the hyper-singular bilinear form is the crucial part in the formulation of
the SGBEM. Therefore, the HSO for |x̃− x|< ε is recalled in a detailed form

(D̂ûg
◦)Γ (x̃) =− T̂x̃

ˆ
Γ

(
T̂ ∗y Û∗

)>
(x̃,y) ûg

◦ (y)dsy[
(D̂û◦)s

Γ
(D̂ p̂◦)s

Γ

(D̂û◦)
f
Γ

(D̂ p̂◦)
f
Γ

]
(x̃) =−

[
T s

x̃ −αnx

sβn>x
β

sρ f
∂

∂nx̃

]
×

ˆ
Γ

([
T s

y sαny

−βn>y
β

sρ f
∂

∂ny

][
Ûs Û f(

P̂s
)>

P̂ f

])>[
û◦
p̂◦

]
dsy .

(12)

The procedure throughout the regularization of all parts in (12) is conceptually the same and,
therefore, briefly described step by step:

• integrate (D̂ûg
◦)(x̃) by parts to shift the derivatives with respect to y over to the ansatz

function ûg
◦ (y)

• test (D̂ûg
◦)(x̃) with wg

◦ (x̃) and perform integration by parts again to shift derivatives with
respect to x̃ over to the test function

• the so obtained bilinear form has a weakly singular kernel function, thus taking the limit
Ω 3 x̃→ x ∈ Γ and integration can be exchanged

Due to the nature of linear poroelasticity, reflected by the fundamental solution and by the Neu-
mann traces, this procedure can be split into three subsections: The first concerns the fluid part,
it essentially follows the regularization in [26], which is based on the work of Maue [17]. The
second part deals with the solid part just like presented by Han [10], where original results of
Kupradze [13] were used. Finally, the third subsection deals with the coupling terms.

Remark 2. Note that for the boundary terms, resulting from integration by parts, either ΓN

has to be closed, or the Dirichlet datum must be zero on ∂Γ (sufficient for applying integration
by parts once) as it is ensured by the description given in section 2.2.2. This means that any
interior/exterior domain problem can be treated without problem as long as its boundary is
closed. That is not the case for a half-space, however with a proper closure of the domain
(infinite boundary elements) this problem can be solved, too.

Remark 3. Throughout the regularization of the HSO one also obtains the regularized DLP
(ADLP follows accordingly). These intermediate steps are skipped here for sake of brevity,
while the reader may find them in [18] and the final result in (31).

2.3.1 Fluid Term

For x̃ ∈Ω, the HSO related to the fluid is given by

(D̂ p̂◦)
f
Γ
(x̃)= sβn>x̃

ˆ
Γ

(
βÛsny−

β

sρ f
∂

∂ny
P̂s
)

p̂◦dsy+
β

sρ f
∂

∂nx̃

ˆ
Γ

(
βn>y Û f − β

sρ f
∂

∂ny
P̂ f
)

p̂◦dsy ,

6
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where in the second last term the Neumann trace can be pulled inside the integral, since Û f is
regular. After some further transformations, this leads to the following expression

(D̂ p̂◦)
f
Γ
(x̃) =

β

sρ f
∂

∂nx̃

ˆ
Γ

(
β

sρ f
∂

∂ny
P̂ f
)

p̂◦dsy + sβn>x̃
ˆ

Γ

(
βÛsny−2

β

sρ f
∂

∂ny
P̂s
)

p̂◦dsy .

Obviously, the last two expressions are just of O
(
r−1
)
, while exchanging order of differentiation

and integration in the first term would lead to a kernel function of O
(
r−3
)
. Thus, for the regu-

larization of the bilinear form, the same procedure as in [26, cf. Theorem 6.17] can be applied
with the only difference that ∆P̂ f does not vanish. After performing the limit Ω 3 x̃→ x ∈ Γ,
this results in

〈D̂ p̂◦,v◦〉Γ =

ˆ
Γ

ˆ
Γ

(
β

sρ f

)2
∂p̂◦
∂Sy

>
∂v◦
∂Sx

P̂ f dsxdsy +

ˆ
Γ

ˆ
Γ

(
β

sρ f

)2

v◦n>x ∆P̂ f ny p̂◦dsxdsy

+

ˆ
Γ

ˆ
Γ

sβv◦n>x

(
βÛs−2

β

sρ f ∇y
(
P̂s)>)ny p̂◦dsxdsy , (13)

with the surface-curl defined as ∂

∂Sy = (ny×∇y).

