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Abstract

Based on the theory of mixtures, a dynamic three phase model for partially saturated
poroelasticity is established. This model is applied to a one dimensional column and an
analytical solution in the Laplace domain is deduced. By using the convolution quadrature
method the solution in the time domain is obtained. Using the material data of Massillon
sandstone the three different compressional waves, the fast wave, the second slow wave,
and the third slow wave, are calculated and validated with the Biot-Gassmann prediction.
The wave propagation behavior in terms of displacement and pore pressure is also examined
with the analytical solution. By neglecting the viscous behavior of the interaction between
the fluids and the solid the second and the third slow compressional waves are identified.
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1 Introduction

Wave propagation in porous media is important, e.g. in natural formations as soft rock, soil, and
tissue, or artificial materials as cement. For saturated porous media there are in principle three
similar theories available – that of Biot [5, 6], the Theory of Porous Media (e.g. [8]), and the
simple mixture theory [29]. The latter ones are based on the principles of continuum mechanics
and the mixture theory. Their extension to the partially saturated case may be found in [13].
Another approach for porous media like rocks is the double porosity model based on Biot’s
theory [30].

For partially saturated porous media, Philippacopoulos [17] studied a "partially" saturated
poroelastic half-space problem, where exact analytical expressions have been obtained for the
propagation due to a point load acting vertically at the surface of a medium that consists of a
dry-type layer overlying a fluid-saturated porous substratum. Zienkiewicz et al. [31] extended
the formulation of static and dynamic saturated soils to problems of semi-saturated behaviour
with the assumption of free air ingress. Berryman [4] derived the equations of poroelasticity for
partially saturated materials by using the physically reasonable assumption of negligible capil-
lary pressure change during passage of an acoustic signal through the media. Smeulders et al.
[24] studied the propagation of the compressional waves in a porous medium for a pore liquid
containing a small volume fraction of gas. Further, the effect of oscillating gas bubbles was
taken into account by introducing a frequency-dependent fluid bulk modulus, which was incor-
porated in Biot’s theory. A poroelastic model using the theory of mixture with interfaces, which
can be used to analyze the propagation conditions and characteristics of acoustical waves in un-
saturated porous media has been published by Muraleetharan and Wei [14] (see also [27, 28]).
Schrefler and Scotta [23] presented a fully coupled dynamic model for the analysis of water and
air flow in deforming porous media under fully or partially saturated conditions. They discussed
the drainage problem of a soil column, the air storage problem in an aquifer, and the dynamic
analysis of a sand column subjected to a step load. Gatmiri and Jabbari [11, 12] published the
closed form two and three dimensional Green’s functions of the governing differential equa-
tions for an unsaturated deformable porous medium. Albers [1, 2] investigated the propagation
of sound waves in partially saturated soils with a macroscopic linear model, which was based
on the two component model of Biot and on the Simple Mixture Model by Wilmanski [29].
In these works, a porous medium consisting of a deformable skeleton and two compressible,
chemically non-reacting, pore fluids (liquid and gas) has been modelled, and a spectral analysis
of wave propagation in partially saturated porous media is performed for more than twenty sorts
of soils. Ravichandran and Muraleetharan [19] compared the complete and reduced Finite Ele-
ment formulations for an unsaturated soil. The permanent deformations were predicted taking
elastoplastic effects into account.

The analytical solution of wave propagation in saturated porous media has been deduced
by Garg et al. [9]. There are also other 1-d solutions available which can be found in the review
article [21]. However, for other than saturated models there are not too many 1-d solutions
available. It may only be mentioned the solution by Vgenopoulou and Beskos [26] based on the
double porosity model.

