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1 Introduction – State of the Art

The Boundary Element Method (BEM) in time domain is especially important for treating wave
propagation problems in semi-infinite or infinite domains. In this application the main advan-
tage of this method becomes obvious, i.e., its ability to model the radiation condition correctly.
Certainly this is not the only advantage of a time domain BEM but very often the main motiva-
tion as, e.g., in earthquake engineering or scattering problems. The mathematical background of
time-dependent boundary integral equations is summarized by Costabel [26].

Scattering problems have been treated very early with integral equations where some solu-
tion techniques may be seen as a BEM in time domain, e.g., [37]. For elastodynamics the first
boundary integral formulation was published by Cruse and Rizzo [27]. However, this formu-
lation performs in Laplace domain with a subsequent inverse transformation to time domain to
achieve results for the transient behavior. The corresponding formulation in Fourier domain,
i.e., frequency domain, was presented by Domínguez [35]. The first boundary element for-
mulation directly in the time domain was developed by Mansur for the scalar wave equation
and for elastodynamics with zero initial conditions [56]. The extension of this formulation to
non-zero initial conditions was presented by Antes [5]. A completely different approach to
handle dynamic problems utilizing static fundamental solutions is the so-called dual reciprocity
BEM. This method was introduced by Nardini and Brebbia [62] and details may be found in the
monograph of Partridge et al. [64]. A very detailed review of elastodynamic boundary element
formulations and a list of applications can be found in two articles of Beskos [15, 16]. Fast
formulations for elastodynamics based on a plane wave expansion has been published by Otani
et al. [63] and Takahashi et al. [80].

An important area of applications of time (and frequency) domain boundary integral equa-
tions is electrodynamics. Variational methods initiated for acoustics [9] have been extended to
electromagnetism in [81, 83, 7, 66] and also to FEM-BEM coupling in the time domain [8].
Collocation methods are also here of great importance in applications [33]. There has been a
very important development in fast methods for electrodynamics [77, 85, 24] where fast multi-
pole methods for high-frequency problems [24, 23] have been extended to the time-domain. All
these methods have been known to experience stability problems in longer time computations
[29, 31, 76], but various remedies have over the years been developed [29, 31, 32, 30, 76]. In
particular, as in the frequency domain case, the combined integral equations give rise to more
stable methods [76].

The above listed methodologies to treat time dependent problems with the BEM can be split
in two main groups: direct computation in time domain or inverse transformation combined
with computation in Laplace domain. Not only due to the dependency of numerical inverse
transformations on some sophisticated parameter, but also due to physical reasons it is more
natural to work in the real time domain and observe the phenomenon as it evolves. But, as all
time-stepping procedures, such a formulation requires an adequate choice of the time step size.
An improperly chosen time step size leads to instabilities or numerical damping. An improved
and stable version of the underlying integral equation has been published by Bamberger and
Ha-Duong [9] and Aimi and Diligenti [3]. Both rely on an energy principle and require two
temporal integrations. The instabilities of the usual time-stepping algorithm have been analysed
by Birgisson et al. [19]. Four procedures to improve the stability of the classical dynamic time-
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stepping BE formulation can be quoted: the first employs modified numerical time marching
procedures, e.g., [6] for acoustics, [65] for elastodynamics; the second employs a modified
fundamental solution, e.g., [67] for elastodynamics; the third employs an additional integral
equation for velocities [57]; and the last uses weighting methods, e.g., [87] for elastodynamics
and [88] for acoustics.

Beside these improved approaches there exist the possibility to solve the convolution integral
in the boundary integral equation with the so-called Convolution Quadrature Method (CQM)
proposed by Lubich [51, 52]. Applications to hyperbolic and parabolic integral equations can
be found in [55, 53]. The CQM utilizes the Laplace domain fundamental solution and results
not only in a more stable time stepping procedure but also damping effects in case of visco-
or poroelasticity can be taken into account (see [73, 74, 71]). The motivation to use the CQM
in these engineering applications is that only the Laplace domain fundamental solutions are
required. This fact is also used for BE formulations in cracked anisotropic elastic [89] or piezo-
electric materials [39]. Another aspect is the better stability behavior compared with the above
mentioned formulation. For acoustics this may be found in [1, 2] and in elastodynamics in [72].
Recently work has begun in investigating CQM for electromagnetism [83]. In the framework of
fast BE formulations the CQM is used in a Panel-clustering formulation for the Helmholtz equa-
tion by Hackbusch et al. [46]. Recently, some newer mathematical aspects of the CQM have
been published by Lubich [54]. Further, interest in high order Runge-Kutta based CQM has
lately increased due to its good performance in applications, see [10] for numerical experiments
in acoustics and [12, 14, 21] for convergence results.

In this paper, both, the linear multistep and Runge-Kutta based CQM is described together
with most recent theoretical results on convergence, the application to various linear hyperbolic
problems is explained, and the paper ends with a numerical experiment for an elastodynamic
problem. Important for the paper at hand are different approaches to the implementation of
CQM. The originally proposed construction of convolution weights by fast Fourier transform
(FFT) [52] is described, also the recent decoupling approach promoted in [13], and the recursive
method of [10], a modification of [48].

Throughout this paper, vectors and tensors are denoted by bold symbols and matrices by sans
serif and upright symbols. The Laplace transform of a function f (t) is denoted by f̂ (s) with the
complex Laplace parameter s ∈H and H= {s ∈ C|ℜs > 0}.

2 Time Dependent Boundary Integral Equations

In this work linear hyperbolic differential equations are considered. The most simple equation is
the scalar wave equation. However, vectorial problems will also be tackled and, hence, the basic
equations are described for the simplest vectorial problem, for elastodynamics.

2.1 Governing Equations

Describing with x and t the position in the three-dimensional Euclidean space R3 and the time
point from the interval (0,∞) the hyperbolic initial value problem for the displacement field
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u(x, t) is (see, e.g., [41])

c2
1∇∇ ·u(x, t)− c2

2∇×∇×u(x, t) =
∂2u
∂t2 (x, t) (x, t) ∈Ω× (0,∞)

u(y, t) = gD(y, t) (y, t) ∈ ΓD× (0,∞)

t(y, t) = gN(y, t) (y, t) ∈ ΓN× (0,∞)

u(x,0) =
∂u
∂t

(x,0) = 0 (x, t) ∈Ω× (0) .

(1)

The material properties of the solid are represented by the wave speeds

c1 =

√
K + 4

3 G
ρ

c2 =

√
G
ρ
,

with the material data compression modulus K, shear modulus G, and the mass density ρ. The
first statement in (1) requires the fulfillment of the partial differential equation in the spatial do-
main Ω for all times 0 < t < ∞. This spatial domain Ω has the boundary Γ which is subdivided
into two disjoint sets ΓD and ΓN at which boundary conditions are prescribed. The Dirichlet
boundary condition is the second statement of (1) and assigns a given datum gD to the displace-
ment u on the part ΓD of the boundary. Similarly, the Neumann boundary condition is the third
statement in which the datum gN is assigned to the surface traction t, which is defined by (see,
e.g., [41])

t(y, t) =(T u)(y, t)

= lim
Ω3x→y∈Γ

[

(
G
(

∇u+(∇u)T
)
+

(
K− 2

3
G
)

∇ ·uI
)
(x, t) ·n(y)]

= lim
Ω3x→y∈Γ

[σ(x, t) ·n(y)] .

(2)

In (2), σ is the stress tensor depending on the displacement field u according to the linear strain-
displacement relationship and Hooke’s law and n denotes the outward normal at the boundary.
For later purposes the traction operator T is defined, which maps the displacement field u to the
surface traction t. The boundary conditions have to hold for all times and may be also prescribed
in each direction by different types, e.g., roller bearings. Finally, in the last statement of (1) the
condition of a quiescent past is given which implies homogeneous initial conditions.

Beside the elastodynamic problem, a number of other wave propagation problems describing
different physical phenomena can be treated similarly. The respective governing differential
equations are listed next.

2.1.1 Acoustics – scalar wave equation

The hyperbolic differential equation for waves traveling in a non-viscous fluid is (see, e.g., [61])

c2
∇

2 p(x, t) =
∂2 p
∂t2 (x, t) (x, t) ∈Ω× (0,∞) , (3)
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with boundary conditions defined analogously to (1) and also vanishing initial conditions. The
wave velocity is defined by

c =

√
K
ρ

with the compressibility K of the fluid. The traction operator (2) degenerates to the normal
derivative to define the normal flux

qn (y, t) = (T p)(y, t) = lim
Ω3x→y∈Γ

[∇p(x, t) ·n(y)] .

