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Abstract

Many applications lead to large systems of linear equations with dense matrices. Direct
matrix-vector products become prohibitive, since the computational cost increases quadrat-
ically with the size of the problem. By exploiting specific kernel properties fast algorithms
can be constructed.

A directional multilevel algorithm for translation-invariant oscillatory kernels of the type
K(x,y) = G(x−y)eık|x−y|, with G(x−y) being any smooth kernel, will be presented. We will
first present a general approach to build fast multipole methods (FMM) based on Chebyshev
interpolation and the adaptive cross approximation (ACA) for smooth kernels. The Cheby-
shev interpolation is used to transfer information up and down the levels of the FMM. The
scheme is further accelerated by compressing the information stored at Chebyshev interpo-
lation points using ACA and QR decompositions. This leads to a nearly optimal compu-
tational cost with a small pre-processing time due to the low computational cost of ACA.
This approach is in particular faster than performing singular value decompositions.

This does not address the difficulties associated with the oscillatory nature of K. For
that purpose, we consider the following modification of the kernel Ku = K(x,y)e−ıku·(x−y),
where u is a unit vector (see Brandt [3]). We proved that the kernel Ku can be interpolated
efficiently when x− y lies in a cone of direction u. This result is used to construct an FMM
for the kernel K.

Theoretical error bounds will be presented to control the error in the computation as well
as the computational cost of the method. The paper ends with the presentation of 2D and
3D numerical convergence studies, and computational cost benchmarks.
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1 Introduction

A direct evaluation of summations like

fi =

N∑
j=1

K(xi,y j)σ j for i = 1, . . . ,N, (1)

becomes prohibitive because the complexity grows quadratically with the problem size N. Nu-
merous methodologies have been developed in the last decades which allow us to perform these
summations efficiently such that the complexity grows like O(N log N). Probably the most estab-
lished ones are the fast multipole method (FMM, e.g., [12]), the panel clustering method (e.g.,
[15]) and those based on hierarchical matrices (H-matrices, e.g., [14]). All these approaches
take advantage of specific properties of the kernel function K(x,y), such as low-rank properties
of certain blocks in the matrix K(xi,y j). Proper admissibility conditions provide a priori infor-
mation on when these properties apply. The most common one is based on the distance between
xi and y j and typically applies to isotropic kernels which are asymptotically smooth in |x− y|,
e.g., kernel functions of elliptic boundary integral operators are of such type. An example of such
admissibility condition is that if x and y are in clusters of radius R, then the distance between
the two clusters must be at least 2αR, α > 1. An admissibility condition for kernel functions of
retarded boundary integral operators was introduced in [16]. Such functions additionally depend
on the time. In the paper at hand, however, we focus on oscillatory kernel functions like

K(x,y) = G(x− y)eık|y−x|, where k is the wave number (2)

where G(x− y) can be any asymptotically smooth function, that is the derivatives of G decay
rapidly as |x− y| becomes large. This will be made more precise later on.

In the low-frequency, the usual FMM analysis based on low-rank properties of the kernel is
applicable and the complexity scales like O(N). However, in the high frequency regime (see
[18]), the kernel is no longer low-rank. The rank of eık|y−x| depends on k and grows like O(kR),
where R is the size of the cluster containing x and y (in the usual FMM setting). This is explained
in [21] and also shown in this paper. Several solutions have been proposed to address this issue.
Rokhlin [19] developed a high frequency FMM based on diagonal translation operators for the
Helmholtz kernel. Diagonal operators were worked out by Greengard et al. [13] in the low and
high frequency regimes. Another approach was taken by Darve [7], where they proposed a stable
plane expansion for the whole frequency regime. A combined wide-band scheme that switches
between different representations in order to cover both the high- and low-frequency regime is
also presented in Cheng et al. [5].

Brandt [3] took a different approach. He took advantage of the fact that the modified kernel

Ku(x,y) = K(x,y)e−ık u·(x−y) (3)

is low-rank, independent of the wave number k, in the direction of the unit vector u. Along the
same line, Engquist and Ying [9] developed the directional admissibility condition for oscilla-
tory kernels (2). Based on this idea they constructed a fast directional multilevel algorithm for
oscillatory kernels.
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This work builds on this concept of directional admissibility condition. We show how low-
rank representations can be constructed using Chebyshev polynomials even for oscillatory ker-
nels. Our approach is applicable to any kernel of the form G(x− y)eık|y−x| where G is smooth.
We build our scheme using the modified kernel (3) proposed by Brandt. Section 2 provides
an analysis of the smoothness of this potential. In Section 3 we construct the fast directional
summation method based on Chebyshev interpolation. The efficient treatment of the multiple-
to-local (M2L) operator is covered in Section 4. In Section 5 we show that the overall complexity
of the method is O(N log N). In the last Section, 6, we present numerical tests with interpola-
tion error, low-rank approximation convergence and computational cost benchmarks. We also
compare this FMM with the plane wave FMM of [4].

2 Directional low-rank representation of the oscillatory kernel

Our fast summation method is based on finding a low-rank representation of the kernel K(x,y).
As a basic tool to establish this property we use Chebyshev polynomials. Given a function f (x)
(in 1 dimension), we can approximate it by

f (x) ∼
∑̀
m=0

amTm(x), (4)

where Tm are Chebyshev polynomials of the first kind. The coefficients am can be approximated
by evaluating the function f (x) at Chebyshev nodes, which serve as interpolation points. This
process leads to a low-rank representation of the form:

K(x,y) ∼
∑̀
m=0

Tm(x)
∑̀
n=0

amn Tn(y).

The interpolation error can be bounded by:

∣∣∣∣ f (x)−
∑̀
m=0

amTm(x)
∣∣∣∣ ≤ M

ρ`(ρ−1)
, for all −1 ≤ x ≤ 1,

where ρ > 1 and M is such that

| f (z)| ≤ M, for all z ∈ Eρ, Eρ =
{
z ∈ C | z =

ρeıθ +ρ−1e−ıθ

2

}
(5)

holds. In eqn. (5) it is assumed that f (z) is analytic inside the ellipse Eρ. Hence, a key element
is that M should not be too large.

A case that is more difficult for this interpolation procedure is eıkx. For z = ı (−ρ+ ρ−1)/2,
(i.e., θ = −π/2 in eqn. (5)), we get

eıkz = ek(ρ−ρ−1)/2.

The constant M can not be bounded by a constant independent of k if we keep ρ fixed. In fact, it
grows exponentially fast with k. This is reflected by the fact that it is not possible to interpolate

3



Preprint No 01/2011 Institute of Applied Mechanics

eıkx using Chebyshev polynomial with a fixed order ` and a fixed accuracy, while varying k.
As k increases, the wavelength must be resolved by increasing correspondingly the order of the
expansion.

Even though the reasoning is a little more complicated for our kernel K(x,y), the main con-
clusion is that we cannot achieve a k independent low-rank approximation by directly applying
the Chebyshev interpolation. However, this problem can be addressed by constructing a slightly
different kernel that remains “small” in the complex plane independent of k. Let us decompose
K(x,y) into

K(x,y) = G(x,y) eık(|x−y|−u·(x−y)) eık u·(x−y) (6)

= Ku(x,y) eık u·(x−y). (7)

Let us introduce some notations. Consider a cluster X centered at cx and a cluster Y centered at
cy containing x and y, respectively. We denote: rx = x−cx, ry = y−cy, r = rx− ry, c = cx−cy. We
also define a unit vector u. All these notations are shown in Fig. 1. Further, we will assume that
the clusters containing x and y have radius 1/2, so that the Cartesian coordinates of r are in the
interval [−1,1]. This can always be made true by appropriately scaling k.

cy cx

y

x

Y Xu
c

ry

rx

Figure 1: Directional admissible clusters

With this notation we can set x− y = c + r, hence we have the following expansion for the
argument of the exponential in Ku(x,y)

|c + r| −u · (c + r) = |c| −u · c + (c/|c| −u) · r +
1
2
|r|2

|c|
−

1
2

(c · r)2

|c|3
+ O(|r|3), (8)

by using a Taylor expansion in |r| of the square root. Let us now consider the kernel Ku(x,y)
inside the ellipse Eρ

Ku(z) = G(z) exp
(
ık
(
|c| −u · c + (c/|c| −u) · z +

1
2
|z|2

|c|
−

1
2

(c · z)2

|c|3
+ · · ·

))
,

by extending r ∈ R2 to z ∈ C2. We need to show that it is bounded independently of k. Let us
assume that G(z) is analytic in Eρ for some ρ > 1. Let us further assume that:

k
∣∣∣∣ c
|c|
−u

∣∣∣∣ ≤ A,
k
|c|
≤ A.