In the present work, the solution of a finite one dimensional column with Neumann and
Dirichlet boundary conditions are deduced based on the theory of mixtures. The solution is
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obtained in the Laplace domain and the convolution quadrature method is chosen to obtain the
time domain solution. The material data of Massillion sandstone are used in the example. The
column response to the dynamic loading is examined in terms of phase velocities, displacement,
pore water pressure, and pore air pressure. One of the significant findings of BiotâĂŹs the-
ory of poroelasticity is the identification of three waves for a three dimensional continuum, two
compressional waves and one shear wave. The first compressional wave is very similar to the
compressional wave in an elastic medium, while the second wave, also named BiotâĂŹs second
slow wave, has a strongly dispersive character and has been experimentally confirmed by [18].
Due to the existence of the second pore fluid in the partially saturated case, an additional third
compressional wave emerges. In this paper, under special conditions, the creation and propaga-
tion of the second and third slow compressional waves can be clearly observed. With the present
solution, it is possible to simulate a column response under a wide range of transient loading
conditions, and the solution can be used to validate numerical simulation results.

Throughout this work, the indical notation is used. The summation convention is applied over
repeated indices and Latin indices receive the values 1, 2, 3 in three dimensions and 1,2 in two
dimensions. Commas (),i denote spatial derivatives and ∂t the time derivative. δi j denotes the
Kronecker delta, i.e. δi j = 1 for i = j else δi j = 0 holds. The Laplace transform of a function
f (t) is denoted by f̂ (s) with the complex Laplace parameter s ∈H and H= {s ∈ C|ℜ(s)> 0}.

2 Governing equations

For dynamic partially saturated poroelasticity the governing equations are stated following the
work of Lewis and Schrefler [13]. To obtain a representation with as few as possible unknowns,
i.e. the solid displacements ui, the pore wetting fluid pressure pw, and the pore non-wetting fluid
pressure pa, the governing equations are transformed to Laplace domain to eliminate the relative
fluid to solid displacements.

2.1 Constitutive assumptions

For a partially saturated porous medium, the porosity n measures the void spaces, which is the
ratio of the volume of voids Vvoid over the total volume Vtotal

n =
Vvoid

Vtotal
. (1)

The voids are filled with a mixture of fluids, for instance, a mixture of water and air in soil
mechanics, or a mixture of oil and water in petroleum engineering. The saturation degrees are
defined as the ratios of the volume occupied by the fluid Vw or Va to the void volume, i.e. it holds

Sw =
Vw

Vvoid
Sa =

Va

Vvoid
Sw +Sa = 1 . (2)

The capillary pressure pc in a partially saturated media is given following Brooks and Corey [7]

pc = pa− pw = pdS−1/ϑ
e , (3)
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where pd is the non-wetting fluid entry pressure and ϑ is the pore size distribution index. Se

denotes the effective wetting fluid saturation degree given by

Se =


0 Sw ≤ Srw
Sw−Srw

Sra−Srw
Srw < Sw < Sra ,

1 Sw ≥ Sra

(4)

where Srw is the residual wetting fluid saturation and Sra is the non-wetting fluid entry saturation.
The total stress σ is expressed by

σi j = σ
′
i j−δi jα(Sw pw +Sa pa) , (5)

where σ′ denotes the effective stress, α = 1−K/Ks describes the compressibility of the solid
skeleton with the drained bulk modulus of the mixture K and Ks is the bulk modulus of the solid
skeleton. Assuming an elastic isotropic material for the skeleton, the constitutive model is

σ
′
i j = (K− 2

3
G)δi juk,k +G(ui, j +u j,i) , (6)

with G denoting the shear modulus. Further, in (6) a linear stress-strain relation is assumed.

2.2 Balance equations

The balances of mass for the solid and both fluids are

∂t [(1−n)ρs]+ (1−n)ρs∂tui,i = 0 (7a)

∂t(nS f ρ f )+nS f ρ f ∂t(ui,i +u f
i,i) = 0 (7b)

where ρs and ρ f ( f = w,a) denote the density of the solid and the fluids, respectively. Note that
in (7b), and also in the following, with the index f the equations of both fluids are summarised.
The displacements u f ( f = w,a) are the relative displacement of the fluids according to the solid.
The equations (7) are formulated under the assumptions that the dissolved non-wetting fluid into
the wetting fluid can be neglected. Further, due to the linearization the gradients of the porosity,
the densities, and the saturation degrees vanish.