2.1.2 Viscoelastodynamics

This extension of the elastodynamic case to materials with damping can be easily performed
with the elastic-viscoelastic correspondence principle [25]. This principle says that in Laplace
domain the material data has simply to be exchanged with the viscoelastic material data which
are dependent on the Laplace variable s, i.e., they are time dependent. Consequently, the gov-
erning differential equation is the Laplace transform of (1) to Laplace domain

c2
1v (s)∇∇ · û(x,s)− c2

2v (s)∇×∇× û(x,s) = s2û(x,s) (x,s) ∈Ω×H , (4)

with the viscoelastic wave speeds

c1v (s) =

√
K̂ (s)+ 4

3 Ĝ(s)
ρ

c2v =

√
Ĝ(s)

ρ
. (5)

The material data K̂ (s) and Ĝ(s) can be given, for most materials, as rational functions of s,
e.g., for the simplest causal model - the three parameter model - it holds

K̂ (s) = K
1+qHs
1+ pHs

Ĝ(s) = G
1+qDs
1+ pDs

, (6)

with the compression modulus K and the shear modulus G from elasticity. The parameters
qH ,qD, pH , and pD are further material data. More details on viscoelastic constitutive equations
may be found in [25] and their implementation in BEM in [72, 40].

The traction operator is defined as in elastodynamics where Hooke’s law has now the material
data from (6), i.e., the constitutive equation in time domain is a convolution integral. This
and also the structure of (4) shows that a formulation of the problem in time domain yields an
integro-differential equation.

2.1.3 Poroelastodynamics

The wave propagation in saturated two-phase media as, e.g., soil is governed by a coupled set
of differential equations for the solid displacements u and the pore pressure p. Beside mixture
theory based approaches (see, e.g., the Theory of Porous Media [34] or the simple mixture
theory [86]), Biot’s theory is widely used in practice and will also be used here. The basic
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formulation for wave propagation problems can be found in the two papers [17, 18]. The set of
governing equations in Laplace domain is

G∇
2û(x,s)+

(
K +

1
3

G
)

∇∇ · û(x,s)− (α−β(s))∇p̂ =s2 (ρ−β(s)ρ f ) û(x,s)

β(s)
sρ f

∇
2 p̂(x,s)− φ2s

R
p̂(x,s)− (α−β(s))s∇ · û(x,s) =0 ,

(x,s) ∈Ω×H

(7)

with the bulk material data shear modulus G and compression modulus K, Biot’s coefficients α

and R, and the porosity φ. The bulk density is denoted by ρ = (1−φ)ρs + φρ f , composed by
the partial densities of the solid ρs and the fluid ρ f . The complex valued parameter β(s) is an
abbreviation and defined as

β(s) =
κρ f φ

2s2

φ2s+ s2κ(ρa +φρ f )

with the permeability κ and the apparent mass density ρa. As in viscoelasticity, this set of
governing equations can not be formulated as a pure differential equation in time domain because
the coefficients depend on s. The wave velocities, due to the incorporated friction between the
solid and the fluid, are time dependent. The respective wave numbers, defined as usual λ = s

c ,
are

λ
2
1,2 =

s2

2

[
φ2ρ f

β(s)R
+

ρ−β(s)ρ f

K + 4
3 G

+
ρ f (α−β(s))2

β(s)
(
K + 4

3 G
)

±

√√√√( φ2ρ f

β(s)R
+

ρ−β(s)ρ f

K + 4
3 G

+
ρ f (α−β(s))2

β(s)
(
K + 4

3 G
))2

−4
φ2ρ f (ρ−β(s)ρ f )

β(s)R
(
K + 4

3 G
)
 ,

λ
2
3 =

s2 (ρ−β(s)ρ f )

G
.

Compared to the above given models in poroelasticity three waves, a fast and slow compressional
wave and a shear wave, exist.

The traction operator has to be seen in a generalized way and has obviously two parts. It is
composed of the definition of the total stress and the flux governed by Darcy’s law[

t̂
q̂

]
(y,s) = (T

[
û
p̂

]
)(y,s) = lim

Ω3x→y∈Γ

[
[σ̂−αp̂I] (x,s) ·n(y)[

− β

sρ f

(
∇p̂+ρ f s2û

)]
(x,s) ·n(y)

]
.

2.1.4 Electromagnetism – Maxwell equations

The system of Maxwell equations in a homogeneous and isotropic medium is given by

µ
∂H
∂t

(x, t)+∇×E(x, t) = 0

ε
∂E
∂t

(x, t)−∇×H(x, t) = 0,
(8)
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with E and H being the electric and magnetic fields, respectively, and ε and µ respectively elec-
tric permittivity and magnetic permeability. Boundary conditions are obtained by a combination
of tangential traces of the two fields: n×E and n×H, e.g., n×E = 0 for a perfectly conduct-
ing surface and the impedance boundary condition n×H−α(n×E)× n = 0, α ≥ 0, for an
imperfectly conducting surface [60].

The relationship to wave equations can be made more visible by rewriting the first order
system (8) as a second order system. This can be done by, for example, eliminating the magnetic
field H and thereby obtaining the equation

−c2
∇×∇×E(x, t) =

∂2E
∂t2 (x, t) ,

with the wave speed c = 1√
εµ .

2.2 Integral Equations

For all of the governing equations given above, a representation formula can be derived (see,
e.g., for acoustics [61], for elastodynamics [84], for viscoelastodynamics [42], for poroelastody-
namics [72], and for electromagnetism [78, Chapter 25]). Representation formula for Maxwell
equations does not fit the general framework of the other equations, therefore it is presented
separately.

Taking u as representative for the unknowns in the governing equations (1), (3), (4), and (7)
the representation formula is

u(x, t) =
t∫

0

∫
Γ

U(x−y, t− τ)t(y,τ)dΓy dτ−

t∫
0

∫
Γ

(TyU)(x−y, t− τ)u(y,τ)dΓy dτ x ∈Ω,y ∈ Γ . (9)

The surface measure dΓy carries its subscript in order to emphasize that the integration variable is
y. Similarly, Ty indicates that the derivatives involved in the computation of the surface traction
are taken with respect to the variable y. The function U(x− y, t− τ) denotes the fundamental
solution of the respective governing equation. In the Laplace domain, the fundamental solutions
of all of the above given problems can be formulated in 3-d as

Û(x−y,s) =
w

∑
i=1

A(i) (r,s)
e−λir

4πr
with r = |x−y| , (10)

using the wave number λi =
s
ci

instead of the wave velocities ci. The upper limit w of the sum
in (10) is the amount of body waves in the model. The coefficients A(i) (r,s) are listed in the
Appendix. In 2-d, the structure of the fundamental solution is the same, however, the exponen-
tial function has to be replaced by the modified Bessel functions of zero or first order. Time
dependent fundamental solutions are only available for acoustics, elastodynamics, and electro-
magnetism, but even here, for example for elastodynamics and the dissipative wave equation in
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acoustics, the time domain fundamental solution can become very complex. In the following,
this problem is overcome by using the CQM for time discretisation.

By means of equation (9), the unknown u is given at any point x inside the domain Ω and
at any time 0 < t < ∞, if the boundary data u(y,τ) and t(y,τ) are known for all points y of the
boundary Γ and times 0 < τ < t. The first boundary integral equation is obtained by taking the
expression (9) to the boundary. Using operator notation, this boundary integral equation reads

(V t)(x, t) = C (x)u(x, t)+(K u)(x, t) (x, t) ∈ Γ× (0,∞) . (11)

The introduced operators are the single layer operator V , the integral-free term C , and the double
layer operator K which are defined as

(V t)(x, t) =
t∫

0

∫
Γ

U(x−y, t− τ)t(y,τ)dΓy dτ (12a)

C (x) = I + lim
ε→0

∫
∂Bε(x)∩Ω

(TyUstatic)
>(x−y)dΓy (12b)

(K u)(x, t) = lim
ε→0

t∫
0

∫
Γ\Bε(x)

(TyU)>(x−y, t− τ)u(y,τ)dΓy dτ . (12c)

In these expressions, Bε(x) denotes a ball of radius ε centered at x and ∂Bε(x) is its surface. In
(12b), the integral free term is only determined by the static counterpart of each operator, i.e.,
the index static denotes the respective fundamental solution. E.g., in elastodynamics Ustatic is the
elastostatic fundamental solution. Note that the single layer operator (12a) involves a weakly
singular integral over Γ and the double layer operator (12c) has to be understood in the sense of
a principal value. Further, it should be remarked that the operator notation in (12a) and (12c)
includes the convolution operator in time.