4
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Then there exists a constant M independent of k that bounds Ku(z) inside Eρ.
These bounds are normalized since we made the assumption that the radius of the clusters is

1/2. If we consider the general case of a cluster of diameter w (introducing back dimensional
variables), we get the corresponding assumptions:

kw
∣∣∣∣ c
|c|
−u

∣∣∣∣ ≤ A
kw2

|c|
≤ A. (9)

The first equation corresponds essentially to a cone of aperture O(1/kw), while the second con-
dition corresponds to a minimum separation of O(kw2) between two clusters. The situation is
depicted in Fig. 1. In summary, we have proved that if eqn. (9) holds, we can find a low rank
representation of the kernel Ku(x,y) by using Chebyshev polynomials. The number of terms in
the expansion, i.e., the required rank ` for a given accuracy, is independent of k and of the cluster
diameter w.

3 Fast directional summation method based on Chebyshev
interpolation

Let us start with the introduction of some basic notations regarding the Chebyshev interpolation
scheme. We have an `−1 degree polynomial p`−1(x), which interpolates the function f (x) and
takes the form:

p`−1(x) =
∑̀
m=1

S `(x, x̄m) f (x̄m) for x ∈ [−1,1],

with the interpolation operators S `(x, x̄) given by the explicit formula

S `(x, x̄m) =
1
`

+
2
`

`−1∑
n=1

Tn(x)Tn(x̄m).

The points x̄m are Chebyshev nodes. If we need to extend this interpolation formula to an
arbitrary interval x ∈ [a,b], we can use the affine mapping

Φ : [−1,1] 7→ [a,b] with Φ(x) =
a + b

2
+

b−a
2

x

For reference the inverse mapping is also needed and is given by Φ−1(x) = 2x−b−a
b−a .

For the general case of Rd, we introduce an arbitrary axis-parallel box [a,b] ⊂ Rd defined as

[a,b] = [a1,b1]× · · ·× [ad,bd]. (10)

In this case the interpolation operators S d
`
(x, x̄) with x ∈ [a,b] are constructed by means of the

tensor product
S d
` (x, x̄) = S `(x1, x̄1) · · · S `(xd, x̄d). (11)

5
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3.1 The far-field in the low- and high frequency regime

Before we start with the construction of a fast summation method we need to partition the com-
putational domain Ω ⊂ Rd into clusters of equal diameter w. This allows us to separate near-
and far-field. We introduce two clusters X ⊂Ω and Y ⊂Ω containing M and N particles, respec-
tively. If cluster X and Y are sufficiently separated their interaction can be computed efficiently.
Whereas, if X and Y are nearby clusters their interaction must be computed directly. We treat
only the far-field case in the following.

Two regimes, depending on the cluster diameter w, are of interest when dealing with oscilla-
tory kernels. There exists a constant B such that we are in the low frequency regime whenever
w ≤ B/k and in the high frequency regime whenever w > B/k. In the low frequency regime,
eqn. (9) is always true. If the kernel G(x−y) has a singularity at x = y, we further need the usual
well-separated condition for the two clusters: |c| ≥ α2w where α > 1 (in the usual FMM setting
with an oct-tree, α can be chosen equal to 2/

√
3). With this assumption, the kernel K(x,y) can

be interpolated accurately using the usual Chebyshev interpolation approach. A fast summation
method can be constructed as presented in Fong and Darve [10]

K(x,y) ∼
L∑

m=1

S `(x̄m, x)
L∑

n=1

K(x̄m, ȳn)S `(ȳn,y), (12)

where L = `d denotes the number of interpolation points on each cluster.
We would like to clarify an important but somewhat confusing point. The entire fast multipole

scheme relies fundamentally on the concept of interpolation. However the actual calculation
that is carried out involves two different but similar looking operators: the anterpolation and
interpolation operators. Consider the sum:

fi =
∑

j

K(xi,y j)σ j

Using the interpolation formula above, Eqn. (12), we calculate an approximation of the sum in
three steps:

• Anterpolation or multipole to multipole operator (M2M): Wn =
∑

j S `(ȳn,y j)σ j

• Kernel evaluation or multipole to local operator (M2L): Fm =
∑L

n=1 K(x̄m, ȳn)Wn

• Interpolation or local to local operator (L2L): fi ∼
∑L

m=1 S `(x̄m, xi) Fm

Even though the operators M2M and L2L are different (they are transpose of each other), they
are both derived from interpolation operators. The error analysis therefore only requires studying
errors introduced by the interpolation algorithm. In that respect the anterpolation (M2M) and
interpolation steps (L2L) are not different.

The high frequency regime is more difficult to handle. In section 2, we have shown that we
can find a low-rank representation of Ku(x,y) by means of the Chebyshev polynomials

Ku(x,y) =

L∑
m=1

S `(x, x̄m)
L∑

n=1

Ku(x̄m, ȳn)S `(ȳn,y) +ε(`),

6
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if two clusters X and Y fulfill the minimal separation condition |c| ≥ kw2/A and the maximal
cone aperture |c/|c| − u| ≤ A/kw. The error is bounded by a function ε(`) = O(1/γ`), which is
independent of k and w. In terms of the original kernel K(x,y) the low rank form becomes

K(x,y) ∼ eık u·x
L∑

m=1

S `(x, x̄m)e−ık u·x̄m

L∑
n=1

K(x̄m, ȳn)eık u·ȳn S `(ȳn,y)e−ık u·y. (13)

With the notations above, the constant B can be chosen as:

B = A min(2α, 1/2)

3.2 Directional single level summation

Considering the directional low-rank property of Ku(x,y) we need to partition the far-field into
a set of cones of direction {uc}

C
c=1 and each of aperture O(1/kw). Each cone contains a set of

interacting clusters {Yt}
Tc
t=1. For the sake of readability we present the directional single level

summation in the following by means of a single interaction. We consider a cluster Y located in
the cone of direction u and centered at cluster X. Hence, we can substitute eqn. (13) into (1) and
we get the contribution from the sources σ j in Y to the field values fi in X

f c,t
i = eık u·xi

L∑
m=1

S `(xi, x̄m)e−ık u·x̄m

L∑
n=1

K(x̄m, ȳn)eık u·ȳn

N∑
j=1

S `(ȳn,y j)e−ık u·y j σ j

for i = 1, . . . ,M. We can efficiently compute the summation by splitting up this equation into
three steps:

1. Directional M2M operation: Compute equivalent sources at interpolation points ȳn by
anterpolation

Wn = eık u·ȳn

N∑
j=1

S `(ȳn,y j)e−ık u·y j σ j for n = 1, . . . ,L. (14)

2. M2L operation: Compute field values at interpolation points x̄m

Fm =

L∑
n=1

K(x̄m, ȳn)Wn for m = 1, . . . ,L. (15)

3. Directional L2L operation: Compute field values at final points xi by interpolation

f c,t
i = eık u·xi

L∑
m=1

S `(xi, x̄m)e−ık u·x̄m Fm for i = 1 . . . ,M. (16)

7
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The computational cost of the steps 1 and 3 are of O(LN) and O(LM), respectively. The cost of
step 2 is of O(L2). Hence for L� N and M, this summation algorithm scales like O((M + N)L).
A direct evaluation has a complexity of O(MN).

In order to get the influence of the entire computational domain Ω we have to sum up all
near- and far-field contributions. The evaluation of the near-field is performed directly between
all interacting clusters. For the far-field we have to gather the contributions of all interacting
clusters {Yt}

Tc
t=1 in the cones of direction {uc}

C
c=1

fi ∼ f near-field
i +

C∑
c=1

Tc∑
t=1

f c,t
i for all i = 1, . . . ,M.