2.3.2 Solid Term

Due to the vectorial nature of the solid displacements versus the scalar fluid pressure, the reg-
ularization of this part is more involving than for the fluid. Again, to keep the presentation
as concise as possible, only the specific steps to linear poroelasticity are elaborated in detail,
whereas other results are recalled from literature [10, 11]. For x̃ ∈ Ω, the solid related HSO is
given by

(D̂û◦)s
Γ (x̃) =−T s

x̃

ˆ
Γ

((
T s

y Ûs)>+ sαP̂sn>y
)

û◦dsy +αnx̃

ˆ
Γ

((
T s

y Û f )>+ sαn>y P̂ f
)

û◦dsy ,

which can be rearranged to the following form

(D̂û◦)s
Γ (x̃) = (D̂û◦)s1

Γ
(x̃)+(D̂û◦)s2

Γ
(x̃)+(D̂û◦)s3

Γ
(x̃) (14)

=−T s
x̃

ˆ
Γ

(
T s

y Ûs
sin
)> û◦dsy−T s

x̃

ˆ
Γ

(
T s

y Ûs
reg
)> û◦dsy

−
ˆ

Γ

α

[((
T s

x̃ Û f )n>y −nx̃
(
T s

y U f )>)− sαnx̃n>y P̂ f
]

û◦dsy ,

with Ûs
sin and Ûs

reg defined in (27). Exchanging the order of differentiation with integration in the
first expression would lead to a kernel function of O

(
r−3
)
, while all other terms remain weakly

singular. For the regularization of the hyper-singular expression above, the same procedure as
in [10, pages 273-279] is applied. There, the Neumann trace is expressed via surface- and Gün-
ter derivatives My =

(
ny∇>y

)>−ny∇>y . This form of the trace allows to use Stokes’s theorem
for integration by parts to perform the regularization as explained in section 2.3. Following

7
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this strategy and exchanging the elastic fundamental solution by the poroelastic fundamental
solution, leads to a slightly more complicated result. First of all χ̂

∆
n
χ̂(r)=

1
4πr

[
k2n

1 e−k1r(
k2

2− k2
1

)(
k2

3− k2
1

) + k2n
2 e−k2r(

k2
1− k2

2

)(
k2

3− k2
2

) + k2n
3 e−k3r(

k2
1− k2

3

)(
k2

2− k2
3

)] n= 0,1,2 . . .

(15)
does not fulfill the bi-Laplace equation like in 3d-elasticity, but the high order Helmholtz equa-
tion [7]. Therefore, these derivatives [10, cf. 2.8-2.10] need to be modified

−
[

∂

∂nx̃

∂

∂ny

]
∆χ̂ =

[
∂

∂Sx̃

>
∂

∂Sy
+n>x ny∆

]
∆χ̂

∇x̃
∂

∂ny
∆χ̂ =[My∇x̃−ny∆]∆χ̂

[MyMx̃−Mx̃My]∆χ̂ =

[
Mx̃

∂

∂ny
−My

∂

∂nx̃
+nyn>x ∆−nxn>y ∆

]
∆χ̂ .

With these results, the first term in term in (14) writes as

(D̂û◦)s1
Γ
(x̃) =−µ

3

∑
k=1

(
∂

∂Sx̃

)
k

ˆ
Γ

∆
2
χ̂

(
∂

∂Sy

)
k
û◦dsy

−µMx̃

ˆ
Γ

(
4µÛs

sin−2∆
2
χ̂
)

Myû◦dsy

+µ
ˆ

Γ

(
Mx̃∆

2
χ̂My

)> û◦dsy

+µ
ˆ

Γ

∆
3
χ̂

(
λ

µ
nxn>y +nyn>x +n>x ny

)
û◦dsy .

(16)

Formally, this result coincides with the one obtained by Han [10, cf. 2.11], except for the addi-
tional last line with ∆3χ̂, which can be found in (15). For better readability, the next few steps
in the derivation are not given explicitly, but only described as they have been performed sub-
sequently: For sake of efficiency, Ûs

sin in the second line of (16) is augmented to Ûs by adding
and subtracting Mx̃

´
Γ

4µ2Ûs
regMyû◦dsy. Then, together with the remaining two expressions from

8
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(14) the entire regularized solid related bilinear form computes to