Application of the traction operator Tx to the dynamic representation formula (9) yields the
second boundary integral equation

(Du)(x, t) = (I −C (x)) t(x, t)− (K ′t)(x, t) x ∈ Γ . (13)

The newly introduced operators are the adjoint double layer operator K ′ and the hyper-singular
operator D . They are defined as

(K ′t)(x, t) = lim
ε→0

t∫
0

∫
Γ\Bε(x)

(TxU)(x−y, t− τ)t(y,τ)dΓy dτ

(Du)(x, t) =− lim
ε→0

t∫
0

Tx

∫
Γ\Bε(x)

(TyU)>(x−y, t− τ)u(y,τ)dΓy dτ .

The hyper-singular operator has to be understood in the sense of a finite part.
For the solution of mixed initial boundary value problems, a non-symmetric formulation by

means of the first boundary integral equation (11) in combination with a collocation technique
will be used. A symmetric formulation is obtained using both the first and the second boundary
integral equations, (11) and (13) in combination with a Galerkin technique.

8



Preprint No 05/2010 Institute of Applied Mechanics

Symmetric formulation

First, the Dirichlet datum u and the Neumann datum t are decomposed into

u = ũ+ g̃D and t = t̃+ g̃N , (15)

with arbitrary but fixed extensions, g̃D and g̃N , of the given Dirichlet and Neumann data, gD and
gN . They are introduced such that

g̃D(x, t) = gD(x, t) , (x, t) ∈ ΓD× (0,∞)

g̃N(x, t) = gN(x, t) , (x, t) ∈ ΓN× (0,∞)

holds. The extension g̃D of the given Dirichlet datum has to be continuous due to regularity
requirements [79].

In order to establish a symmetric formulation, the first boundary integral equation (11) is used
only on the Dirichlet boundary ΓD whereas the second one (13) is used only on the Neumann
part ΓN . Taking the prescribed boundary conditions in (1) into account and inserting the decom-
positions (15) into both integral equations leads to the symmetric formulation for the unknowns
ũ and t̃

V t̃−K ũ = fD, (x, t) ∈ ΓD× (0,∞)

Dũ+K ′t̃ = fN , (x, t) ∈ ΓN× (0,∞)
(16)

with the abbreviations
fD = C g̃D +K g̃D−V g̃N

fN = (I −C ) g̃N−K ′g̃N−D g̃D .

Representation formula for Maxwell equations

The representation formula has the following form for the electric field

E(x, t) =−µ
t∫

0

∫
Γ

U(x−y, t− τ)
∂j
∂t
(y,τ)dΓy dτ

+
1
ε

∇

t∫
0

∫
Γ

U(x−y, t− τ)∂−1
t ∇Γ · j(y,τ)dΓy dτ

−∇×
t∫

0

∫
Γ

U(x−y, t− τ)m(y,τ)dΓy dτ

9
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and the following for the magnetic field

H(x, t) =−ε

t∫
0

∫
Γ

U(x−y, t− τ)
∂m
∂t

(y,τ)dΓy dτ

+
1
µ

∇

t∫
0

∫
Γ

U(x−y, t− τ)∂−1
t ∇Γ ·m(y,τ)dΓy dτ

+∇×
t∫

0

∫
Γ

U(x−y, t− τ)j(y,τ)dΓy dτ,

where j = H×n and m = n×E are, respectively, the surface current and surface charge density.
The symbol ∂

−1
t denotes integration on the interval [0, t], this is consistent with the operational

notation introduced in the next section. The fundamental solution Û(x,s) still has the form (10)
and is in fact the same as the fundamental solution for the acoustic wave equation, showing
the close relationship between the two sets of equations. Taking tangential traces one obtains
boundary integral formulations of boundary value problems. Since the formalism using the four
integral operators introduced for other governing equations does not directly translate to the
Maxwell system, for further information the reader is referred to literature, see [78, Chapter 25].

3 Convolution quadrature

All of the time domain integral operators of the previous section have the form of a time convo-
lution

u(t) =
t∫

0

k(t− τ)g(τ)dτ. (17)

The difficulty in computing such convolutions comes from the fact that the kernel k(t) is often
distributional and in many cases of practical interest, e.g., viscoelasticity and poroelasticity, even
not known explicitly. However, the Laplace transform of the kernel

K(s) = k̂(s) = L k(s) :=
∞∫

0

k(t)e−st d t

is always explicitly known and simpler. For this reason it is essential to be able to compute (17)
by using only the Laplace transformed kernel K(s). To make this dependence on the Laplace
transformed kernel explicit, operational notation, going back to Heaviside and standard in papers
on convolution quadrature [53],

(K(∂t)g)(t) :=
t∫

0

k(t− τ)g(τ)dτ, (18)

is used in this paper. The rationale behind this notation comes from identities of the type
K(∂t)g = g′ for K(s) = s and the composition rule K2K1(∂t)g = K2(∂t)K1(∂t)g. Convolution

10
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quadrature time discretization will be explained and convergence results given with the follow-
ing assumption on the operator K(s):

K(s) is analytic for ℜs > 0 and bounded as

|K(s)| ≤C(σ0)
|s|µ

(ℜs)ν
, for ℜs≥ σ0 > 0.

(19)

To make the connection to the previous section explicit, note that in this notation the single
layer operator of (12a) can be written as

(V t)(x, t) = (V (∂t)t)(x, t)

where V is the single layer operator in the Laplace domain:

(V (s)φ)(x) :=
∫
Γ

Û(x−y,s)φ(y)dsy

and Û is the explicitly known fundamental solution in the Laplace domain, see (10).

3.1 Linear multistep based convolution quadrature

For ∆t > 0 let t j = j∆t be the discrete time steps at which (18) is to be computed. Convolution
quadrature approximation of (18) at t = tn is given by(

K(∂∆t
t )g

)
(tn) :=

n

∑
j=0

ω
∆t
n− j(K)g(t j). (20)

Here the convolution weights ω∆t
j (K) are defined implicitly by

K
(

γ(ζ)

∆t

)
=

∞

∑
j=0

ω
∆t
j (K)ζ j, (21)

where γ(ζ) is the quotient of the generating polynomials of a linear multistep method of order
p. For hyperbolic problems only A-stable methods are admissible, the most often used methods
being the backward difference formulas of order 1 (BDF1/backward Euler) and order 2 (BDF2)
for which

γ(ζ) = 1−ζ (BDF1), γ(ζ) =
3
2
−2ζ+

1
2

ζ
2 (BDF2).

An important property of convolution quadrature is that the composition rule is preserved.
Namely, K2K1(∂

∆t
t )g = K2(∂

∆t
t )K1(∂

∆t
t )g. Further, for K(s) = s, K(∂∆t

t )g = ∂∆t
t g is the linear

multistep approximation of the derivative g′.
A brief motivation for the approximation (20) is in order. Making use of the extension g(t)≡ 0

for t ≤ 0, the approximation (20) can be defined for all t:
(
K(∂∆t

t )g
)
(t) = ∑

∞
j=0 ω∆t

j (K)g(t− t j).
Taking the Laplace transformation of this expression gives

L
(
K(∂∆t

t )g
)
(s) =

(
∞

∑
j=0

ω
∆t
j (K)e−s∆t j

)
L g(s) = K

(
γ
(
e−s∆t

)
∆t

)
L g(s).

11
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Since L (K(∂t)g)(s) = K(s)L g(s), the convolution quadrature manifests itself through the ap-

proximation s ≈ γ(e−s∆t)
∆t = s + sO((s∆t)p), p being the order of the multistep method. The

restriction to A-stable methods comes from the requirement ℜγ
(
e−s∆t

)
> 0 for ℜs > 0.

Next a result on convergence of the linear multistep based convolution quadrature is given,
the proof of which can be found in [53].

Theorem 1 (Lubich 1994) Let (19) hold, g(0) = g′(0) = · · · = g(m−1)(0) = 0 for m such that
m≥max(p+2+µ, p), and let un =

(
K(∂∆t

t )g
)
(tn) be the approximation obtained by convolution

quadrature (20) based on BDF formula of order p = 1,2. Then there exists t̄ > 0 such that for
all 0 < ∆t < t̄ and n = 0,1, . . . ,N = T/∆t it holds

|un−u(tn)| ≤C∆t p
tn∫

0

|g(m)(τ)|dτ.

The constant C is independent of ∆t and N, but depends on T and constant C(σ0) in (19).