3.3 Directional multilevel summation

For the construction of a multilevel method we need to hierarchically partition the computational
domain Ω ⊂ Rd into clusters. This partitioning is recursive so that we obtain a tree. Tree level
0 is equivalent to the entire computational domain, while tree level ν+ 1 is obtained from level
ν by subdividing each cluster into 2d equal child clusters. The procedure stops once the low
frequency regime is reached, i.e., all but the bottom most tree level are in the high frequency
regime. The cluster tree depth depends on the wave number k, but the cluster diameter w only
depends on the tree level ν.

Moreover, we need to partition the far field of all clusters in the high frequency regime into
a set of cones {uc}

C
c=1, each of aperture O(1/kw). For that we adopt the procedure described in

Engquist and Ying [9]. In this procedure, the cone aperture gets divided by two as we go up the
tree. This results in the fact that the M2M and L2L operators become directional.

These operators are constructed as follows. We discuss the two level process, in a step by step
fashion. We will omit the extension of the proof to an arbitrary number of levels. Let us assume
we have computed the multipole expansion with coefficients Wu

n for direction u at level ν+1 [see
Eqn. (14)]:

Wu
n = eık u·ȳn

N∑
j=1

S `(ȳn,y j)e−ık u·y j σ j

We want to calculate the contribution of Wu
n to the multipole coefficients Wu′

m of the parent cluster
at level ν. Recall the general high-frequency interpolation formula of the kernel [see Eqn. (13)]:

K(x,y j) ∼
L∑

n=1

K(x, ȳn)eık u·ȳn S `(ȳn,y j)e−ık u·y j .

This formula is accurate as long as Ku can be interpolated at y j from data at ȳn.
To obtain the M2M operator, we simply need to consider how K(x, ȳn) can be interpolated

using the interpolation points of the parent cluster, denoted ¯̄ys. However such an interpolation
operator requires using direction u′ to maintain the accuracy of the scheme. Indeed as we have
proved above, the interpolation scheme is accurate in a cluster of size w as long as we consider
points x and y such that x− y lies in the cone of axis u′. The interpolation formula is then as

8
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follows:

K(x, ȳn) ∼
L∑

s=1

K(x, ¯̄ys)eık u′· ¯̄ys S ′`(¯̄ys, ȳn)e−ık u′·ȳn .

where S ′` is the interpolation function for the parent cluster. We assume that the interpolation
order L is the same, although in practice L might vary slightly between levels. However, those
variations are typically small. Importantly there is an upper bound on L, for a given error toler-
ance ε, which is independent of the cluster size.

In summary the evaluation of K(x,y j) is done in two stages. Stage 1: we interpolate from ȳn

to y j. This leads to the following definition:

Wu
n = eık u·ȳn

N∑
j=1

S `(ȳn,y j)e−ık u·y j σ j

A key element of the proof is the fact that this interpolation step is accurate even when the points
xi and y j interact at level ν because the cone u′ for the parent cluster is strictly contained inside
the cone u at level ν+ 1 for the child cluster. Stage 2: we interpolate from ¯̄ys to ȳn. This leads to
the M2M formula we were after:

Wu′
s = eık u′· ¯̄ys

∑
n

S ′`(¯̄ys, ȳn)e−ık u′·ȳn Wu
n

A similar derivation shows that the L2L operator is given by:

Fu
m = eık u′·x̄m

∑
l

S ′`( ¯̄xl, x̄m)e−ık u′· ¯̄xl Fu′
l

The L2L operator is the transpose and complex conjugate operator of M2M.
We now present the different steps in the multilevel scheme. For the sake of readability we

omit the indices c and t indicating direction and interaction. Other notations have been simplified
for clarity. This leads to some incorrect notations in places but hopefully the context makes it
clear what the different variables are.

1. Construct the Cluster Tree such that all but the bottom most level are in the high fre-
quency regime.

2. The Upward Pass starts at the leaf level and ends when no more long-range cluster inter-
actions are possible, i.e., the minimal separation O(kw2) becomes larger than the compu-
tational domain. The upward pass consists of the M2M operation (anterpolation):

• Perform the non directional M2M operation at the leaf level (low frequency regime):
Anterpolate non directional equivalent sources Wn at interpolation points ȳn from
sources σ j at initial points y j

Wn =

N∑
j=1

S `(ȳn,y j)σ j for n = 1, . . . ,L.

This step is repeated going up the tree until we reach a cluster for which the low-
frequency approximation breaks down.

9
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• Starting from the first level in high frequency regime, perform the directional M2M
operation for all directions {uc}

C
c=1: Anterpolate directional equivalent sources Wu

s at
interpolation points ¯̄ys from sources Wu

n at points ȳn of all child clusters

Wu′
s = eık u′· ¯̄ys

2dL∑
n=1

S `(¯̄ys, ȳn)e−ık u′·ȳn Wu
n for s = 1, . . . ,L.

At the first level in the high frequency regime, we choose Wu
n = Wn, the non-directional

multipole coefficients.

3. The Transverse Pass (multipole to local — M2L) consists in calculating all the partial
local expansions, Fu,p

m , for all clusters at all levels:

Fu,p
m =

L∑
n=1

K(x̄m, ȳn)Wu
n for m = 1, . . . ,L.

For low-frequency clusters, use Wn and Fp
m.

4. The Downward Pass (interpolation) starts at the level the upward pass has ended, and
ends at the leaf level. At the top of the tree Fu

m = Fu,p
m .

• For high-frequency clusters, perform the directional L2L operation for all directions
{u′c}

C′
c=1: Interpolate directional field values Fu

m at interpolation points x̄m of all child
clusters from directional field values Fu′

l at interpolation points ¯̄xl

Fu
m = Fu,p

m + eık u′·x̄m

L∑
l=1

S `( ¯̄xl, x̄m)e−ık u′· ¯̄xl Fu′
l for m = 1, . . . ,2dL.

Keep stepping down in the tree until the last tree level in the high frequency regime
is reached.

• For low-frequency clusters, perform the non directional L2L operation: Interpolate
field values Fm at x̄m from non directional field values F′l at interpolation points ¯̄xl

Fm = Fp
m +

L∑
l=1

S `( ¯̄xl, x̄m) F′l for m = 1, . . . ,2dL.

5. Evaluate the Near Field contribution and add it to the interpolated far field contribution:

L∑
l=1

S `(x̄l, xi) Fl

10
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4 Efficient treatment of the M2L operator

In each multilevel method the M2L operation adds the largest contribution to the computational
cost. The reason for that is the fact that the M2L operation has to be performed many times for
each cluster, whereas the M2M and L2L operations have to be performed only once per cluster.
As such, the optimization of this operation is important.

The M2L operator evaluates the field due to source values located in cluster Y at points located
in cluster X. The efficient treatment of this operator is based on the fact that there exists a low-
rank representation. Let Ku(x,y) and K(x,y) be the generating kernels of the M2L operators Ku

and K, respectively. We know from section 2 that Ku(x,y) has a low-rank representation. But
what about K(x,y)? Looking at the decomposition

Ku(x,y) = eık u·x K(x,y)e−ık u·y

we conclude that K(x,y) has a low-rank representation as well. Hence, both in the low- and the
high-frequency regime we can use the original, unmodified kernel K(x,y) to compute the M2L
operators. Remember, that each cluster contains L = `d interpolation points. These points might
be directional, in the sense that they allow interpolating K(x,y) only within a specific cone (see
Eqns. 9). Hence, we write the M2L operator K ∈ CL×T L for a given interaction list as

K = [K1,K2, . . . ,Kt, . . . ,KT−1,KT ], (17)

with Kt ∈ C
L×L being the M2L operator for cluster X and Yt. The total number of clusters in the

(possibly directional) interaction list is T and these clusters are denoted by {Yt}
T
t=1.

In the following, we first apply the adaptive cross approximation (ACA) to obtain a low rank
approximation of the M2L operator (see section 4.1). In section 4.2 we show how we can further
reduce the computational cost of this operation by means of QR decompositions. Other methods
can be applied as well, however we found ACA combined with QR to be an effective approach.

4.1 Adaptive cross approximation

A remark to the notation in this section: (K)i j denotes the i j-th entry of the matrix K, whereas
(K)i: and (K): j are the i-th row and j-th column of K, respectively. The idea of the ACA is to
approximate the M2L operator such that

K = UV∗+O(ε), with K ∈ CL×T L. (18)

The rows and columns of the approximant UV∗, U ∈ CL×κ and V ∈ CT L×κ are computed for
κ = 1,2, . . . as

ûκ = (K): jκ −

κ−1∑
n=1

(vn) jκ un with jκ B ArgMax|(vκ−1) j|

uκ = γκ ûκ with the pivot γκ = (ûκ)−1
iκ and iκ B ArgMax|(ûκ)i|

vκ = [(K)iκ:]
∗−

κ−1∑
n=1

(un)iκ vn.