〈D̂û◦,w◦〉Γ =µ
ˆ

Γ

ˆ
Γ

∆
2
χ̂

3

∑
k=1

(
∂

∂Sx

)
k
w>◦

(
∂

∂Sy

)
k
û◦dsydsx

+µ
ˆ

Γ

ˆ
Γ

(Mxw◦)
> (2∆

2
χ̂−4µÛs)(Myû◦)dsydsx

+µ
ˆ

Γ

ˆ
Γ

∆
2
χ̂

3

∑
i, j,k=1

(Mx)k j (w◦)i (My)ki (û◦) j dsydsx

+µ
ˆ

Γ

ˆ
Γ

w>◦ ∆
3
χ̂

(
λ

µ
nxn>y +nyn>x +n>x ny

)
û◦dsydsx

+

ˆ
Γ

ˆ
Γ

w>◦
(

4µ2Mx
(
MyÛs

reg
)>−T s

x
(
T s

y Ûs
reg
)>) û◦dsydsx

+µ
ˆ

Γ

ˆ
Γ

2α

(
w>◦
(

Û f n>x
)>

(Myû◦)− (Mxw◦)
>
(

Û f n>y
)

û◦
)

dsydsx

+

ˆ
Γ

ˆ
Γ

w>◦ nx

(
sα

2P̂ f − 2s2ρ f α(α−β)

β

(
∆− k2

3
)

∆χ̂

)
n>y û◦dsydsx .

(17)

This seems to be the most efficient form of the bilinear form. It requires Û∗ and additionally ∆χ̂,
∆2χ̂, ∆3χ̂ , which are rather simple expressions (15). Only the kernel function in the fifth line of
(17) results in a rather lengthy expression (33).

2.3.3 Coupling Terms

The coupling terms (12) are almost symmetric in x̃ and y

(D̂û◦)
f
Γ
(x̃) =

ˆ
Γ

[
−sβn>x̃

((
T s

y Ûs)>+ sαP̂sn>y
)
− β

sρ f
∂

∂nx̃

((
T s

y Û f )>+ sαn>y P̂ f
)]

û◦dsy

(18)

(D̂ p̂◦)s
Γ (x̃) =

ˆ
Γ

[
−T s

x̃

(
−βÛsny +

β

sρ f
∂

∂ny
P̂s
)
+αnx̃

(
−βn>y Û f +

β

sρ f T s
y P̂ f

)]
p̂◦dsy

=

ˆ
Γ

[
β

(
T s

x̃ Ûs−αnx̃
(
Û f )>)ny−

β

sρ f
∂

∂ny

(
T s

x̃ P̂s−αnx̃P̂ f )] p̂◦dsy . (19)

The expression inside the first brackets of (18) is identified as the solid related DLP kernel
function (31), while the same holds for the the ADLP (32) in (19). Recalling remark 3, the

9
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bilinear forms after the regularization and the limit x̃ 3Ω→ x ∈ Γ result in

〈D̂û◦,v◦〉Γ =−
ˆ

Γ

ˆ
Γ

v◦sβn>x

[(
−∆

2
χ̂+2µ

(
Ûs)>)(Myû◦)+

∂

∂ny
∆

2
χ̂û◦
]

dsydsx

−
ˆ

Γ

ˆ
Γ

v◦sβn>x
(

T s
y Ûs

reg−2µMyÛs
reg + sαny

(
P̂s)>)> û◦dsydsx

−
ˆ

Γ

ˆ
Γ

v◦

[
sn>y

∂

∂nx

(
β∆

2−
(
k2

3β+ k2
4α
)

∆+αk2
3k2

4
)

χ̂

]
û◦dsydsx

−
ˆ

Γ

ˆ
Γ

v◦2µ
β

sρ f

(
∂

∂nx
Û f
)>

(Myû◦)dsydsx

(20)

and

〈D̂ p̂◦,w◦〉Γ =

ˆ
Γ

ˆ
Γ

β

[
(Mxw◦)

> (−∆
2
χ̂+2µÛs)+w>◦

∂

∂nx
∆

2
χ̂

]
ny p̂◦dsydsx

+

ˆ
Γ

ˆ
Γ

w>◦ β

(
T s

y Ûs
reg−2µMxÛs

reg−αn>x
(
Û f )>)ny p̂◦dsydsx

+

ˆ
Γ

ˆ
Γ

w>◦

[
nx

∂

∂ny

(
β∆

2−
(
k2

3β+ k2
4α
)

∆+αk2
3k2

4
)

χ̂

]
p̂◦dsydsx

−
ˆ

Γ

ˆ
Γ

2µ
β

sρ f (Mxw◦)
>
(

∂

∂nx
P̂s
)

p̂◦dsydsx

(21)

accordingly.