Assuming a compressible solid phase and that the first stress invariant is proportional to the
volumetric strain an equation for the time derivative of the porosity can be formulated (see Lewis
and Schrefler [13])

∂tn−ζ(Sww∂t pw +Saa∂t pa)+ζKs∂tui,i = 0 , (8)

with the abbreviations ζ = (α−n)/Ks, Sww = Sw + pc ∂Sw

∂pc , and Saa = Sa− pc ∂Sw

∂pc . Inserting Se

of (4) in (3) the derivative of the fluid saturation with respect to the capillary pressure can be
calculated. Combining this with the capillary pressure of (3) yields

pc ∂Sw

∂pc =−ϑ(Sw−Srw) . (9)
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Inserting the equations (8) and (9) in the mass balance of both fluid parts (7b) results in the two
continuity equations

αSw∂tui,i +(ζSwwSw +
n

Kw
Sw−Su)∂t pw +(ζSaaSw +Su)∂t pa +nSw∂tuw

i,i = 0 (10a)

αSa∂tui,i +(ζSwwSa +Su)∂t pw +(ζSaaSa +
n

Ka
Sa−Su)∂t pa +nSa∂tua

i,i = 0 , (10b)

with Su =−
ϑ(Sra−Srw)

pd

(
Sw−Srw

Sra−Srw

) ϑ+1
ϑ

.

Next, the balances of momentum have to be formulated. Instead of the balance for the solid
that of the mixture is used. Beside this, the two fluid balances are used. Taking into account the
constitutive assumption for the total stress (5) this gives

Gui, j j +(K +
1
3

G)u j,i j−α(Sw pw
,i +Sa pa

,i)+Fi = ρ∂
2
t ui +nSwρw∂

2
t uw

i +nSaρa∂
2
t ua

i (11a)

nS f ∂tu
f
i =−κ f

(
p f
,i +ρ f ∂

2
t ui +ρ f ∂

2
t u f

i

)
(11b)

with the bulk body force Fi. The bulk density denoted by ρ = (1−n)ρs +nSwρw +nSaρa is the
averaged density of the mixture. The phase permeabilities of the wetting fluid ( f = w) and the

non-wetting fluid ( f = a) is κ f =
Kr f k
η f

( f = w,a). Beside the relative fluid phase permeability

Kr f , k is the intrinsic fluid permeability, and η f is the viscosity of the fluid. The relative phase
permeability Kr f can be evaluated either following Brooks and Corey [7] or van Genuchten [25].
In the following, Brooks’ equations are used

Krw = S(2+3ϑ)/ϑ
e Kra = (1−Se)

2[1−S(2+ϑ)/ϑ
e ] . (12)

2.3 Governing equations in the Laplace domain

The equations (10) and (11) are sufficient to solve the problem of unsaturated poroelasticity.
Counting the unknown field variables shows that there is another choice which uses less vari-
ables. It would be natural to describe the solid by the displacements and the fluids by the pres-
sures. However, the elimination of the relative displacements is not possible in time domain
because it appears above in different orders of time derivatives. Hence, these equations are
transformed to Laplace domain to extract the relative displacements.

With the definition of the Laplace transformation

f̂ (s) = L{ f (t)}=
∞∫

0

e−st f (t)dt (13)

the momentum balances of the fluids are

nS f û
f
i s =−κ f

(
p̂ f
,i +ρ f ûis2 +ρ f û

f
i s2
)
. (14)
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Reorganizing both equations in (14) with respect to the respective relative displacement gives
the fluxes

qw
i = sûw

i =−β
1

nρws

(
p̂w
,i +ρws2ûi

)
with β =

κwnρws
nSw +κwρws

(15a)

qa
i = sûa

i =−γ
1

nρas

(
p̂a
,i +ρas2ûi

)
with γ =

κanρas
nSa +κaρas

. (15b)