(19)
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where ∗ is the transpose conjugate operator, and v is the complex conjugate of v. The pivot γκ is
chosen to be the largest entry in modulus of ûκ. It determines the row and column indices iκ and
jκ of the κ-th approximation step, respectively. Further hints for the right choice of the pivots γκ
and the initial index j1 can be found in [2]. The approximation stops if the prescribed accuracy
ε is reached, i.e., the following criterion holds

‖uκ+1‖F ‖vκ+1‖F < ε‖(UV∗)κ+1‖F . (20)

Note, the entire matrix K is never generated. By using the definition of the absolute value
|z| =

√
zz, z ∈ C, the Frobenius norm of the approximant can be formulated recursively

‖(UV∗)κ+1‖
2
F = ‖(UV∗)κ‖2F +

κ∑
n=1

[
(un ·uκ+1)(vn ·vκ+1) + (un ·uκ+1)(vn ·vκ+1)

]
+ ‖uκ+1‖

2
F‖vκ+1‖

2
F .

Hence, all algebraic evaluations in (19) and (20) can be performed with O(κ2(L + T L)) floating
point operations. If the computational costs for generating matrix entries dominates by far the
costs needed for the ACA algorithm, the complexity and memory requirement scale like O(κ(L+

T L)) (see [1]).

4.2 Fast convolution based on a QR decomposition

We can write the M2L operator K in a twofold way, either by organizing the individual Kt as a
row vector or as a column vector

K(row) = [K1,K2, . . . ,Kt, . . . ,KT−1,KT ]

or K(col) = [K1;K2; . . . ;Kt; . . . ;KT−1;KT ].
(21)

We use the , and ; notations to distinguish column and row ordering. Their low rank representa-
tion obtained by means of the ACA reads as

K(row) ∼ U [V∗1,V
∗
2, . . . ,V

∗
t , . . . ,V

∗
T−1,V

∗
T ]

or K(col) ∼ [A1;A2; . . . ,At; . . . ,AT−1;AT ]B∗.
(22)

Hence, for an individual M2L operator Kt ∼ UV∗t ∼ AtB∗ is true and by means of QR decompo-
sitions we can rewrite it as

Kt ∼ QURU (QVt RV )∗ ∼ QAt RA (QBRB)∗. (23)

Here QU ,QVt ,QAt and QB are unitary matrices. Next, we introduce Φ = RUR∗V and Ψ = RAR∗B
then (23) reads as

Kt ∼ QUΦQ∗Vt
∼ QAtΨQ∗B. (24)

12
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Now, by means of (24) we can rearrange an individual M2L operator Kt as follows

Kt ∼ QAtΨQ∗B
∼ QAtΨ (Q∗BQB)Q∗B
∼ Kt (QBQ∗B)

∼ QUΦQ∗Vt
(QBQ∗B)

∼ QU (Q∗UQU)ΦQ∗Vt
(QBQ∗B)

∼ QU (Q∗UKtQB)Q∗B ⇒ Kt ∼ QU Ct Q∗B,

(25)

with Ct ∈C
κ×κ being computed as Ct ∼ΦQ∗Vt

QB or Ct ∼Q∗U QAtΨ (the two expressions are equal
with the low-rank approximation errors).

The cost of the pre-computation increases slightly due to this representation of Kt. However,
the overall memory requirement and computational cost for M2L operations decrease substan-
tially. Instead of storing UV∗, which is of order O((L + T L)κ), only one QU and one QB per
(directional) interaction list, and one Ct per interaction, need to be stored. Hence, the memory
requirement per interaction list gets reduced to O(2Lκ+ Tκ2). The computational cost must be
analyzed in a slightly different way. Due to the fact that we can write Kt ∼ UV∗t ∼ QU Ct Q∗B we
can shift the application of Q∗B and QU to the M2M and L2L operation, respectively. Hence,
the M2L operation gets reduced from O(2Lκ) to only O(κ2) (a multiplication by Ct). Remember
that this operation has to be performed for each cluster with all the clusters in its interaction list.
Hence, the savings are significant. A similar method is described in [10].

Summary and discussion. We make a brief pause to review the methods described so far.
We first introduced an interpolation technique, based on Chebyshev polynomials, which can
be used to construct low-rank representations. We explained how the directional admissibility
condition could be used to construct low-rank approximations of oscillatory kernels. We then
introduced ACA as a way to construct low-rank representations and explained how QR decom-
positions can be used to further reduce the cost of applying the M2L operator. Essentially, ACA
allows to construct an approximate rank κ representation, while QR reduces the cost of M2L to
a multiplication by a κ× κ matrix.

Stepping back a bit, it seems that the Chebyshev interpolation method is not needed, since
ACA could provide in the first place the desired low-rank representation. The difficulty in this
approach is the cost of the pre-computation and this is primarily the role the Chebyshev inter-
polation is playing. With the proposed algorithm, ACA is applied only to matrices constructed
from Chebyshev nodes, that is they are independent of the points xi and y j. This pre-computation
cost grows slower than N (in fact like O(N1/2)). In addition, this calculation can be re-used for
many different calculations. In contrast, obtaining low-rank representations directly using ACA
would require a much larger pre-computing time, and the resulting algorithm would, in fact, no
longer scale like O(N log N). The complexity analysis of the proposed algorithm is provided in
more details in the next section.

13
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5 Complexity

In this section we present a general estimate of the computational complexity of the presented
algorithm. We do not examine the case where as N goes to ∞ the distribution of the points is
allowed to become in-homogeneous, in the sense that the ratio of the largest point density over
the smallest point density goes to∞ (e.g., the points accumulate at a location).

We make our problem non-dimensional by considering a wavenumber k equal to 1. The
diameter of the domain Ω ⊂ Rd is then L (now effectively measured in wavelength). We assume
that the problem is discretized such that the number of points per wavelength is approximately
constant (this avoids the issue of accumulation mentioned above).

We will consider three cases, the same conclusion being reached in all cases: 1) the points are
distributed more or less uniformly in Ω, 2) the points are distributed on a manifold of dimension
d−1 in Ω, e.g., on a surface in R3, 3) the points are distributed on a manifold of dimension d−2,
e.g., on a curve in R3. In all cases, the method scales like O(N log N). We give a more detailed
proof of case 1) and outline case 2) and 3).

We will omit the analysis of the low-frequency regime since it follows the usual FMM com-
plexity analysis and leads to an O(N) computational cost. With our assumption, the number of
levels in the cluster tree is of order O(log L).

Let us scatter points randomly in Ω ⊂ Rd. We then have N = O(Ld). If w denotes the cluster
diameter, the number of clusters per level is O(Ld/wd).

M2M and L2L operation: In the high frequency regime there are O(wd−1) cone directions
per tree level and both, the M2M and L2L operation involve O(1) operations. If we write the
cluster diameter w = L/2ν in terms of the wave number and let ν denote the tree level, the
complexity sums up to

O
( log L∑
ν=0

(L/2ν)d−1 2νd
)

= O
(
Ld−1

log L∑
ν=0

2ν
)

= O(Ld)

The complexity is of order O(Ld) = O(N).
M2L operation: This is the important step in the analysis. In the high frequency regime, the

far field is bounded by the minimal distance of O(w2) and the maximal distance of O(4w2). Per
cone, this represents O(w) clusters. Since there are O(wd−1) cones, the total number of interac-
tions per cluster in all directions is O(wd). Each interacting cluster involves a constant number
of operations, thus we end up with a complexity of O((L/w)d wd) = O(Ld) = O(N) per level,
that is the cost is approximately constant at all levels. We conclude that the total complexity is
O(N log N).