3 Symmetric Time Domain Galerkin Boundary Element Method

The time domain problem statement in terms of a symmetric variational boundary integral for-
mulation follows from a formal inverse Laplace transformation of (11):
Find

(
ug
◦, tg
◦
)

such that

〈V ∗ tg
◦,s

g
◦〉ΓDD−〈K ∗ug

◦,s
g
◦〉ΓND =〈(C +K )∗gD

◦ ,s
g
◦〉ΓDD−〈V ∗gN

◦ ,s
g
◦〉ΓND

〈K ′ ∗ tg
◦,w

g
◦〉ΓDN + 〈D ∗ug

◦,w
g
◦〉ΓNN =〈

(
I −C −K ′

)
∗gN
◦ ,w

g
◦〉ΓNN −〈D ∗gD

◦ ,w
g
◦〉ΓDN

(22)

holds for all
(
wg
◦,sg
◦
)
.

3.1 Temporal Discretization

Here, exactly the same version of the CQM [1] as explained in [18] is applied. How this method
is used to decouple the time domain variational form (22) into a set of Laplace domain ones
(11), is exemplary shown on the first bilinear form in (22)

〈V ∗ tg
◦,s

g
◦〉ΓDD (t) =

ˆ t

0

ˆ
ΓD

sg>
◦ (x)

ˆ
ΓD

U∗> (x− y, t− τ) tg
◦ (y,τ)dsydsxdτ .

10
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Splitting the time interval (0, t) into M+1 equidistant time steps ∆t the convolution at a discrete
time-step tn = n∆t may be approximated by

〈V ∗ tg
◦,s

g
◦〉ΓDD (tn)≈

M

∑
`=0

R−n

M+1

ˆ
ΓD

sg>
◦ (x)

ˆ
ΓD

Û∗> (x− y,s`) t̂g
◦ (y,s`)dsydsxζ

`n

≈
M

∑
`=0

R−n

M+1
〈V̂ t̂g

◦ (s`) ,s
g
◦〉ΓDDζ

`n (23)

with

t̂g
◦ (s`) =

M

∑
k=0

Rkt◦ (tk)ζ
−`k , s` =

γ
(
Rζ−`

)
∆t

and ζ = e
2πi

M+1 ,

where R is the radius of a circle lying in the domain of analyticity of the kernel function and
γ(z) the quotient of the characteristic polynomials of the underlying linear multistep method
incorporated in the CQM. Applying this technique to all expressions in (22) leads to a set of
M+1 decoupled Laplace domain problems to be discretized in space. Note that the CQM in the
original version would lead to exactly the same results.

3.2 Spatial Discretization

Due to the reasoning in the previous section a spatial discretization of (11), i.e. the SG variational
formulation of an elliptic system, is sufficient. This is done in a standard fashion by introducing
a triangulation of the boundary

Γh = ΓD,h∪ΓN,h =
K⋃

k=1

τ̄k

on which the unknown Cauchy data (10) are approximated

(ûg
◦,h)k (x) =

nN

∑
i=1

û◦,iϕ
1
i (x) ∈ S1

◦,h (ΓN,h) := span{ϕ1
i }

nN
i=1 ⊂ H

1/2
◦ (ΓN,h) k = 1 . . .4

(t̂g
◦,h)k (x) =

nD

∑
k=1

t̂◦,iψ
0
i (x) ∈ S0

◦,h (ΓD,h) := span{ψ0
i }

nD
i=1 ⊂ H−1/2 (ΓD,h) k = 1 . . .4 .

S1
◦,h is the trial space of piecewise linear and continuous basis functions ϕ1

i and S0
◦,h of piecewise

constant basis functions ψ0
i . This leads to a set of discrete systems for a fixed s`[
V̂ −K̂
K̂′ D̂

]
`

[
t̂◦
û◦

]
`

=

[
f̂D
f̂N

]
`

`= 0 . . .M (24)

where the right hand side is defined in (11). The discrete system is component wise given by,
e.g. the single layer matrix

V̂ [k, j] = 〈V̂ ψ
0
j ,ψ

0
k〉ΓDD,h =

ˆ

supp(ψ0
k)

ψ
0
k (x)

ˆ

supp(ψ0
j)

Û∗> (x,y,s`)ψ
0
j (y)dsydsx k, j = 1 . . .nD .