Substituting the relative displacements (15) in the transformed balance of momentum of the mix-
ture (11a) and both continuity equations (10) results in the governing equations in the Laplace
domain

Gûi, j j +(K +
G
3
)û j,i j− (ρ−βSwρw− γSaρa)s2ûi− (α−β)Sw p̂w

,i − (α− γ)Sa p̂a
,i =−F̂i (16a)

(α−β)Swsûi,i +(ζSwwSw +
n

Kw
Sw−Su)sp̂w− βSw

ρws
p̂w
,ii +(ζSaaSw +Su)sp̂a = 0 (16b)

(α− γ)Sasûi,i +(ζSwwSa +Su)sp̂w +(ζSaaSa +
n

Ka
Sa−Su)sp̂a− γSa

ρas
p̂a
,ii = 0 (16c)

with the unknowns solid displacement ûi, pore fluid pressure p̂w and p̂a.

3 Analytical solution

To study the influence of partially saturated poroelastic parameters on wave propagation, a one
dimensional column of length ` is considered. It is assumed that the side walls of the column are
rigid, frictionless, and impermeable. Due to these restrictions only the vertical displacement u,
the pore pressures pw and pa remain as the degrees of freedom. At the top of the column, a stress
σ = −S0H(t), a pressure pw = PwH(t), and a pressure pa = PaH(t) are prescribed (see Figure
1). Therein, H(t) denotes the unit step function in time, i.e. the load is applied at t > 0. The
bottom is modelled impermeable and it might move with a constant displacement u = U0H(t).
This one dimensional example can also be seen as an approximation of a partially saturated
poroelastic half space with an infinite layer width.

For the above assumption, and with a vanishing body force term, the governing equations are
reduced to three scalar coupled ordinary differential equations

(K +
4
3

G)û,yy− s2(ρ−βSwρw− γSaρa)û− (α−β)Sw p̂w
,y− (α− γ)Sa p̂a

,y = 0 (17a)

(α−β)Swsû,y +(ζSwwSw +
n

Kw
Sw−Su)sp̂w− βSw

ρws
p̂w
,yy +(ζSaaSw +Su)sp̂a = 0 (17b)

(α− γ)Sasû,y +(ζSwwSa +Su)sp̂w +(ζSaaSa +
n

Ka
Sa−Su)sp̂a− γSa

ρas
p̂a
,yy = 0 , (17c)

with the boundary conditions in the Laplace domain

û(y = 0) =U0 q̂w(y = 0) = 0 q̂a(y = 0) = 0

σ̂(y = `) =−S0 p̂w(y = `) = Pw p̂a(y = `) = Pa .
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`

y

σ pw pa

u

Figure 1: A one dimensional column under dynamic loads

This turns out to be a system of homogeneous ordinary differential equations with inhomoge-
neous boundary conditions. Such a system can be solved by using the exponential ansatz

û(y) =Ueλsy p̂w(y) =Uweλsy p̂a(y) =Uaeλsy . (18)

Inserting the ansatz into equations (17) results in an eigenvalue problem for λ (B1λ2−B2)s −B3λ −B4λ

B3λs (B5−B6λ2) B7
B4λs B8 (B9−B10λ2)

 U
Uw

Ua

= 0 , (19)

with the characteristic equation

C1λ
6 +C2λ

4 +C3λ
2 +C4 = 0 . (20)

The six complex roots of equation (20) corresponds to the three compressional waves in the 1-d
unsaturated poroelastic medium and are given by

λ1 =−λ4 =

√
N1 +

N2C2
2

3C1
−N2C3 +

1
3N2C1

(21a)

λ2 =−λ5 =

√
N1 +

3C1C3−C2
2

6C1
N2(1− i

√
3)− 1

6N2C1
(1+ i

√
3) (21b)