We never reach w = O(L), the size of the domain Ω, in this method. Instead with the direc-
tional admissibility condition, at the highest level in the tree where interactions are still being
computed, we have w = O(

√
L). The dimensions don’t seem to match because we made our

problem dimensionless by choosing k = 1. With dimensions, the condition reads: w =O(
√

L/k).
This means that the largest clusters in this method become smaller as k increases. In dimen-
sionless units, the size of the largest clusters increase like

√
L, and therefore becomes small

compared to the domain size L. This is in contrast with most FMMs in which the size of the
largest clusters is on the order of the domain diameter. The difference is that in our approach

14
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Plane Wave FMM [7] Directional FMM

Case 1 O(N) O(N ln N)
Case 2 O(N ln N) O(N ln N)
Case 3 O(N1+1/(d−2)) O(N ln N)

Table 1: Complexity of the plane wave FMM [7] and the directional FMM in 3 cases: 1) points
distributed in a volume Ω of dimension d, 2) on a surface of dimension d−1 in Ω, and
3) along a curve of dimension d−2 in Ω.

we maintain a low-rank representation (which leads to an increased number of clusters in the
interaction list) whereas in the traditional FMM, e.g., [6, 7], the rank grows like the size of the
cluster (but the size of the interaction list is bounded).

We now outline the proof for case 2) in which the points lie on a manifold of dimension
d − 1 in Ω. The number of clusters in the interaction list per cone varies depending on the
direction with possibly many directions having no interactions. However for all cones the total
number of interactions is O(w2(w2)d−2/wd−1) = O(wd−1). The complexity at a given level is
O((L/w)d−1wd−1) = O(Ld−1) = O(N). The total complexity is O(N log N) as before.

For case 3) (points lying along a curve in R3), in the M2L operation, the size of the interaction
list is O(w2(w2)d−3/wd−2) = O(wd−2). The complexity at a given level is O((L/w)d−2wd−2) =

O(Ld−2) = O(N). The total complexity is O(N log N).
The complexity of the fast multipole method based on plane waves expansions [7] varies

depending on the case. For a cluster of size w, the number of multipole coefficients is O(wd−1).
However the number of clusters varies depending on the case. In case 1), the total cost at each
level isO(wd−1(L/w)d) =O(Ld/w). The total cost of the method is thenO(Ld) =O(N). In case 2),
the cost at each level is O(wd−1(L/w)d−1) =O(Ld−1) and the total cost of the method is O(N ln N).
In case 3), the cost at each level is O(wd−1(L/w)d−2) =O(wLd−2), and the total cost of the method
is O(Ld−1) = O(N1+1/(d−2)).

In practice, it is rare to encounter case 3, where points are on a manifold of dimension d−2 (a
curve). However the analysis applies if we consider the case of an object that is very elongated
along one dimension. For example define a matrix M = UΓUT where U is orthonormal and Γ

is a diagonal matrix with entries (1,1,s). Take a set Ω and apply the map M: x→ Mx, x ∈ Ω.
Discretize the resulting set MΩ using a fixed number of points per wavelength (here we assumed
k = 1 so we keep the density of points constant). Then as s→ ∞, the object becomes very
elongated; we have N →∞, and the complexity of the plane wave FMM [7] is O(N1+1/(d−2)) =

O(N2) (with d = 3).
The results are summarized in Table 1.

6 Numerical studies

The presented method is based on two different approximations: the low-rank representation of
the kernel based on Chebyshev interpolation and the adaptive cross approximation (ACA). In
the next sections 6.1 and 6.2 we present error estimates and convergence studies and conclude
with some numerical benchmarks in section 6.3 and 6.4.
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6.1 Error estimates for Chebyshev interpolation

To investigate the Chebyshev interpolation error we use an estimate from [17]: if the function
f (x) extends to a function f (z) of the complex variable z, which is analytic on the ellipse Eρ then
the estimate holds ∣∣∣∣ f (x)−

`+1∑
m=1

S `+1(x, x̄m) f (x̄m)
∣∣∣∣ ≤ (ρ+ρ−1) M

(ρ`+1−ρ−`−1)(ρ+ρ−1−2)
(26)

for all −1 ≤ x ≤ 1 and with M and Eρ defined in (5). For a given interpolation order ` we
obtain the most strict error bound if we find the optimal compromise between minimizing M
and maximizing ρ.

How do we estimate the interpolation error of a kernel function K(x,y) which depends on two
variables? Let us take two generic clusters X,Y ⊂ Rd that are centered at cx and cy, respectively.
As illustrated in figure 1 we introduce c = cx−cy and r = x−y−c. Then, we can state x−y = c+r
and the kernel we deal with becomes K(r) and can be extended to K(z) with z ∈ Cd.

In the following, we analyze the interpolation error of two different kernels. In both cases
we let the clusters X,Y ⊂ Rd be of diameter w = 1 and the cluster X be centered at the origin
cx = [0,0]. The center cy of cluster Y changes.

6.1.1 An asymptotically smooth kernel G(r) = 1
|c+r|

We let cluster Y be centered at cy = [2,0], hence, vector c = cy − cx becomes c = [2,0]. The
interpolation error for G(r) is analyzed for two cases

r‖ = [ζ,0] varies parallel to c, and

r⊥ = [0, ζ] varies perpendicular to c, for all −1 ≤ ζ ≤ 1.

Figure 2 shows the modulus of the smooth kernel G(r) in the complex plane for these two
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Figure 2: Modulus of G(r) = 1
|c+r| with r ∈ C2
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cases. The ellipse Eρ is chosen such that G(r) remains analytic on it. The estimated and actual
interpolation error for r‖ and r⊥, with respective poles at [−2,0] and [0,±2ı], are compared in
fig. 3. The error decay is of order O(1/ρ`) as expected.

3 4 5 6 7 8 9 10
Chebyshev nodes

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

In
te

rp
o
la

ti
o
n
 e

rr
o
r

Estimated error (parallel)

Actual error (parallel)

Estimated error (perpendicular)

Actual error (perpendicular)

Figure 3: Interpolation error for G(r) = 1
|c+r|

6.1.2 The oscillatory kernel Ku(r) = eık(|c+r|−u·(c+r))

The center of cluster Y depends on the wave number k. We choose it such that the minimal
separation O(k) and maximal angular deviation O(1/k) from u = [1,0], i.e., c = cy = [k,1], are
satisfied. Again, we analyze two cases:

r‖ = [ζ,0] varies parallel to u, and

r⊥ = [0, ζ] varies perpendicular to u, for all −1 ≤ ζ ≤ 1.

Figure 4 shows the modulus of the oscillatory kernel Ku(r) in the complex plane for these two
cases. We notice that for r‖ the kernel increases at a much slower rate than for r⊥. This implies
that we can choose larger ρ and, due to estimate (26), the interpolation error must be smaller.

We can observe that in fig. 5. There the actual and estimated interpolation error for k = 2,
20, 200, 2000, and r‖ and r⊥ are compared. We can understand this behavior if we look at the
Taylor expansion of the exponent of Ku(r) in eqn. (8): when k increases, the angle between c
and u becomes smaller, and all the terms shown in eqn. (8) become negligible (they cancel out
when c and u are exactly aligned). The reason why the actual interpolation error for growing k
and ` plateaus at some point is due to rounding errors in the floating-point operations.
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Figure 4: Modulus of Ku(r) = eık(|c+r|−u·(c+r)) with r ∈ C2 and for k = 20
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6.2 Convergence of ACA and low-rank approximations of the M2L operators

We use the ACA for the compression of M2L operators. Here, we examine only results for the
high frequency regime and the kernel

K(x,y) =
eık|x−y|

|x− y|
for x,y ∈ R2 or R3.

The set-up is as follows: all clusters are of diameter w = 1 and contain 100 randomly distributed
points. Cluster X is centered at the origin cx = [0,0]. All directional cones {uc}

C
c=1 of aperture

O(1/k) are filled with the set of clusters {Yt}
T
t=1 such that O(k) ≤ |cyt | ≤ O(4k) holds for all t =

1, . . . ,T . The upper limit is due to the minimal separation of the parent cluster whose diameter
is w = 2. The size of an M2L operator is determined by the number of interacting clusters T
per cone: for instance, for T = 14 it becomes a matrix of 100× 1400 entries. Table 2 lists the
set-up in terms of C and T depending on different wave numbers k = 2, 20, 200. Note that
when k = 200, C ∼ 2 106 in three dimensions. This seems like a large number. To put things in
perspective, in the traditional FMM [6, 7], the number of multipole coefficients grows like O(k2)
and would therefore be of comparable magnitude.

d = 2 d = 3
k aperture C T C T

2 π/8 16 14 96 44
20 π/64 128 157 6144 1066

200 π/1024 2048 868 1572864 6939

Table 2: The set-up for ACA convergence studies

Figure 6 shows the low rank κ obtained by means of the ACA for different choices of approx-
imation accuracy ε and different wave numbers k. We observe that κ is bounded as k increases;
this is consistent with what we have shown theoretically in section 2. Moreover, κ grows ap-
proximately like O(log(1/ε)), which is consistent with the rate of convergence of Chebyshev
interpolation.