The result proved in [53] covers a larger class of A-stable linear multistep methods. The state-
ment here has been restricted to BDF methods in order to shorten the exposition. The trapezoid
rule does not satisfy the assumptions of the general theory given in [53] if µ > 0. Recently, in
[10] the convergence of the trapezoid rule has been proved for this case and successful numerical
experiments have been performed for acoustic scattering applications.

Because of the restriction to A-stable linear multistep methods, the highest order attainable is
p= 2. To achieve higher orders of convergence one has to turn to Runge-Kutta methods. Further
reasons to prefer Runge-Kutta methods are highlighted later in the paper, see Section 4.3.

3.2 Runge-Kutta based convolution quadrature

Let a Runge-Kutta method of (classical) order p and stage order q be given by its Butcher tableau
c A

bT where A ∈ Rm×m, b,c ∈ Rm; for a detailed introduction to Runge-Kutta methods see

[20, 47, 49]. A Runge-Kutta method is said to be A-stable if the stability function

R(z) = 1+ zbT (I− zA)−1
1, 1 := (1,1, . . . ,1)T ,

is bounded as

|R(z)| ≤ 1, for ℜz≤ 0 and I− zA is non-singular for all ℜz≤ 0. (22)

To simplify expressions assume further that bT A−1 = (0,0, . . . ,1), i.e., that the method is stiffly
accurate [47]; this in turn implies that cm = 1. A further technical assumption is needed

|R(iy)|< 1, for all |y|> 0.

Radau IIA and Lobatto IIIC are examples of Runge-Kutta methods satisfying all of the above
conditions.

12
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In a Runge-Kutta method computations are done not only at the equally spaced points t j = j∆t
but also at the stages t j + c`∆t, ` = 1,2, . . . ,m. Note that cm = 1 implies t j + cm∆t = t j+1. The
Runge-Kutta based convolution quadrature approximation to u(tn + c`∆t), ` = 1, . . . ,m, is then
given by  un1

...
unm

=
(

K(∂t
∆t)g

)
n

:=
n

∑
j=0

W ∆t
n− j(K)

 g(t j + c1∆t)
...

g(t j + cm∆t)

 .

Here, the matrix convolution weights W ∆t
j (K) are defined implicitly through a generating func-

tion

K
(

∆(ζ)

∆t

)
=

∞

∑
j=0

W ∆t
j (K)ζ j,

with
∆(ζ) = A−1−ζA−1

1bT A−1.

The solution at tn+1 is given simply by un+1 = unm = bT A−1(un`)
m
`=1, i.e.,

un+1 := bT A−1
(

K(∂t
∆t)g

)
n
.

The composition rule still holds for the stage approximation, that is, K2K1(∂t
∆t)g=K2(∂t

∆t)K1(∂t
∆t)g.

This is however not true for the approximation bT A−1K(∂t
∆t)g, whence we refrain from using

the operational quadrature notation here.
First convergence results under the assumption (19) with ν = 0 have been proved in [12].

Subsequently it has been noticed that, unlike in the linear multistep case, a more favourable
result can be proved if ν > 0. This result has been proved in [14] and is stated next. It shows that
for sufficiently smooth and compatible data an order of convergence O(∆tq+1−µ+ν) is obtained;
recall that q is the stage order of the Runge-Kutta method.

Theorem 2 Assume (19), with ν≥ 0. Let r > max(p+µ+1, p,q+1) and g ∈Cr([0,T ]) satisfy
g(0) = g′(0) = · · ·= g(r)(0) = 0. Then, under the above conditions on the Runge-Kutta method
there exists t̄ ≥ 0 such that for 0 < ∆t < t̄ and t ∈ [0,T ],

|un−u(tn)| ≤C(∆t p +∆tq+1−µ+ν)

t∫
0

|g(r+1)(τ)|dτ .

The constant C is independent of ∆t and g, but does depend on the Runge-Kutta method, t̄, and
T .

3.3 Implementation

The implicitly defined convolution weights ω∆t
j (K) can be computed by numerical quadrature of

the Cauchy integral formula, as proposed in [52],

ω
∆t
j (K) =

1
2πi

∮
C

K
(

γ(ζ)

∆t

)
ζ
− j−1 dζ≈ R− j

N +1

N

∑
`=0

K

γ

(
Rζ
−`
N+1

)
∆t

ζ
` j
N+1, (23)

13



Preprint No 05/2010 Institute of Applied Mechanics

where ζN+1 = e
2πi

N+1 and 0 < R < 1. The computational cost using the fast Fourier transform
(FFT) to compute the sum for all j = 0,1, . . . ,N, is O(N logN) and the error is O(RN+1). Due to
finite precision arithmetic the accuracy is restricted to

√
eps, where eps is the machine precision

and the parameter R is chosen as R = eps
1

2(N+1) ; see [52].
In applications it is of interest to solve a discrete convolutional system:

Find un, such that gn =
n

∑
j=0

ω
∆t
n− j(K)u j, n = 0,1, . . . ,N, (24)

or the equivalent system in the Runge-Kutta case. Due to the composition rule K2K1(∂
∆t
t )g =

K2(∂
∆t
t )K1(∂

∆t
t )g solving this system is equivalent to computing the convolution with the operator

K−1:

un =
n

∑
j=0

ω
∆t
n− j(K

−1)g j =
N

∑
j=0

ω
∆t
n− j(K

−1)g j, n = 0,1, . . . ,N, (25)

with the definition, ω j = 0 for j < 0, which is compatible with (21). Two approaches to im-
plementation are presented next. The first one uses the representation (25), whereas the second
uses (24), but both avoid constructing the weights ω∆t

j explicitly. The presentation is done for the
linear multistep based convolution quadrature. Modifications needed in the Runge-Kutta case
are explained at the end of the subsection.

3.3.1 Solving the convolutional system by computing a discrete convolution with K−1

Next an efficient method for computing (25) is presented. The method has been introduced in
[13] but bears similarities with Method iii) of [52].

Substituting the approximation (23), this time with K−1 instead of K, into (25) and after
rearranging the terms the following expression is obtained

un ≈
R−n

N +1

N

∑
`=0

K−1

γ

(
Rζ
−`
N+1

)
∆t

[ N

∑
j=0

R jg jζ
−` j
N+1

]
ζ
`n
N+1. (26)

The term in the square bracket is the discrete Fourier transform of the vector (g0,Rg1, . . . ,RNgN)
T

and hence can be computed in O(N logN) time using FFT. The outer sum represents the inverse
discrete Fourier transform also computable in O(N logN) time using FFT. Thus, the whole com-
putation can be performed in O(N logN) time and the convolution weights need never be com-
puted explicitly. In [13], it is shown that the error of this approximation is still O(RN+1) with
the accuracy again restricted to

√
eps by the finite precision arithmetic.

Since computing K−1(s) is usually a significantly more complex and expensive operation than
the computation of K(s), this method can become expensive [58]. For this reason a recursive
procedure is presented in the next section that requires the inversion of K(s) only at the single
frequency s = γ(0)/∆t.
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3.3.2 Solving the discrete convolutional system recursively

In [10], a modification of the recursive procedure of [48] is introduced which allows the solution
of (24) without ever constructing the convolution weights. This method is presented next.

First, assume that
n

∑
j=0

ω
∆t
n− j(K)u j = gn,

has already been solved for n = 0,1, . . . ,N1/2 < N. Then, it remains to solve

n

∑
j=N1/2+1

ω
∆t
n− j(K)u j = gn−

N1/2

∑
j=0

ω
∆t
n− j(K)u j, n = N1/2 +1, . . . ,N. (27)

Once the history ∑
N1/2
j=0 ω∆t

n− j(K)u j is computed, the above system can be computed recursively.
The expensive part is hence the computation of the history, but it can be computed efficiently
using the fast Fourier transform (FFT). In order to avoid constructing the weights ω∆t

j (K) ex-
plicitly, a scaled FFT can be used, as explained next.

Define

g̃n :=
N1/2

∑
j=0

ω
∆t
n− j(K)u j = R−n

N1/2

∑
j=0

Rn− j
ω

∆t
n− j(K)R ju j, n = N1/2 +1, . . . ,N,

for a fixed 0 < R < 1. Let g̃R be the vector obtained by a matrix-vector multiplication of the
circulant matrix, whose first column is given by

cR(K) := (ω∆t
0 (K),Rω

∆t
1 (K), · · · ,RN

ω
∆t
N (K))T ,

with the vector
uR := (u0,Ru1, · · · ,RN1/2uN1/2 ,0, · · · ,0)

T .