λ3 =−λ6 =

√
N1 +

3C1C3−C2
2

6C1
N2(1+ i

√
3)− 1

6N2C1
(1− i

√
3) . (21c)

The abbreviations Bi, Ci, and Ni can be found in the appendix A.
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Corresponding to the six roots the six solutions for the ansatz in (18) can be super-imposed.
This leads to the complete solution of the homogeneous problem

û(y) =
6

∑
i=1

Uieλisy p̂w(y) =
6

∑
i=1

Uw
i eλisy p̂a(y) =

6

∑
i=1

Ua
i eλisy . (22)

According to (19), the relationships between Ui and Uw
i , and Ui and Ua

i are

Uw
i =

(B1B7 +B3B4Sa)λ
2
i −B2B7

(B4B6Saλ2
i +B3B7Sw−B4B5Sa)λi

sUi = aisUi (23a)

Ua
i =

(B1B8 +B3B4Sw)λ
2
i −B2B8

(B3B10Swλ2
i +B4B8Sa−B3B9Sw)λi

sUi = bisUi . (23b)

By substituting Uw
i and Ua

i with Ui in equation (22) the solutions are

û(y) =
6

∑
i=1

Uieλisy p̂w(y) =
6

∑
i=1

aisUieλisy p̂a(y) =
6

∑
i=1

bisUieλisy . (24)

Rewriting the boundary conditions with the ansatz functions (18) and the relations (23) six con-
ditions for the six unknown values Ui are available. Following the definition of the total stress
tensor (5), the stress boundary condition at the top of the column (y = `) is

(K +
4
3

G)s
6

∑
i=1

(λieλis`Ui) = [α(SwPw +SaPa)−S0] (25)

and at the same location the pressure boundary conditions are

s
6

∑
i=1

(aieλis`Ui) = Pw s
6

∑
i=1

(bieλis`Ui) = Pa . (26)

On the bottom of the column (y = 0) the fluxes and the displacement are prescribed, which
yields

6

∑
i=1

(aiλiUi) =−ρwU0

6

∑
i=1

(biλiUi) =−ρaU0 (27)

and
6

∑
i=0

Ui =U0 . (28)

After determining the six constants Ui with the above six conditions the solutions in Laplace
domain are known.

The solutions can be divided into four different load cases based on the superposition prin-
ciple. The solution for the stress boundary condition (û|y=0 = 0, σ̂|y=` = −S0, p̂w|y=` = 0,
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p̂a|y=` = 0) is

û =
S0s−1

M(K + 4
3 G)

3

∑
i=1

[
e−λis(y+`)− eλis(y−`)

1+ e−2λis`
ti

]
(29a)

p̂w =
S0

M(K + 4
3 G)

3

∑
i=1

[
e−λis(y+`)+ eλis(y−`)

1+ e−2λis`
tiai

]
(29b)

p̂a =
S0

M(K + 4
3 G)

3

∑
i=1

[
e−λis(y+`)+ eλis(y−`)

1+ e−2λis`
tibi

]
, (29c)

with t1 = a2b3− a3b2, t2 = a3b1− a1b3, t3 = a1b2− a2b1, and M = t1λ1 + t2λ2 + t3λ3. The
corresponding stress and fluxes can be calculated following the definitions in (5) and (15). The
solutions for the other three load cases can be found in appendix B.

As β and γ are dependent of the Laplace parameter s, the roots λi and consequently ai and
bi are also dependent on s. Therefore, an analytical inverse Laplace transform of the solutions
above is generally not possible. However, if the viscosity of the fluids is neglected, i.e. the
permeability tends to infinity, an analytical inverse Laplace transform can be found following
the lines in [22]. However, for arbitrary values of the permeability, a numerical inverse Laplace
transform is needed. A number of methods to determine the inverse Laplace transform are
available in the literature. Here, the convolution quadrature method (CQM) is employed

u(n∆t) =
n

∑
k=0

ωn−k(∆t)g(k∆t),n = 0,1, ...,N , (30)

with the weights function ωn−k(∆t) determined by

ωn−k(∆t) =
Re−(n−k)

L

L−1

∑
`=0

û

(
γ(Rei` 2π

L )

∆t

)
e−i(n−k)` 2π

L . (31)

For details on the application of the CQM see [20]. In the following calculations, a BDF2 as
underlying multistep method γ(z) and RN = 10−5 is used.