11
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Due to the regularization of all bilinear forms for the numerical computation of all matrices a
weakly singular quadrature rule based on Duffy transformation [20] is sufficient. A GMRES
is used to solve (24) via Schur complement. Within this scheme, the SLP is preconditioned by
a BPX and the HSO by a coarsely computed SLP. Finally, from these solutions time domain
results are obtained through (23).

4 Numerical Examples

All results were obtained by using the HyENA C++ library for solving partial differential equa-
tions using boundary element methods [19]. For the approximation of the Dirichlet data piece-
wise linear and continuous elements while for the Neumann data piecewise constant elements
were used. Moreover, for the linear multistep method involved within the CQM, the BDF2 was
chosen. Which effect other choices of multistep methods have on the CQM is reported in [2].

Table 1: Material properties of rock (Berea sandstone) [12]

λ [N/m2] µ [N/m2] ρ [kg/m3] φ [−] α [N/m2] ρ f [kg/m3] R [N/m2] κ
[

m4/Ns
]

rock 0 7.2 ·109 2458 0.19 0.778 1000 4.885 ·108 1.9 ·10−10

For all computations the material data of Berea sandstone (see Table1) is used. Note that
λ = 0 N/m2 results from setting Poisson’s ratio to zero. This modification was introduced for
the one dimensional wave propagation example, with the intention to reduce three dimensional
effects.

4.1 One Dimensional Wave Propagation – Column

In this section, one dimensional wave propagation is studied with the presented SGBEM formu-
lation. The results are compared with the semi-analytic solution [23] and the CBEM results of
the authors themselves [18]. The aim is to show the behavior with respect to different spatial,
respectively, temporal discretization and, finally, also to have a look at the long time behavior in
terms of numerical stability.

The problem under consideration is sketched in Figure1, where a poroelastic column of 3m
length and a cross-sectional area of 1m2 is depicted. At x3 = 3m this column is subjected to
a negative stress unit step-load in the longitudinal direction and zero stress in both transverse
directions as well as zero pressure. To come as close as possible to the one dimensional case,
all other faces are supported by impermeable roller bearings, i.e. out of plane displacements
are zero and vice versa for the stresses. Furthermore, as the name implies, no flux through the
sidewalls is allowed.
For sake of comparison the same meshes are used for both methods: MESH0 in Figure2(a) con-
sists of 56 elements and 30 nodes, MESH1 in Figure2(b) consists of 224 elements and 114 nodes,
MESH2 in Figure2(c) has 896 elements and 540 nodes and MESH3 in Figure2(d) 3584 elements
and 1794 nodes. In the following COLi/GALi refers to the CBEM/SGBEM results related to
MESHi for i = 0 . . .3. Furthermore, for the characterization of the temporal discretization, the

12
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rol
ler

be
ari

ng
s

x1

x2

x3

p(t > 0) = 0 N/m2

t3(t > 0) = 1 N/m2

Figure 1: Poroelastic column with roller bearing support

Cournant-Friedrichs-Levy number

βCFL =
c1∆t

h
(25)

is used, with the limit of the fast compression wave speed c1 for t→ 0, the time step ∆t and the
mesh size h defined by the triangle’s longest side. Corresponding to the prescribed boundary
conditions, the following results are looked at: Solid displacement u3 and fluid flux q at the
center of the top face at x3 = 3m; solid stress t3 and fluid pressure p in the middle of the bottom
face at x3 = 0m. In all figures, the continuous lines correspond to the SGBEM results while the
dotted lines are related to the CBEM results. Note that the results belonging to the coarsest mesh
are not plotted in the following figures for sake of clarity, but it is just used for the comparison
in Table2.

Different spatial discretizations at a constant βCFL = 0.3 are compared in Figure3. These
results have two things in common: First, one can observe that the finer the mesh, the bet-
ter the coincidence between both methods, e.g. in Figure3(a) the result for the coarsest mesh
(COL1/GAL1) differs at the kinks, while almost no difference is visible when looking at the
finest discretization (COL3/GAL3). The stress and pressure plots are omitted, since they behave
similarly, while when looking at the flux results in Figure3(b) the advantage of the SGBEM
becomes most obvious. Secondly, one can observe less numerical damping in the SGBEM’s
results, i.e. the difference in the displacement results in Figure3(a) differs more the later in time
they are observed. Finally, to conclude this study, point wise relative L2 errors in time between
these results and the semi-analytic solution are computed and reported in Table2, e.g. for the
solid displacement result COL0 this is

LCOL0
2 (u) :=

√√√√´ t
0 [u

COL0 (τ)−uh (τ)]
2 dτ´ t

0 [u
COL0 (τ)]

2 dτ
. (26)

When looking at these results, one should keep in mind that the one dimensional solution is
not the exact reference solution corresponding to the three dimensional BEM computations.