It is not difficult to check that

R−n(g̃R)n = g̃n, for n = N1/2 +1, . . . ,N;

here it is implicitly assumed that the numbering of elements in a vector begin with 0. Therefore,
if g̃R can be computed efficiently and without explicitly constructing the convolution weights,
then so can the history required for (27). Since circulant matrices are diagonalized by the discrete
Fourier transform, in the following denoted by FN+1, it holds

g̃R = F−1
N+1 diag(FN+1cR(K))FN+1uR. (28)

The definition of FN+1 that will be used in the following is

(FN+1u)` =
N

∑
j=0

u jζ
−` j
N+1, with ζN+1 = e

2πi
N+1 .
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The definition of convolution weights (21) then gives

(FN+1cR(K))` =
N

∑
j=0

R j
ω

∆t
j ζ
−` j
N+1 = K

γ

(
Rζ
−`
N+1

)
∆t

− ∞

∑
j=N+1

R j
ω

∆t
j ζ
−` j
N+1

= K

γ

(
Rζ
−`
N+1

)
∆t

− ∞

∑
k=1

Rk(N+1)

[
N

∑
j=0

R j
ω

∆t
j+k(N+1)(K)ζ

−` j
N+1

]
.

Since the term in square brackets is again a discrete Fourier transform, considering (28) and
applying F−1

N+1 to both sides in the above equation gives

g̃R = F−1
N+1 diag

[
K
(

γ(R)

∆t

)
, · · · ,K

(
γ
(
Rζ
−N
N+1

)
∆t

)]
FN+1uR

−
∞

∑
k=1

Rk(N+1) diag
[
ω

∆t
k(N+1),Rω

∆t
1+k(N+1), · · · ,R

N
ω

∆t
N+k(N+1)

]
FN+1uR.

Scaling both sides with R−1 := diag(1,R−1, . . . ,R−N) finally gives

g̃ = R−1F−1
N+1 diag

[
K
(

γ(R)

∆t

)
, · · · ,K

(
γ
(
Rζ
−N
N+1

)
∆t

)]
FN+1uR (29)

−
∞

∑
k=1

Rk(N+1) diag
[
ω

∆t
k(N+1)(K), · · · ,ω∆t

N+k(N+1)(K)
]
FN+1uR.

Therefore, the vector g̃, containing the update due to the history, can be computed to an
accuracy O(RN+1) by using only evaluations of the Laplace domain operator K(s). Further, the
computational cost is only O(N logN). The error is however restricted by finite precision eps of
computations of K(s) and the FFT. Therefore, the total error for computation of the correction g̃n

is RN+1 +R−neps, n = N1/2, . . . ,N. Hence, the best accuracy
√

eps is obtained with the choice
R = eps1/2N .

This procedure can be continued recursively. Thereby no convolution weights ω∆t
j (K) need to

be computed except for the first one

ω
∆t
0 (K) = K

(
γ(0)
∆t

)
.

It is also the only operator that needs to be inverted if the recursion is performed until a 1× 1
system is reached. In practice it is more common to stop the recursion once a small sized system
is reached and then solve the small system using the method of Section 3.3.1. See Algorithm
SolveCQ for the structure of such an approach. In order to solve (24) the algorithm is called with
arguments SolveCQ(0, N, g, u, J), where a constant J defines the size of the “small” system. The
cost of such a recursive procedure is O(N log2 N) [48] since there are logN levels in the recursion
and at each level an FFT is computed.
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Algorithm SolveCQ(N0,N1,g,u,J)
(∗ Solves convolutional system ∑

n
j=N0

ω∆t
n− j(K)u j = gn, n = N0, . . . ,N1 ∗)

1. if N1−N0 ≥ J
2. then N1/2 = d(N1 +N0)/2e
3. SolveCQ(N0, N1/2, g, u, J)
4. update right-hand side

gn = gn−
N1/2

∑
j=N0

ω
∆t
n− j(K)u j, n = N1/2 +1, . . . ,N1

using (29).
5. SolveCQ(N1/2 +1, N1, g, u, J)
6. else compute

un =
n

∑
j=N0

ω
∆t
n− j(K

−1)g j, n = N0, . . . ,N1,

using (26).

Remark 1 (Parallelization) Algorithm SolveCQ, see lines 6. and 4., can easily gain from the
availability of a parallel architecture. In applications, the expensive part of the computation is
the evaluation of the operator K(s). Due to the diagonalization of the (block) circulant matrices,
in both methods, this part of the computation is trivially parallel and, therefore, appropriate also
for distributed memory parallel architecture.

3.3.3 A few remarks regarding the implementation of Runge-Kutta based convolution
quadrature

The same procedure as explained above for the linear multistep case can also be used to imple-
ment the Runge-Kutta based convolution quadrature. Again, it is only necessary to be able to
evaluate operators

K

∆

(
Rζ
−`
N+1

)
∆t

 and K
(

∆(0)
∆t

)
= K

(
A−1

∆t

)
.

If ∆(Rζ
−`
N+1) has a full basis of eigenvectors, i.e., if there exist invertible matrix X and diag-

onal matrix Λ = diag(λ1,λ2, · · · ,λm)
T such that ∆(Rζ

−`
N+1) = XΛX−1, then the matrix valued

operator is easily computed by

K

∆

(
Rζ
−`
N+1

)
∆t

= X diag(K(λ1/∆t), · · · ,K(λm/∆t))X−1.

In [10], it has been shown that there is only a single value of Rζ
−`
N+1, respectively two such

values, for which ∆

(
Rζ
−`
N+1

)
is not diagonalizable in the case of the 2-stage Radau IIA method,
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and respectively, the 3-stage Radau IIA method. These particular values are very unlikely to be
hit during a computation, still the condition number of the basis of eigenvectors X should, as a
precaution, be examined.

4 Convolution quadrature applied to hyperbolic initial value
problems

In the notation of Section 3, the time domain integral operators V ,K ,K ′, and D can be written
as V (∂t),K(∂t),K′(∂t), and D(∂t) where V,K,K′, and D are the corresponding Laplace domain
operators

(V t)(x,s) =
∫
Γ

Û(x−y,s)t(y)dΓy dτ

(Ku)(x,s) = lim
ε→0

∫
Γ\Bε(x)

(TyÛ)>(x−y,s)u(y)dΓy,

(K′t)(x,s) = lim
ε→0

∫
Γ\Bε(x)

(TxÛ)(x−y,s)t(y)dΓy dτ

(Du)(x,s) =− lim
ε→0

Tx

∫
Γ\Bε(x)

(TyÛ)>(x−y,s)u(y)dΓy, for x ∈ Γ.

Once the Cauchy data are computed, the representation formula (9) can be used to evaluate the
solution inside the domain Ω. The single and double layer operators used in the representation
formula are denoted by Ṽ and K̃, i.e.,

(Ṽ t)(x,s) =
∫
Γ

Û(x−y,s)t(y)dΓy dτ

(K̃u)(x,s) =
∫
Γ

(TyÛ)>(x−y,s)u(y)dΓy, for x ∈Ω.

The linear multistep method based convolution quadrature of the symmetric formulation (16)
is given by

(V (∂∆t
t )t̃)(x, tn)− (K(∂∆t

t )ũ)(x, tn) = fD(x, tn), x ∈ ΓD

(D(∂∆t
t )ũ)(x, tn)+(K′(∂∆t

t )t̃)(x, tn) = fN(x, tn), x ∈ ΓN
(32)

for n = 0,1, . . . ,N and with the abbreviations

fD = C g̃D +K(∂∆t
t )g̃D−V (∂∆t

t )g̃N ,

fN = (I −C ) g̃N−K′(∂∆t
t )g̃N−D(∂∆t

t )g̃D .