4 One dimensional wave propagation

Wave propagation in an one dimensional partially saturated poroelastic column is studied in the
following using the developed analytical solution. To be confident of the solution, validations
of the phase velocities with experiments [15, 16] and the displacement and the pore pressure
solutions with analytical solutions of special cases [10, 22] are performed. The material data of
Massilon sandstone measured by Murphy [16] are used in the calculations. Hence, the fluids
are water and air. These data are given in Table 1. The pore size distribution index ϑ is set to
1.5, the residual water saturation Srw is set to 0, and the air entry saturation Sra is set to 1. The
two latter values are somehow arbitrary but enables to evaluate the solutions also in this extreme
cases. This is done only for comparison reasons.

9
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Table 1: Parameters of Massilon sandstone
Parameter type Symbol Value Unit
Porosity n 0.23 -
Density of the solid skeleton ρs 2650 kg/m3

Density of the water ρw 997 kg/m3

Density of the air ρa 1.10 kg/m3

Drained bulk modulus of the mixture K 1.02×109 N/m2

Shear modulus of the mixture G 1.44×109 N/m2

Bulk modulus of the solid skeleton Ks 3.5×1010 N/m2

Bulk modulus of the water Kw 2.25×109 N/m2

Bulk modulus of the air Ka 1.10×105 N/m2

Intrinsic permeability k 2.5×10−12 m2

Viscosity of the water ηw 1.0×10−3 Ns/m2

Viscosity of the air ηa 1.8×10−5 Ns/m2

First, the wave velocities are controlled. In the model, there are three compressional waves
– the fast wave p1, the second slow wave p2, and the third slow wave p3. The shear wave is
also included in section 2 but not in the 1-d model. The wave speeds and the attenuations are
calculated from the complex roots λi of equation (20). Taking the Laplace parameter s = iω, i.e.,
the real part is set to zero, the real part of λi represents the phase velocities vp and the attenuation
ap is (see [1])

vpi =
1

ℜ(λi)
api = ωℑ(λi) . (32)

These velocities and attenuations are plotted versus the saturation degree in Figure 2 for different
frequencies ω. The fast compression wave speed vp1 is compared to Gassmann’s equations

K∗ = K +
α2

α−n
Ks

+n( Sw
Kw

+ Sa
Ka
)

vG
p =

√
K∗+ 4

3 G
ρ

, (33)

where K∗ is the effective bulk modulus of the undrained fluid mixture of a saturated porous
medium. Murphy [16] tested the Massillon sandstone and verified Gassmann’s prediction.
Hence, the dots in Figure 2a are also verified by experiment. The known effect that the fast
wave velocity vp1 decreases with increasing the water saturation is visible, as well as the drastic
increase for the nearly saturated case. This result matches Gassmann’s predictions. According
to them, with increasing the water saturation the averaged mixture density ρ increases and this
slows down vp. The effective bulk modulus K∗ also increases and this speeds up vp. However,
for the air phase, since Ka is very small compared to Kw, K∗ will not change too much until Sw

increases to some value, i.e., Sw = 0.999, when K∗ increases rapidly. In other words, for large
values of saturation, generally, the fast wave velocity will increase rapidly corresponding to the
increase of saturation, which can be concluded from equation (33). Besides, the fast wave is
almost frequency independent. Only when the water saturation is very close to 1 there exist tiny
differences of the wave velocity for different frequencies.