13
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h = 1m

(a) MESH0

h = 1/2 m

(b) MESH1

h = 1/4 m

(c) MESH2

h = 1/8 m

(d) MESH3

Figure 2: Different spatial discretizations of the considered column

Hence, once the error drops below a certain level, it may even rise again. This is most likely the
explanation for the behavior of the SGBEM in the last level, except of the flux, where this bound
has not been reached, yet.

Table 2: Point wise relative L2 errors

displacement stress pressure flux

M
E

SH

CBEM SGBEM CBEM SGBEM CBEM SGBEM CBEM SGBEM
0 4.75e-02 1.10e-02 6.71e-02 3.86e-03 6.89e-02 5.66e-03 8.02e-01 9.71e-02
1 2.43e-02 1.79e-03 3.74e-02 1.73e-03 3.93e-02 1.94e-03 5.63e-01 2.44e-02
2 6.64e-03 8.41e-04 1.86e-02 1.68e-03 1.86e-02 1.72e-03 3.64e-01 7.23e-03
3 1.82e-03 3.06e-03 9.97e-03 4.34e-03 9.67e-03 4.33e-03 1.99e-01 4.54e-03

Different temporal discretizations are compared in Figure4 by varying the βCFL factor for the
intermediate spatial discretization (MESH2). While a proper relation of time-step to mesh size
was used in the previous study, here less optimal choices are investigated. At a to coarse time
step (βCFL = 0.8) both methods give almost identical results (see Figure4(a) and Figure4(b)),
while the CBEM becomes unstable at an earlier stage than the SGBEM, as can be seen in the
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(b) fluid flux q

Figure 3: Results at x3 = 0m for different spatial discretizations (βCFL = 0.3)
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Figure 4: Results for fixed spatial- COL2/GAL2 and different temporal discretizations

16



Preprint No 02/2011 Institute of Applied Mechanics

0 0.01 0.02 0.03 0.04 0.05
-2.5e-10

-2e-10

-1.5e-10

-1e-10

-5e-11

0

poro1D
GAL2 β

CFL
=0.05

COL2 β
CFL

=0.05

time t [sec]

di
sp

la
ce

m
en

tu
3
[m

]

(a) displacement u3

0 0.01 0.02 0.03 0.04
0

1e-09

2e-09

3e-09

4e-09

5e-09

poro1D
GAL2 β

CFL
=0.05

COL2 β
CFL

=0.05

time t [sec]

flu
x

q
[m
/s
]

(b) flux q

Figure 5: Long time stability of COL2/GAL2 at βCFL = 0.05
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displacement as well as in the stress results at βCFL = 0.01. Similar observations can be made
for the two remaining field variables, the fluid pressure behaves like the solid stress and the flux
even worse, which plots are omitted for sake of brevity.

Long time stability behavior is studied in Figure5. To show the SGBEM’s advantages over
the CBEM, the previous two comparisons suggest to perform this study with a rather fine time
step. Thus, in the following MESH2 with a βCFL of 0.05 is used. With this configuration, the
SGBEM has a clear advantage in terms of long time stability. The SGBEM’s displacement
results remain completely stable in Figure5(a), while the CBEM becomes unstable after some
time. Skipping the corresponding plots for sake of space, the same holds for the solid stress and
fluid pressure, where this problem on the CBEM’s side becomes a little more evident. Finally,
for this time-step, the fluid flux results delivered by the CBEM are completely unstable from the
beginning on (for sake of better readability they are only plotted up to t = 0.035sec), while the
SGBEM performs quite a bit better, even though it also oscillates around the reference solution,
see Figure5(b).

4.2 Spatial Convergence Rates – Cube

Unfortunately, the convergence study in Table2 is not covered by the theory. On one hand this
is due to the non smooth right hand side and on the other hand due to the point wise spatial
observation. However, Schanz et al. [24] proved the operator (2) to be coercive. Thus, it can
be shown that for the SGBEM formulation the same convergence rates as, e.g. for the Laplace
equation [26] follow. The time discretization for the SGBEM formulation presented in this paper
is identical with the one in the CBEM formulation presented in [18], i.e. time domain results are
obtained from a set of Laplace domain problems. Having this fact in mind, it is assumed to be
sufficient to look at the convergence rates for some constant Laplace parameters to point out the
differences between the two spatial discretizations.