Once (32) is solved for the boundary data, the solution u inside the domain Ω is obtained by
discretizing the representation formula as

un(x) = (Ṽ (∂∆t
t )t)(x, tn)− (K̃(∂∆t

t )u)(x, tn), x ∈Ω. (33)

For the Runge-Kutta based convolution quadrature, ∂∆t
t is replaced by ∂t

∆t .
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4.1 Bounds in the Laplace domain

In order to be able to apply Theorem 1 and Theorem 2 to show convergence and stability of the
semi-discretized symmetric formulation (32), estimates in the Laplace domain of the form (19)
are needed. That is, considering the symmetric formulation in Laplace domain

(V (s)t̂)(x,s)− (K(s)û)(x,s) = f̂D(x,s), x ∈ ΓD

(D(s)û)(x,s)+(K′(s)t̂)(x,s) = f̂N(x,s), x ∈ ΓN
(34)

with
f̂D = C ĝD +K(s)ĝD−V (s)ĝN

f̂N = (I −C ) ĝN−K′(s)ĝN−D(s)ĝD,

an s-dependent bound in an appropriate norm of the solution operator

T (s) : (ĝD, ĝN) 7→ (û, t̂)

is needed. Since the kernel functions of the integral operators involved in (34) are analytic in
the right half complex plane as functions of s, so are the integral operators themselves, and
consequently, if it exists, the solution operator T also. If the problem is well-posed, the solution
operator must be polynomially bounded in appropriate norms, but determining the degree of
such a polynomial bound, µ in (19), and ν in (19), is in general difficult and for the symmetric
formulation only known in the acoustic case, see [50], with the results extendible to the elastic
case. For the linear multistep based convolution quadrature, see Theorem 1, the value of µ gives
the smoothness of the data required for optimal convergence rate to be reached. For the Runge-
Kutta method, see Theorem 2, this constant, in fact µ− ν, influences the optimal convergence
rate however smooth the data may be. Accordingly, for the Runge-Kutta method it is of an extra
importance to know this constant.

Bounds for various formulations with explicit dependance on s, have so far been computed
for acoustics and electromagnetism. For the acoustic case, in the pioneering work of Bamberger
and Ha-Duong [9] estimates

‖V (s)‖H−1/2(Γ)→H1/2(Γ) ≤C
|s|
ℜs

and ‖V−1(s)‖H1/2(Γ)→H−1/2(Γ) ≤C
|s|2

ℜs
, (35)

have been proved. Therefore, according to Theorem 2, the expected rate of convergence to the
exact densities is O(∆tq), i.e., stage order q. More favourable bounds have been shown in [14]
for the operator Ṽ (s), these imply that the rate of convergence to u(x, t) for a fixed x ∈ Ω is
O(∆t p), that is the full (classical) order of the Runge-Kutta method; this result is likely to extend
to all of the other wave propagation problems.

In the recent work by Laliena and Sayas [50], various formulations, the symmetric coupling,
FEM-BEM coupling, transmission problems, etc., have also been investigated in the acoustics
case. As stated by the authors of [50] all these results are extendible to the elastic case. The
bound obtained in [50] for the solution operator of the symmetric formulation is

‖T (s)‖ ≤C
|s|5/2

ℜs
.
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For the electric field integral equation (EFIE) formulation of the problem of scattering of
electromagnetic waves by a perfect conductor, the corresponding bound has been given in [66,
81].

Note that for the analysis of the fully discretized problem, i.e., discretized both in time and
space, bounds of the type (35) are needed also for the spatially discretized integral operators
[53].

4.2 Properties of convolution weights

It is instructive to investigate the shape of the convolution weights for the various boundary
integral operators. In this section, the single layer operator convolution weights ω∆t

j (V ) and
W ∆t

j (V ) for the acoustic and viscoelastodynamic equations are investigated.
These have the form

ω
∆t
j (V )t =

∫
Γ

ω̃
∆t
j (x−y)t(y)dΓy and W ∆t

j (V )t =
∫
Γ

W̃ ∆t
j (x−y)t(y)dΓy,

the kernels being given by generating functions

Û(z,γ(ζ)/∆t) =
∞

∑
j=0

ω̃
∆t
j (z)ζ

j and Û(z,∆(ζ)/∆t) =
∞

∑
j=0

W̃ ∆t
j (z)ζ j.

For the backward Euler method and the acoustic wave equation, the kernels ω̃∆t
j (V ) can be

given explicitly:

ω̃
∆t
j (z) =

e−
|z|
c∆t

4π|z|

(
|z|
c∆t

) j 1
j!
, BDF1 for the wave equation.

From this formula and Stirling’s approximation of j! it is not difficult to see that ω̃∆t
j (z) is close

to zero except for |z|/c ≈ j∆t. This is not surprising since the kernel function in this case
approximates, in a certain sense, the Dirac delta distribution δ(t j−|z|/c)

4π|z| . Explicit formulas for
ω̃∆t

j (z) in the case of BDF2 can be given in terms of Hermite polynomials [46]. The width of
the intervals to which |z| needs to belong to in order that |ω̃∆t

j (z)|> ε for some ε > 0 have been
investigated in [46]. For Runge-Kutta methods such estimates do not exist as yet, but numerical
experiments [10], suggest that the width of this band is considerably smaller for high-order
Runge-Kutta methods.

Because of the increased complexity of viscoelastodynamics compared to acoustics it is par-
ticularly of interest to investigate the shape of the kernel functions in this case. In Figure 1, the
shapes are compared for different choices of ∆t and the underlying linear multistep or Runge-
Kutta method. For the Runge-Kutta method the sum of the last row of W̃ ∆t

j (z)∈Rm×m is plotted;
in fact each component has a similar shape. For this plot, the measured material data of a Perspex
(PMMA) are used, i.e., the material constants in (5) and (6), are set with

K = 6.2×109 N/m2, G = 1.33×109 N/m2, ρ = 1184 kg/m3

qH = qD = 0.0023 1/s, pH = pD = 0.002 1/s .
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n (z)
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ml
with z = (1,1,0)T for 3-stage Radau IIA and BDF2 methods.
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The two waves, with different speeds of propagation, can nicely be seen in these plots. It is
also seen that for the Runge-Kutta method the fronts are much better localised and with less
non-physical oscillation for considerably larger ∆t than for the BDF2 kernels. This suggests that
the higher order brings also qualitative advantages, that is, that the results should be closer to the
physical reality earlier as ∆t is decreased. This observation is explained more thoroughly in the
next section.

4.3 Dissipation and dispersion

It is often possible to say more about the numerical solution of a problem than just the as-
symptotic convergence order. Certain qualitative properties of the numerical solution can be
quantified by the notions of numerical dissipation and dispersion, see [82].

An important fact, in this respect, is that the convolution quadrature of the time-domain
boundary integral equation is equivalent to a boundary integral formulation of the semi-discretization
of the underlying partial differential equation. Namely, the solution of the semi-discrete prob-
lem (32) and (33) satisfies the linear multistep, respectively Runge-Kutta discretization, of the
underlying partial differential equation (1). For example in the case of viscoelastodynamics, see
(4), the solution un, n = 0,1, . . . ,N, of (32) will satisfy the semi-discrete PDE

c2
1v(∂

∆t
t )∆u− c2

2v(∂
∆t
t )∇×∇×u = (∂∆t

t )2u (36)

whereas in the case of the acoustic wave equation the solution un, n= 0,1, . . . ,N, of (32) satisfies
the semi-discrete PDE

c2
∆u = (∂∆t

t )2u (37)

on the domain Ω. For the method of proof of this fact, see [53, Theorem 5.2] and the introduction
of [10]. To perform dispersion and dissipation analysis, one assumes (36) or (37) to hold in the
whole space R3 and investigates the shape of plane wave solutions. Such analysis is classical,
but has first been performed in the context of convolution quadrature in [22].

For simplicity only the scalar wave equation (37) is investigated here. The non-discretized
wave equation (3) admits plane-wave solutions of the form ei( ξ

c .x+ωt) with ω2 = |ξ|2. Semi-
discrete equation (37) also admits plane wave solutions un(x) = ei( ξ

c .x+ω∆t tn), but, the relationship
between ω∆t and ξ is considerably more involved and constitutes the dissipation and dispersion
analysis. For linear multistep methods the relationship is given by

|ξ|2 =

(
γ
(
e−iω∆t ∆t

)
i∆t

)2

. (38)

In the case of backward Euler discretization, i.e., γ(ζ) = 1−ζ, solving this equation for ω∆t the
following relationship is obtained

ω∆t =±|ξ|+
i
2

∆t|ξ|2∓ 1
3

∆t2|ξ|3 · · · , Backward Euler.

This shows that plane waves satisfying the semi-discrete wave equation discretized by first or-
der BDF method are of size O(e−

1
2 ∆t|ξ|2), i.e., the solutions are significantly damped unless
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∆t|ξ|2� 1. This is a much stronger condition than the sampling condition of a few degrees of
freedom per wavelength, i.e., ∆t|ξ| � 1. In general, it is seen from (38) and the approximation
property γ(e−z) = z+O(zp+1), that for a p-th order linear multistep based discretization to give
an accurate result, ∆t must satisfy the condition ∆t p|ξ|p+1� 1. Since the order of A-stable mul-
tistep methods is restricted to p ≤ 2, this condition on ∆t is always significantly more stringent
than the sampling condition.