6.3 Particle distributions in R2

In this section we show that the overall complexity of our method is O(N log N) as presented
in section 5. We scale the wave number k and keep the domain fixed. From this follows the
relation N =O(kd). We choose the wave number k such that exactly one level has to be added as
we solve the problem with the next higher k. Moreover, we analyze the complexity for different
target accuracies (`, εACA).

At this stage, we have not developed an algorithm to optimize the parameters in the method.
They involve: selecting the low-frequency/high-frequency threshold, the minimum distance be-
tween clusters in the interaction list, the cone aperture, the depth of the tree, ` and εACA. As a
result the running times are not optimal and can be improved by changing our choice of parame-
ters. In addition, the performance results are very dependent upon the computer implementation
of the algorithm.
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Figure 6: ACA in the high frequency regime

For the 2-dimensional examples we use randomly scattered particles on a unit square, such
that the number of particles in a cluster of size one wave length remains constant. We use wave
numbers k = 128, 256, 512, 1024. Results are presented in Tab. 3 and Fig. 7. All computations
were performed on a single 2692 MHz CPU out of a 32 CPU node with 128 GB shared memory.

(`,k,N) t (sec) εL2

(5, 128, 4.00e+4) 22 1.11e-5
(5, 256, 1.60e+5) 111 1.30e-5
(5, 512, 6.40e+5) 585 3.15e-5
(5, 1024, 2.56e+6) 3 256 2.27e-6

Table 3: Results for R2 using a target accuracy εACA = 10−5.

The running time and the relative error εL2 for an target accuracy εACA = 10−5 are listed in
Tab. 3. Both depend on `. The relative error is defined as

εL2 =

∑i∈Mref | fi− f̄i|2∑
i∈Mref | fi|

2

1/2

.

Mref is the number of particles in an arbitrary reference cluster at the leaf level, fi and f̄i are the
approximately and exactly computed field values, respectively.

Fig. 7 compare the running time for different target accuracies (`, εACA). The predicted
O(N log N) behavior appears. In almost all cases the actual error is as close to the target ac-
curacy ε in ACA as presented in Tab. 3.
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Figure 7: Computational time in R2; ε is the prescribed accuracy for ACA; ` is the Chebyshev
interpolation order.

6.4 Particle distributions in R3

Here we consider particles distributed on a) a surface and b) in a volume in R3. We construct
the particle distributions and the underlying geometries with the meshing tool Gmsh [11]. In the
following we analyze three different example geometries shown in Fig. 8. For completeness, we
provide the short Gmsh scripts used to generate these geometries.

1. Sphere of diameter k as shown in Fig. 8a.

lc = 0.1; k = 128;
Point(1) = {0,0,0,lc}; Point(2) = {0,0,-k/2,lc};
Point(3) = {k/2,0,0,lc}; Point(4) = {0,0,k/2,lc};
Circle(1) = {2,1,3}; Circle(2) = {3,1,4};
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{1,2};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{3,6};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{9,12};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{15,18};}}

2. Oblate spheroid of diameter k in two directions and k/10 in the third direction as shown
in Fig. 8b.

lc = 0.1; k = 128;
Point(1) = {0,0,0,lc}; Point(2) = {0,0,-k/2,lc};
Point(3) = {k/20,0,0,lc}; Point(4) = {0,0,k/2,lc};
Point(5) = {-k/20, 0,0,lc};
Ellipse(1) = {2,1,4,3}; Ellipse(2) = {2,1,4,5};
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{1,2};}
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{3,6};}
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{9,12};}
Extrude{{1,0,0},{0,0,0},Pi/2}{Line{15,18};}
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3. Prolate spheroid of diameter k in one direction and k/10 in the other two directions as
shown in Fig. 8c.

lc = 0.1; k = 128;
Point(1) = {0,0,0,lc}; Point(2) = {0,0,-k/2,lc};
Point(3) = {k/20,0,0,lc}; Point(4) = {0,0,k/2,lc};
Point(5) = {-k/20,0,0,lc};
Ellipse(1) = {2,1,4,3}; Ellipse(2) = {4,1,1,3};
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{1,2};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{3,6};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{9,12};}
Extrude{{0,0,1},{0,0,0},Pi/2}{Line{15,18};}

X
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Z

(a) Sphere

XY

Z

(b) Oblate spheroid

X
Y

Z

(c) Prolate spheroid

Figure 8: Example geometries

These code fragments only generate the surfaces. In order to end up with the volume, we need
to add the following lines to the code fragments:

Surface Loop(100) = {26,23,20,17,14,11,8,5};
Volume(200) = {100};

The variable lc specifies the mesh size; we choose it to be 0.1. Hence, surface meshes have
about 100 particles in a cluster of size one wave length, and volume meshes have about 1000
particles in the same cluster.

The idea of these three different geometries is to analyze the efficiency of the directional
algorithm with respect to the dimensionality of the computational domain: the first represents
a 3-dimensional, the second a quasi 2-dimensional, and the third a quasi 1-dimensional object
in R3. The more elongated the object is the fewer directional cones are required to cover the
computational domain. This becomes visible in Fig. 9. Cross-sections through the uniform oct-
trees of the surfaces from Fig. 8 are shown. Light gray clusters are in the high-frequency regime,
they have directional expansions, dark gray clusters are in the low-frequency regime, they have
non-directional expansions. All other clusters are not interacting with any other cluster and are
not used in the method. In Fig. 9 the depth of the oct-tree is chosen such that only leaf-level
clusters are in the low-frequency regime.
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(a) Surface 8a (b) Surface 8b (c) Surface 8c

Figure 9: Cross-sections in the z-direction, for uniform oct-trees, of the surface particle distribu-
tions from Fig. 8 with k = 64.

6.4.1 FMM parameters

At this stage, we have not developed a method to optimize the parameters in the method. As
a result the running times are not optimal and can be improved by changing our choice of pa-
rameters. In order to be consistent throughout all studies, however, we stick with the following
parameter setting. Recall that w and k denote the length of the side of a cluster and the wave
number, respectively.

low-frequency/high-frequency threshold If kw < 1 holds, a cluster is in the low frequency
regime, otherwise it is in the high frequency regime. This threshold basically separates
clusters which are smaller than one wave length from the others.

cone aperture The cone aperture is set to 1/kw < αu ≤ 2/kw where 2π/αu ∈ N and αu ≤ π/2
due to the hierarchical cone construction. Except near the leaf level, the cone aperture is
divided by two when going up the tree.

admissible distance The admissible distance (minimum distance between the centers of two
clusters that determines whether two clusters are in each other’s interaction list) differs in
the low and in the high frequency regime. In the low frequency regime it is distlf = 2w (w is
the length of one side of a cluster). In the high frequency regime it is disthf = max(2w, kw2).

Interpolation order and ACA accuracy The interpolation order ` and the ACA accuracy εACA
are strongly connected in terms of the final error of our method εL2 .

tree depth We vary the tree depth depending on the mesh type, i.e., surface or volume mesh,
and the accuracy we want to achieve. The reason is that computational timings for near-
field and far-field can be balanced in that way. Recall, that we chose a mesh size of 0.1,
i.e., surface meshes have about 100 and volume meshes about 1000 particles in a cluster
having a size of 1 wavelength. Hence, a volume mesh or low accuracy require a deeper
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tree. We chose the tree depth for surface meshes such that depending on the interpolation
order `, leaf clusters are of size

• ` < 7: 1/2 wavelength

• 7 ≤ ` < 10: 1 wavelength

• ` ≥ 10: 2 wavelengths

and for volume meshes

• ` < 7: 1/4 wavelength

• 7 ≤ ` < 10: 1/2 wavelength

• ` ≥ 10: 1 wavelength

in order to balance computational timings for near-field and far-field.