x

x1
x2

x3

ΓD

ΓN
ΓN

Figure 6: A unit cube is subjected to the fundamental solution on ΓD (top and bottom face) and
its Neumann trace on ΓN (surrounding faces), while x is fixed at some exterior point

On a unit cube (Figure6), the last row of the fundamental solution (Û f , P̂ f ) is prescribed on the
Dirichlet boundary and its Neumann trace on the Neumann boundary, each time with the load
point x fixed at some distance outside the unit cube, hence the given boundary data are C∞. Such
a BVP has an analytic solution, i.e. the fundamental solution itself and its Neumann trace on the
complementary boundaries.
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Starting from the coarsest spatial discretization with two triangles per face in level 0, the
mesh is uniformly refined in the subsequent levels. In the following, the relative L2 errors of the
SGBEM and the CBEM computations are compared in Table3 and Table4 for s` = (1,1). Such
studies have been performed for different values of s` with just slightly varying outcome, i.e. for
such a regular right hand side, both methods seem to perform more or less equally well.

Table 3: SGBEM relative L2 errors for s` = (1,1)

displacement pressure stress flux

level ||u−uh||L2
||u||L2

rate ||p−ph||L2
||p||L2

rate ||t−th||L2
||t||L2

rate ||q−qh||L2
||q||L2

rate

0 4.44e-01 2.18e-01 3.32e-01 2.80e-01
1 1.33e-01 1.74 6.73e-02 1.70 1.99e-01 0.74 1.99e-01 0.50
2 3.86e-02 1.78 1.70e-02 1.99 1.01e-01 0.97 9.93e-02 1.00
3 1.06e-02 1.86 4.15e-03 2.03 5.08e-02 1.00 4.94e-02 1.01
4 2.80e-03 1.92 1.02e-03 2.02 2.54e-02 1.00 2.46e-02 1.01
5 7.17e-04 1.97 2.55e-04 2.01 1.27e-02 1.00 1.22e-02 1.00

Table 4: CBEM relative L2 errors for s` = (1,1)

displacement pressure stress flux

level ||u−uh||L2
||u||L2

rate ||p−ph||L2
||p||L2

rate ||t−th||L2
||t||L2

rate ||q−qh||L2
||q||L2

rate

0 3.25e-0 2.27e-01 3.29e-01 2.79e-01
1 8.93e-0 1.86 8.23e-02 1.46 1.97e-01 0.74 1.95e-01 0.51
2 2.81e-0 1.67 2.40e-02 1.78 1.01e-01 0.96 9.86e-02 0.99
3 8.18e-0 1.78 6.14e-03 1.97 5.08e-02 0.99 4.94e-02 1.00
4 2.30e-0 1.83 1.51e-03 2.02 2.55e-02 0.99 2.49e-02 0.99
5 6.42e-0 1.84 3.74e-04 2.02 1.31e-02 0.96 1.32e-02 0.91

5 Conclusion

A symmetric Galerkin Boundary Element Method for linear poroelasticity based on regularized
kernels has been presented.

The convergence behavior on some benchmark problems has been shown and compared with
a collocation method. It seems that for problems where the mathematical theory fully applies,
the collocation method reaches the performance of the symmetric Galerkin method. However,
this was not really confirmed by the more practical example, where one dimensional wave prop-
agation due to a step load was studied. There, the SGBEM performs better than the collocation
BEM, with the most drastic difference in the flux results. This observation holds for an ideal
space/time discretization. In the case of a not optimal relation between mesh and time-step size
the SGBEM has clear advantages over the collocation BEM, which can also be observed in terms
of long time stability for rather fine time discretization.

An important remark on infinite domains: The presented approach does not violate the far
field conditions, it only requires the closure of the domain. The half-space does not work right
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away within this framework, since it does not include the boundary terms resulting from the
application of Stokes’s theorem (remark 2). These contributions are strictly due to the open do-
main in the discrete setting, on which the Dirichlet data are unknown. With the here presented
approach it seems that the classical truncation does not work because the error due to the trunca-
tion becomes too big. However, treating the boundary’s infinite extent via e.g. infinite boundary
elements would solve this problem. A further remark concerning this point: In the second ex-
ample the source point x could have been placed inside the unit cube without additional efforts
(exterior domain problem) resulting in the very same convergence rates.