For Runge-Kutta methods consider the plane wave un` = ei( ζ

c .x+ω∆t tn+ω`,∆t c`∆t). Since cm = 1,
ωm,∆t = ω∆t must hold, but in general it is not possible to require ω`,∆t = ω∆t for all `. For the
analysis the following result proved in [10] will be used

Lemma 1 Let (22) hold, |ζ| 6= 1, and λ be an eigenvalue of ∆(ζ), but not of A−1. Then R(λ) =
ζ−1.

A similar calculation as for the linear multistep methods gives the relationship

|ξ|2

 un1
...

unm

=

(
∆
(
e−iω∆t ∆t

)
i∆t

)2
 un1

...
unm

 . (39)

A solution ωl,∆t of the following equation also satisfies (39)

|ξ|

 un1
...

unm

=

(
∆
(
e−iω∆t ∆t

)
i∆t

) un1
...

unm

 .

Therefore, i∆t|ξ| is an eigenvalue of ∆
(
e−iω∆t ∆t

)
and for small enough ∆t|ξ| cannot be an eigen-

value of A−1. Consequently, due to Lemma 1,

R(i∆t|ξ|) = eiω∆t ∆t .

Recalling the approximation property of the stability function R(z) = ez +O(zp+1). it is seen
that

ω∆t = |ξ|+ |ξ|O(|ξ∆t|p). (40)

Since for the 2-stage Radau IIA method p = 3 and for the 3-stage method p = 5, it is seen from
the last equation that these methods are significantly less dissipative and dispersive than the A-
stable linear multistep formulas. Furthermore, the constant implicit in (40) is very favourable in
the case of Radau IIA methods, it is C = 1/216 for the 2-stage and C = 1/7200 for the 3-stage
method.

5 Space discretization

Space discretization, in the context of convolution quadratures, poses no extra difficulty com-
pared to the space discretization of boundary integral operators of elliptic, in particular Helmholtz,
problems. It is merely necessary to replace the Laplace domain integral operators in (32) by their
discretized counterparts.
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5.1 Galerkin and collocation in space

When using Galerkin discretization in space, finite element bases on boundaries ΓD and ΓN are
used to construct the approximation spaces

XD = Span{ϕ1,ϕ2, . . . ,ϕM1 |ϕ j ≡ 0 on ΓN},
XN = Span{ψ1,ψ2, . . . ,ψM2 |ψ j ≡ 0 on ΓD}.

The unknowns (ũ)n and (t̃)n at time t = tn are approximated by a linear combination of functions
in XD and XN :

(ũh)n =
M1

∑
`=1

α
(n)
` ϕ` and (t̃h)n =

M2

∑
k=1

β
(n)
k ψk, n = 0,1, . . . ,N. (41)

Inserting this ansatz into (32) and testing by functions from XD and XN gives the fully discrete
system∫

Γ

V (∂∆t
t )t̃h(x, tn)ψk(x)dΓx−

∫
Γ

K(∂∆t
t )ũh(x, tn)ψk(x)dΓx =

∫
Γ

fD(x, tn)ψk(x)dΓx,

∫
Γ

D(∂∆t
t )ũh(x, tn)ϕ`(x)dΓx +

∫
Γ

K′(∂∆t
t )t̃h(x, tn)ϕ`(x)dΓx =

∫
Γ

fN(x, tn)ϕ`(x)dΓx,

for n = 0,1, . . . ,N, `= 1,2, . . . ,M1, and k = 1,2, . . . ,M2.
When solving this convolutional linear system of equations using the techniques of Sec-

tion 3.3, quadrature required to implement these equations can be done solely in Laplace do-
main. More specifically, the Galerkin discretization of operators V (s`), K(s`), K′(s`), and D(s`)
for all the frequencies s` occurring in the algorithms described in Section 3.3 are needed. For
example, Galerkin discretization of the single layer potential requires the computation of the
following integrals∫

Γ

(V (s`)ψ j)(x)ψk(x)dΓx =
∫
Γ

∫
Γ

Û(x−y,s`)ψ j(y)ψk(x)dΓy dΓx.

Numerical quadrature routines for kernels Û(x−y,s`) have been extensively investigated and are
readily available, see for example [36, 45, 75]. In fact, one of the main advantages of convolution
quadrature lies in the fact that numerical quadrature of the difficult/unknown distributional kernel
function is not necessary.

It has to be mentioned that the right-hand sides fD and fN are not immediately available, but
have to be first computed by applying time-domain integral operators to the data g̃D and g̃N .
This is usually done by first projecting the data onto boundary element bases defined on Γ; note
that since it is not necessarily true that g̃D ≡ 0 on ΓN and g̃N ≡ 0 on ΓD it is not possible here to
re-use spaces XD and XN .

To avoid double integration in space, it is of interest to use collocation in space instead of
Galerkin discretization. Here the unknown functions are again approximated by a linear com-
bination of basis functions as in (41) and this approximation is substituted in (32). To arrive at
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a system of linear equations, the resulting equations are evaluated at collocation points on the
boundary.

Stability and convergence analysis of the fully discrete symmetric system has not yet appeared
in literature in any of the applications covered in this paper. The linear multistep convolution
quadrature with Galerkin discretization in space for the indirect boundary integral formulation
of the Dirichlet problem of acoustics has been fully analysed in [53].

5.2 Fast data-sparse methods in frequency domain

Using Algorithm SolveCQ to solve the fully discrete system it is necessary to discretize operators
V (s`), K(s`), K′(s`), and D(s`). Galerkin or collocation discretizations of such operators result in
dense M j×Mk matrices, j,k = 1,2. Therefore, direct computation and storage of such matrices
has cost O(M2) with M = max(M1,M2). Fortunately, so called data sparse techniques have been
developed in the past couple of decades that can in almost linear cost, i.e., O(M loga M) for some
a > 0, compute approximations of these matrices. Two main classes of such data sparse methods
are hierarchical matrices (H -matrices) [44, 43] and the fast multipole methods (FMM) [68, 23].

The difficulty of computing a data sparse representation of space discretizations of integral
operators is directly related to the wavenumbers s`. The kernel functions have the form

Û(x,s) =
w

∑
i=1

A(i)(r,s)
e−

s
ci(s)

r

4πr
, r = |x|,

with ci(s)→ const > 0 for |s| → ∞, and hence if |ℑs`| � 1 the kernel is highly oscillatory
and consequently difficult to discretize efficiently, on the other hand if ℜs� 1 the operator is
practically diagonal and easy to efficiently discretize.

The evaluation of integral operators at different wavenumbers occurs in two places in Algo-
rithm SolveCQ: in line 6. where a discrete convolutional system of size J is solved by solving a
decoupled set of linear systems in Laplace domain, and in line 4. where a matrix-vector prod-
uct with discretized integral operators in Laplace domain needs to be computed. In [10], it is
shown that if J is chosen as a constant independent of ∆t the frequencies arising in solving the
small system 6 all satisfy |ℑs|/ℜs ≤ const. This in turn implies that the integral operators in
Laplace domain can be approximated by an H -matrix with computational and storage complex-
ity O(M logM). Furthermore, an (approximate) LU-decomposition in H -matrix format can be
computed in O(N log2 N) time, which can be used as a very good preconditioner for solving the
linear systems by an iterative method, such as GMRES.

Wavenumbers occurring in the update, line 4., can have |ℑs| ∼∆t−1. If ∆t/ci, with ci the speed
of the wave, is much smaller than the size of the computational domain Ω, high-frequency prob-
lems occur for which H -matrices lose their efficiency [58]. Fortunately, the highly-oscillatory
operators need not be inverted, but only a single matrix-vector product needs to be computed.
This is an ideal task for the so called fast multipole methods. Here the advantage of the recursive
procedure from Section 3.3.2 can best be seen.

Many fast-multipole like methods for high-frequency Helmholtz integral operators have been
developed since the early 1990s [4, 11, 28, 69, 70]. These have dealt with cases of purely real
and purely imaginary wavenumbers. They can be adapted to the present case of the whole range
of complex frequencies, still, to do this optimally more work is needed.
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t1 =−1.0H(t)N/m2

x1
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x3
1m

1m
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Figure 2: System and boundary conditions

6 Numerical example

In this section, the solution procedure of section 3.3.1 is tested for elastodynamics with different
Runge-Kutta and multistep methods. In order to show the validity of the results only benchmark
examples, whose analytical solutions are known, are treated. All computations were performed
by using the HyENA C++ library for the numerical solution of partial differential equations using
the boundary element method [59]. For the Fourier like transformations the FFTW routines [38]
are taken.