6.4.2 Surface particle distributions

We show computational timings of surface particle distributions for accuracies (4, 10−4) and
(7, 10−7) in Table 4, 5 and 6. All shown timings are those for the matrix-vector product; they
do not include the precomputation time. We achieve an almost linear growth as can be seen by
means of the convergence rate roct which is defined as

roct =
ln(N2k/Nk)
ln(t2k/tk)

,

(`, εACA,k,N) εL2 t (sec) roct

(4,1e-4, 4,5.69e+3) 1.18e-4 0.5
(4,1e-4, 8,2.26e+4) 4.64e-4 2 0.995
(4,1e-4,16,9.26e+4) 4.79e-4 8 1.017
(4,1e-4,32,3.81e+5) 6.78e-4 30 1.070
(4,1e-4,64,1.54e+6) 4.47e-4 139 0.911

(7,1e-7, 4,5.69e+3) 2.13e-7 1
(7,1e-7, 8,2.26e+4) 9.73e-7 6 0.770
(7,1e-7,16,9.26e+4) 5.89e-7 29 0.900
(7,1e-7,32,3.81e+5) 1.31e-6 143 0.887
(7,1e-7,64,1.54e+6) 1.07e-6 632 1.034

Table 4: Timings for surface mesh of fig. 8a

6.4.3 Volume particle distributions

We show timing studies of volume particle distributions for accuracies (4, 10−4) and (7, 10−7)
in Table 7, 8 and 9. Again, the shown timings do not include the precomputation time and we
can see the almost linear growth by means of roct.
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(`, εACA,k,N) εL2 t (sec) rocsec

(4,1e-4, 8,1.16e+4) 5.07e-4 1
(4,1e-4, 16,4.75e+4) 6.16e-4 4 1.017
(4,1e-4, 32,1.93e+5) 1.64e-3 14 1.119
(4,1e-4, 64,7.87e+5) 9.23e-4 55 1.029
(4,1e-4,128,3.23e+6) 1.10e-3 232 0.981

(7,1e-7, 8,1.16e+4) 2.23e-6 3
(7,1e-7, 16,4.75e+4) 3.05e-6 15 0.876
(7,1e-7, 32,1.93e+5) 2.99e-6 59 1.023
(7,1e-7, 64,7.87e+5) 1.17e-6 235 1.017
(7,1e-7,128,3.23e+6) 1.40e-6 1105 0.912

Table 5: Timings for surface mesh of fig. 8b

(`, εACA,k,N) εL2 t (sec) rocsec

(4,1e-4, 16,7.66e+3) 3.01e-4 0.5
(4,1e-4, 32,2.97e+4) 3.25e-4 2 0.977
(4,1e-4, 64,1.19e+5) 1.73e-4 9 0.922
(4,1e-4,128,4.83e+5) 5.46e-4 36 1.010
(4,1e-4,256,1.94e+6) 1.28e-4 155 0.952

(7,1e-7, 16,7.66e+3) 9.30e-7 2
(7,1e-7, 32,2.97e+4) 5.10e-7 7 1.081
(7,1e-7, 64,1.19e+5) 4.25e-7 32 0.913
(7,1e-7,128,4.83e+5) 9.83e-7 155 0.888
(7,1e-7,256,1.94e+6) 5.43e-7 682 0.938

Table 6: Timings for surface mesh of fig. 8c
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Contrary to the surface mesh studies in Section 6.4.2 here we are not able to present results
for k = 64, 128 and 256, respectively, due to limited memory. In Table 7 the computation for
k = 32 is only possible for an accuracy (4, 10−4), the same holds in Tab. 8 for k = 64. In Tab. 9
no computation for k = 128 is possible.

(`, εACA,k,N) εL2 t (sec) rocsec

(4,1e-4, 4,6.14e+4) 8.36e-4 9
(4,1e-4, 8,3.36e+5) 9.58e-4 53 0.958
(4,1e-4,16,3.56e+6) 5.54e-3 552 1.007
(4,1e-4,32,4.26e+7) 3.87e-3 7302 0.961

(7,1e-7, 4,6.14e+4) 7.14e-7 45
(7,1e-7, 8,3.36e+5) 3.10e-6 271 0.946
(7,1e-7,16,3.56e+6) 8.80e-6 3362 0.937

Table 7: Timings of volume meshes of fig. 8a

(`, εACA,k,N) εL2 t (sec) rocsec

(4,1e-4, 8,4.04e+4) 1.55e-3 5
(4,1e-4,16,3.94e+5) 8.87e-4 52 0.972
(4,1e-4,32,2.21e+6) 1.46e-3 334 0.927
(4,1e-4,64,2.62e+7) 2.49e-3 3999 0.996

(7,1e-7, 8,4.04e+4) 6.38e-6 14
(7,1e-7,16,3.94e+5) 6.07e-6 290 0.751
(7,1e-7,32,2.21e+6) 6.78e-6 1562 1.024

Table 8: Timings of volume meshes of fig. 8b

6.5 Additional numerical benchmarks in R3

6.5.1 Comparison with another FMM formulation

We compare our method with another FMM formulation that uses an analytical kernel expan-
sion. The formulation is presented in [4]. We point out that there are many different multipole
formulations and implementations that vary in accuracy, stability, and complexity. Therefore
comparing different implementations is a difficult task. Each method has many parameters that
require correct tuning to obtain the best performance. We chose the method of [4] since the
authors are familiar with this implementation. We note that there are many differences between
this work and [4]. In particular [4] only applies to kernels of the form eikr/r. In addition it suffers
from a well-known stability problem (common to this class of methods) in the low frequency
regime as reported in [8] for example. In contrast, this work applies to a wider class of kernels
and arbitrary accuracies can be achieved (essentially down to machine precision). At this stage
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(`, εACA,k,N) εL2 t (sec) rocsec

(4,1e-4,16,2.69e+4) 4.32e-4 3
(4,1e-4,32,2.02e+5) 1.19e-3 29 0.888
(4,1e-4,64,1.56e+6) 2.26e-4 252 0.945

(7,1e-7,16,2.69e+4) 1.10e-6 13
(7,1e-7,32,2.02e+5) 2.02e-6 127 0.884
(7,1e-7,64,1.56e+6) 1.12e-6 1125 0.937

Table 9: Timings of volume meshes of fig. 8c

in our work, the directional method is not fully optimized and in particular we currently do not
use a precise method to optimize the parameters in the directional approach. As a result the tim-
ings for the directional algorithm are sub-optimal. Nevertheless these results provide a general
sense of the performance of the method.

It is worth noting that for the surface particle distribution from Fig. 8c the new method is
favored since fewer cones are required to calculate all the interactions. In contrast the plane wave
FMM has an unfavorable scaling (see Tab. 1 Case 3). In general however the plane wave FMM
can be expected to be faster than the directional method, since it uses analytical expansions
to approximate the kernel and fast Fourier transforms for the interpolation and anterpolation.
As explained before, tuning is required to optimize the directional approach. As a result we
cannot provide a definitive answer to the question of which method is the fastest. Note that the
highest accuracy we could achieve with the plane wave FMM was ∼ 10−7. On the contrary, the
directional FMM can achieve accuracies up to 10−12 as presented in Fig. 11.

Tab. 10 presents the timing comparison. For 8a, the plane wave FMM (pFMM) is faster by a
factor 2–3. For 8c, it is slower by about 15–30%. It is noteworthy to observe that the running
time of the directional FMM (dFMM) is not affected by the geometry of the object whereas
pFMM is (compare numbers from the upper table and the lower table).

6.5.2 Direct matrix-vector product

Figure 10 shows a comparison of the direct matrix-vector product and our method in terms of
computational time. The results are obtained from surface meshes from Fig. 8 and all timings
include precomputation and matrix-vector product. The direct matrix-vector product is only
faster for the smallest surface mesh from the sphere of Fig. 8a with k = 4 and an accuracy
(7, 10−7). Our method outperforms the direct method in all other cases.