Finally one should remark on the computation time: For the convergence study in Laplace do-
main the factor CBEM/SGBEM is about 1/10. One has to consider that for the SGBEM approach
double integration is required, compared to just single integration as in the CBEM approach and
additionally, the second BIE is much more expensive to evaluate compared to the first BIE as it
is the case in the CBEM formulation. Last but not least, when looking at the one dimensional
wave propagation example the time factor becomes even worse. The simple explanation is that
the second boundary integral equation seems to be more sensitive to the non smooth data on the
right hand side, i.e. the entries must be computed with a much higher accuracy, leading to a
longer computation time in comparison to the CBEM.

Even though it may seem like the SGBEM’s drawbacks are not balanced by its benefits, this
formulation definitely has its advantages, when it comes to a symmetric coupling with FEM.
This is an important point, when it comes to realistic applications.

Acknowledgement The authors gratefully acknowledge the financial support of the Austrian
Science Fund (FWF) within the Doktoratskolleg W1208 – Numerical Simulations in Technical
Science.

A Appendix

A.1 Poroelastodynamic Fundamental Solution

The adjoint Laplace domain fundamental solution

Û∗(r) =

[
Ûs(r) Û f (r)(

P̂s
)>

(r) P̂ f (r)

]
=

[
O(r−1) O(r0)
O(r0) O(r−1)

]
with r := |y− x|

is defined by the following terms

Ûs (r) =Ûs
sin (r)+ Ûs

reg (r)

=
1
µ

[
∆I−

(
λ+µ
λ+2µ

)
∇∇
>
]

∆χ̂(r) (27)

− 1
µ

[(
∆(k2

1 + k2
2)− k2

1k2
2
)

I−
(

k2
1 + k2

2− k2
4−

k2
1k2

2

k2
3

)
∇∇
>

]
χ̂(r) (28)

P f (r) =
sρ f

β
∆

2
χ̂(r)− sρ f

β

((
k2

3 + k2
4
)

∆− k2
3k2

4
)

χ̂(r) (29)
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P̂s (r) =
Û f

s
=−sρ f

β

α−β

λ+2µ
∇y
(
∆− k2

3
)

χ̂(r) (30)

where k1,k2, and k3 are the wave numbers related to the fast/slow compressional, and the shear
wave [21], whereas the abbreviation k4 = k3

√
µ/λ+2µ is just introduced for notational conve-

nience.

A.2 Regularized Adjoint/Double Layer Bilinear Forms

The regularized solid related bilinear form for the DLP is given by

〈K̂ û◦,s◦〉sΓ =

ˆ
Γ

ˆ
Γ

s>◦
[(
−∆

2
yχ̂+2µÛs

◦
)
(Myû◦)+(

∂

∂ny
∆

2
yχ̂

)
û◦+

((
T s

y −2µMy
)

Ûs
reg +αÛ f n>y

)>
û◦
]
dsydsx (31)

while for the ADLP it is

〈K̂ ′t̂◦,w◦〉sΓ =

ˆ
Γ

ˆ
Γ

[
(Mxw◦)

> (−∆
2
χ̂+2µÛs)+w>◦

(
∂

∂nx
∆

2
χ̂

)
+ ŵ>◦

(
(T s

x −2µMx) Ûs>
reg−αnxÛ f>

)]
t̂◦dsxdsy . (32)

A.3 Part of the HSO bilinear form kernel function[
4µ2Mx

(
MyÛs

reg
)>−T s

x
(
T s

y Ûs
reg
)>]

`k
=

3

∑
i, j=1

(
4µ2 (Mx)i` (My)k j− (T s

x )`i
(
T s

y
)

k j

)(
Ûs

reg
)

i j

=

(
4µ2−λ2

)
µ

3

∑
i, j=1

[(
k2

4 +
k2

1k2
2

k2
3

)
∂2

∂2yi
− k2

1k2
2

]
nx
`n

y
k

∂2χ̂

∂2y j

−
(
4µ2 +2λµ

)
µ

3

∑
i, j=1

[(
k2

4 +
k2

1k2
2

k2
3

)
∂2

∂2yi
− k2

1k2
2

](
nx
`n

y
j

∂2χ̂

∂y j∂yk
+nx

jn
y
k

∂2χ̂

∂y j∂y`

)

−µ
3

∑
i, j,t=1

[(
k2

1 + k2
2
) ∂2

∂2yi
− k2

1k2
2

](
nx

kny
j

∂2χ̂

∂y`∂y j
+nx

jn
y
`

∂2χ̂

∂y j∂yk
+δ`knx

t ny
j

∂2χ̂

∂y j∂yt
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jn
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∂y`∂yk

)
(33)
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