A 3-d rod of size `1 = 3.0m and `2 = `3 = 1.0m, as depicted in Figure 2, is considered. It
is fixed on one end and the other end is excited by a pressure jump t1 = −1.0H(t)N/m2. H(t)
denotes the unit step function. The material parameters of steel (ρ = 7850 kg/m3, G = 1.055×
1011 N/m2, K = 7.03×1010 N/m2) are taken. Poisson ratio is chosen to be zero, such that the results
can be compared with the analytical solution of longitudinal waves in a 1-d elastodynamic rod
(see [41]). The rod shown in Figure 2 is discretised with two different meshes, the coarse
with 565 triangular boundary elements of uniform mesh size h = 0.2m and the fine with 2176
triangular boundary elements of uniform mesh size h = 0.1m. Both are depicted in Figure 3.
The displacements and tractions are approximated by piecewise constant and continuous linear
polynomials, respectively. In order to compare different time discretizations the dimensionless
value

β =
c1∆t

h

is introduced. This value depends on the velocity of the compression wave c1, the time step size
∆t, and the average mesh size h. For the Runge-Kutta methods the time step size ∆t is taken that
of the stages and not of one step to have a fair comparison with the multistep method.

In the following, results are presented to show the influence of the different time discretisa-
tions, i.e., the chosen methods are BDF2, Radau IIA (2-stage), and Radau IIA (3-stage). It is
studied how these different methods work in relation to the spatial discretisation and the time
step size.

First, the displacement in the middle of the top and the tractions in the middle of the bottom
of the bar are displayed in Figure 4 versus time for the different Runge-Kutta methods listed
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565 triangular elements
382 nodes

(a) coarse mesh: h = 0.2m

2176 triangular elements
1438 nodes

(b) fine mesh: h = 0.1m

Figure 3: Uniform meshes used for the calculations

above and the BDF2. A collocation technique with β = 0.3 and the fine mesh is used. The
displacement results are more or less equal and coincide well with the analytical solution. The
traction solution is overall good as well. The differences between the Runge-Kutta methods and
the BDF2 are visible in the oscillations at the jumps. There, the Runge-Kutta methods show less
pronounced effects and as well a better representation of the straight lines. This is in accordance
with the observations made for the integration weights in section 4 (see Figure 1). The Runge-
Kutta methods have represented the wave fronts much sharper than the BDF2. Hence, here
the oscillations must be smaller. Nevertheless, also the results for the BDF2 are good. As
the different displacement results are nearly not distinguishable, in the following only traction
results will be presented.

The next study shows the influence of the mesh size where the traction results using a Radau
IIA (2-stage) are compared. In Figure 5, the results are displayed versus time for both discreti-
sations of Figure 3 and for a collocation (denoted by ’collo’) and a symmetric Galerkin BEM
(denoted by ’SGBEM’). As expected the finer mesh yields better results. The difference between
collocation and the SGBEM is not observable. Similar plots can be made with the other time
discretisations, which yield qualitatively the same. One difference can be observed. The 3-stage
Radau IIA method tends to instabilities for the chosen β = 0.3.

The sensitivity on the times step size is studied in Figure 6. The traction results are computed
with the finer mesh for all three multistep methods for different β-values. For β= 0.1 the 3-stage
Radau IIA method shows clearly an instability. These results are truncated after t ≈ 0.0033s,
not to destroy the whole picture. With a coarser mesh also the other methods would show
instabilities. Overall, the numerical tests confirm that a finer mesh moves the instabilities to
smaller values of β. Comparing to the mathematics in section 3 this behavior is not obvious.
But, it must be remarked that all proofs require some smoothness of the given data which is in
the example by the Heaviside function clearly violated. However, for engineering applications
such loadings are necessary and, therefore, the numerical tests has been made with this right
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Figure 4: Results for different Runge-Kutta methods and the BDF2 versus time
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Figure 5: Influence of mesh size using a Radau IIA (2-stage) method

hand side.
The last study concerns the long time behavior, because a lot of time domain BE formulations

suffer from either strong numerical damping or instabilities in the long time range. The proposed
method shows a very nice behavior as presented in Figure 7. The collocation and the SGBEM
results are given for both meshes using a 3-stage Radau IIA method. Nearly no numerical
damping is observed and no instabilities. The time step size is chosen according to β = 0.5. The
other Runge-Kutta or multistep methods produce comparable results. Hence, it can be concluded
that the long time behavior is satisfactory.

Overall, the presented results show that the method is robust with respect to the time and the
spatial discretisation if the mesh is sufficiently fine and the time step size not too small.

Appendix

The general form of the fundamental solutions for the operators given in section 2 can be found
in (10). For better readability it is recalled

Û(x−y,s) =
w

∑
i=1

A(i) (r,s)
e−λir

4πr
with r = |x−y| .

In the following, the coefficients A(i) (r,s) are listed. For the vectorial problems the fundamental
solutions are tensors. For them the indical notation is used where r,i =

xi−yi
r stands for the

directional derivative and δi j for the Kronecker delta.
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Figure 6: Influence of time step size for the different multistep methods
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Figure 7: Long time behavior using a Radau IIA (3-stage) method

Acoustics

The respective equations are presented in section 2.1.1. In (3), the homogeneous form of the
differential equation is given. For the definition of the fundamental solution a source of Dirac
type has to be added. As in acoustics only one compressional wave appears and the sum in
(10) has only one term, i.e., w = 1 holds. Further, it is a scalar problem, hence, the tensor of
fundamental solutions degenerates to a scalar value. The coefficient is

A(1) = 1 with λ1 =
s
c
= s

√
ρ

K
.

Visco- and elastodynamics

The governing equations for viscoelasticity are given in section 2.1.2 as an extension of the
elastodynamic case (1). Only the wave velocities have to be replaced by (5). The excitation in
the definition of the fundamental solutions is a force of Dirac type. Two waves, the compression
and the shear wave, exist and, therefore, the sum in (10) has two terms, i.e., w = 2 holds. The
coefficients are

A(1)
i j =

1
ρs2

{
3r,ir, j−δi j

r2 (λ1r+1)+λ
2
1r,ir, j

}
A(2)

i j =
1

ρs2

{
3r,ir, j−δi j

r2 (λ2r+1)+λ
2
2r,ir, j

}
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with the complex wave numbers

λ1 =
s
c1

λ2 =
s
c2

in elastodynamics and

λ1 =
s

c1v
λ2 =

s
c2v

in viscoelastodynamics.

Poroelastodynamics

The governing equations of proelastodynamics (7) is a coupled set of differential equations for
the unkowns solid displacement u and pore pressure p. Consequently, the fundamental solution
is a matrix

Ĝ =

(
Û s

i j Û f
i

P̂s
j P̂ f

)
with Û f

i = sP̂s
i .

The single entries are composed as given in (10) and have either three waves, i.e., w = 3 or only
two compressional waves, i.e., w = 2. The respective coefficients of the sum are for the solid
displacements due to a bulk body forc of Dirac type in the solid, i.e., Û s

i j

A(1)
i j =

1
(ρ−β(s)ρ f )s2 R1

λ2
4−λ2

2

λ2
1−λ2

2

A(2)
i j =

−1
(ρ−β(s)ρ f )s2 R2

λ2
4−λ2

1

λ2
1−λ2

2

A(3)
i j =

1
(ρ−β(s)ρ f )s2

(
δi jλ

2
3−R3

)
with Rk = (3r,ir, j−δi j)/r2 +λk (3r,ir, j−δi j)/r+λ2

kr,ir, j and
λ2

4 = s2 (ρ−β(s)ρ f )/(K +4/3G). The pressure caused by the same load is, i.e., P̂s
j

A(1)
i j =

(α−β(s))sρ f r, j
β(s)

(
K + 4

3 G
)(

λ2
1−λ2

2

) (λ1 +
1
r

)
A(2)

i j =
−(α−β(s))sρ f r, j

β(s)
(
K + 4

3 G
)(

λ2
1−λ2

2

) (λ2 +
1
r

)
.

The remaining one is the pressure due to a source of Dirac type in the fluid, i.e., P̂ f

A(1)
i j =

sρ f

β(s)
λ2

1−λ2
4

λ2
1−λ2

2
A(2)

i j =
−sρ f

β(s)
λ2

2−λ2
4

λ2
1−λ2

2
.

Electromagnetism

The fundamental solution is the same as for the acoustic wave equation, i.e.,

A(1) = 1 with λ1 =
s
c
= s
√

εµ .
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