6.5.3 Overall error convergence and timings

Figure 11 shows the convergence of the relative error εL2 for interpolation order up to ` = 13 and
accuracies up to εACA = 10−13. Both are key parameters for the accuracy of the method. We use
the surface mesh from Fig. 8c with a wave number k = 128 (483,389 particles). We chose the
tree depth as described in Section 6.4.1. We plot the relative error εL2 vs. the target accuracy
εACA; each curve corresponds to a given interpolation order `. No matter what ` we choose, if
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εL2 ∼ 10−4 ∼ 10−7

k dFMM pFMM dFMM pFMM

Surface from Fig. 8a

8 2 2 6 4
16 8 6 29 15
32 30 16 143 62
64 139 67 632 252

Surface from Fig. 8c

32 2 4 7 5
64 9 13 32 55

128 36 52 155 215
256 155 206 682 778

Table 10: Comparison of the directional FMM with a variant of the plane wave FMM [4] in terms
of computational time in seconds. pFMM: plane wave FMM; dFMM: directional
FMM.
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Figure 10: Timings for the direct method and the dFMM. In both cases the timings include the
setup of the matrix as well as the matrix-vector product itself. The surface meshes
originate from fig. 8.
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we fix εACA, we cannot get beyond a certain accuracy, and vice versa. For example, with an
accuracy of εL2 ∼ 10−4, there is no point in choosing ` greater than 5. If we need an accuracy
of εL2 ∼ 10−6 we need to use at least ` = 7 and εACA = 10−7. Figure 11 shows that accuracies
up to εL2 < 10−11 can be achieved. Figure 12 shows timings for the accuracies εL2 presented in
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Figure 11: Relative error εL2 for the surface mesh from Fig. 8c with wave number k = 128
(483,389 particles); εACA is the accuracy for ACA; ` is the Chebyshev interpolation
order.
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Figure 12: Timings for the matrix-vector product for accuracies up to 10−11 for the surface mesh
from Fig. 8c and k = 128.

6.5.4 ACA plus QR-decomposition vs. SVD

In Tab. 11 we compare the low rank (κACA/κSVD) and the precomputation time (tSVD/tSVD) of
ACA plus QR-decomposition (this paper) against the SVD approach (see [10]). We prescribe
the accuracy εACA = εSVD = 10−4. Shown are results from the surface mesh from Fig. 8c. In
the second and third column we compare the low rank obtained by ACA and SVD, respectively.
The left most values in each column represents the average low rank at the highest level in the
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tree, the next value is the next lower level and so on. The right-most value corresponds to a
leaf where the non-directional scheme is used. Switching from the directional method to the
non-directional one results in a jump of about 60% of the rank. This jump would presumably be
reduced if we optimized the parameters in the method. The SVD approach provides the smallest
possible rank for a prescribed L2 error. The rank obtained with ACA is close. However, the
precomputation time for ACA is significantly lower (N vs. N3 for a matrix of size N).

k κACA κSVD tACA tSVD

16 26, 26, 53 19, 24, 42 2 4
32 20, 26, 31, 51 15, 20, 25, 42 3 7
64 21, 29, 32, 51 15, 21, 25, 42 5 13

128 19, 19, 30, 34, 49 14, 15, 22, 25, 42 11 40
256 19, 23, 31, 32, 51 14, 17, 22, 25, 42 22 93

Table 11: Low rank κ and timings t for ACA+QR and SVD.

Table 11 shows the decay of the singular values for different tree levels. The singular values
in the leaf level decay slowest, those from the highest level having expansions fastest. The decay
behavior of the singular values can be improved by decreasing the cone aperture or increasing
the admissible distance. As already mentioned in Section 6.4.1 we have not yet fully optimized
the parameter setting of our method.
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Figure 13: Singular values for the surface mesh of Fig. 8c with k = 256 and ` = 4. The index
of the singular values is shown on the x-axis. Leaf clusters have a size of 1/2 wave
length.

6.6 Particle distributions on irregular surfaces

We show two numerical studies of particle distributions on irregular surfaces in R3. The first
one is the head of a dinosaur skeleton shown in Fig. 14 and the second one are insect legs shown
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in Fig. 16b. We downloaded both meshes from [20]. Figures 15 and 16a show cross-sections
through the uniform oct-tree of the dinosaur skeleton and the insect legs, respectively. Again,
light gray clusters are in the high-frequency regime; they have directional expansions. Dark
gray clusters are in the low frequency regime; they have non-directional expansions. All other
clusters are not interacting with any other cluster, and no expansions are needed. The depth of
the oct-tree is chosen such that only leaf-clusters are in the low-frequency regime.

In the previous examples, we were keeping the number of particles per wave length constant
as we varied the wave number k. Here, as refining the mesh is practically difficult, we simply
varied k, while keeping the depth of the oct-tree constant. In principle the number of levels
should be increased. However since we are not refining the mesh, this would lead to leaf clusters
containing very few particles. Consequently we decided to keep the number of levels constant,
thereby ensuring that the number of particles in the leaf clusters does not vary. Tab. 12 and
Tab. 13 show that the target accuracies can be achieved, as predicted.

Figure 14: Surface mesh of a dinosaur skeleton consisting of 122,589 vertices

(a) x1-direction (b) x2-direction (c) x3-direction

Figure 15: Cross-sections through the uniform oct-tree of Fig. 14
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(`, εACA)
k (4, 1e-4) (6, 1e-6) (8, 1e-8) (10, 1e-10)

10 1.99e-3 7.35e-6 9.45e-8 1.45e-9
20 3.81e-4 4.69e-6 1.94e-7 1.88e-9
40 2.03e-4 4.59e-6 3.61e-8 7.66e-10
80 1.83e-3 2.84e-5 1.25e-7 6.07e-9

Table 12: Dinosaur skeleton from Fig. 14 with 122,589 particles. The depth of the oct-tree is
kept at 7 levels for all k.

(a) Cross-section through the uniform
oct-tree in the x2-direction

(b) Surface mesh consisting of 63,029 vertices

Figure 16: Insect legs

(`, εACA)
k (4, 1e-4) (6, 1e-6) (8, 1e-8) (10, 1e-10)

7 4.56e-4 3.14e-5 2.16e-7 3.94e-9
14 1.71e-3 4.99e-5 2.63e-7 6.41e-9
28 1.17e-3 1.01e-5 1.15e-7 4.03e-10
56 3.04e-4 1.40e-5 2.42e-8 2.48e-10

Table 13: Results for insect legs from Fig. 16b with 63,029 particles. The depth of the oct-tree
is kept at 6 levels for all k.
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7 Conclusion

We have presented a fast directional summation method for oscillatory kernel functions. The
directional idea originates from the publications of [3] and [9]. Our method is based on the
interpolation of the kernel function via Chebyshev polynomials. An advantage is the relatively
simple error analysis based on the behavior (growth) of the kernel function in the complex
plane. Our approach is also convenient because we perform similar operations in the low and
high frequency regimes, making the computer implementation less involved. The main changes
between low and high frequency regimes are 1) the use of different interpolation operators, and
2) the use of directional multipole and local coefficients in the high frequency regime.

One advantage of the formulation we propose for the interpolation scheme is that it allows
using the original kernel without any modification, i.e., the kernel Ku does not appear explicitly.
This simplifies the computer programming of the method. This becomes more evident if we
consider more complex kernels as in elastodynamics and poroelasticity. However, in these cases
another complication arises. Consider the elastodynamic kernel Ked(χ(x,y)) in R3 with

χ(x,y) =
1

4π
1

k2
1 − k2

2

e−k1 |x−y|−e−k2 |x−y|

|x− y|

with k1,2 = s/c1,2, s ∈ C and the two elastic wave velocities c1 and c2. In poroelasticity a third
wave of velocity c3 appears. We see that each wave is connected to one oscillatory term eki |x−y|.
Hence, in the high frequency regime, we are required to split up such kernels, apply the di-
rectional summation to each part (with wave numbers k1 and k2), and finally combine both
contributions.

By means of the ACA and the further compression based on the QR decomposition we worked
out an M2L operation with a lower computational cost. The main advantage of ACA is that it
requires as input only a user defined routine to evaluate the kernel function K(x,y), i.e., it can be
applied in a black-box manner.

In section 6 we verified the estimated interpolation error, the convergence of ACA, the over-
all convergence of the method, and the computational complexity of the proposed algorithm by
means of numerical benchmarks. A comparison was proposed with the FMM of [4]. Very few
papers compare FMM implementations, because of the difficulty of carrying out such compar-
isons and the need to carefully tune the many parameters in each method. In our comparison,
we did not optimize the choice of parameters in the directional FMM.
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