10
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Figure 2: The fast, the second slow, and the third slow compressional wave velocities and atten-
uations versus water saturation
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The second and the third slow waves are much slower compared to the fast wave. The second
slow wave velocity vp2 decreases with increasing the saturation degree to the value 0.85, then
it increases very fast. The third slow wave velocity vp3 increases with increasing the saturation
degree to the value 0.75, then it decreases very fast. Both slow waves are frequency dependent
and the wave velocities increase with increasing the frequency. This fits to the results of Albers
[1] and can be understood if the different states of the fluids combinations are considered. Bao
et al. [3] summarized the different features for the four air phase patterns:

1. Wholly continuous stage (Sw < 0.55), where the moisture only exists in the smaller voids
and the water is not necessarily interconnected, the air phase is continuous in the soil mass
and connected to the atmosphere.

2. Partially continuous stage (0.55 ≤ Sw ≤ 0.85), where the moisture will gradually occupy
all the smaller pore passageways, the air phase is accumulating in the larger voids and it
is still connected to the atmosphere.

3. Internally continuous stage (0.85≤ Sw ≤ 0.90), where the water will begin to occupy the
larger pore passageways and seal off the boundary voids of the soil mass, the air phase is
not connected to the atmosphere, but inside the soil mass it remains to be connected.

4. Completely sealed stage (Sw > 0.90), where the water with occluded air bubbles occupy
all the pore passageways, the air phase will appear only in the form of occluded air bubbles
suspended in and moving with the water.

Based on these considerations it is clear why there is a turning point for both phase velocities.
The attenuation of the fast wave is extremely small and may be neglected. This is the reason

that the fast wave is always easy to detect. On the other hand, the attenuation of the two slow
waves is very large, especially for the third slow wave, the value can be as high as 7× 104 1/m.
The two slow waves are highly damped caused by the viscous interaction of the fluids with the
solid and the suction effect. The attenuation of all the three waves is frequency dependent and
the attenuation becomes higher with increasing the frequency.

After controlling the wave behavior and with this in principle the model, next, the displace-
ment and the pore pressure are studied. The time domain results are calculated by using the
convolution quadrature method as mentioned before by choosing the time step size to ∆t =
1×10−5 s. Assuming the values S0 = 1 N/m2 and `= 10m the displacement at the top of the col-
umn (y = `) are calculated and displayed in Figure 3 for different saturation degrees versus time.
For the nearly saturated case Sw = 0.9999, the result coincides well with that of the saturated
case [22]. For smaller water saturations, larger displacements and slower wave velocities are
observed. It is also clear that no matter whether Sw is 0.5 or 0.9, the displacements and the wave
velocities are nearly the same because the effective bulk modulus will not change too much for
this range of the water saturation.

Similar results are found for the pore water pressure. In Figure 4, it is plotted versus time at
the bottom of the column (y = 0) under the same stress boundary condition as above. The pore
water pressure of the nearly saturated case (Sw = 0.9999) is very close to that of the saturated
case, and the value is about 1.5 times larger than that created by the static Skempton effect.
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Figure 3: Displacement u(t,y = `) versus time for different water saturation
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Figure 4: Pore water pressure pw(t,y = 0) versus time for different water saturation
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Figure 5: Pore air pressure pa(t,y = 0) versus time for different water saturation

However, for smaller water saturations, the pore water pressure is very low (see the zoom in
Figure 4).

The pore air pressure has much smaller values as displayed in Figure 5. Clearly, the smallest
value of the pore air pressure is given for the nearly saturated case. By decreasing the saturation
degree the pore air pressure is firstly increase and then decrease. It should be remarked that the
oscillations at the jumps in the pressure solutions are numerical effects. They can not be avoided
but changed by the time step size and the chosen multistep method.

In the figures shown above, it is impossible to detect the two slow waves due to the high
attenuation. This can be overcome by reducing the viscosity artificially, i.e., two arbitrarily
large permeabilities, κw = 1.0×103 m4/Ns and κa = 1.0×103 m4/Ns are chosen in the calculation.
Further, because of the higher wave speed of the fast compressional wave several reflections
would disturb the figure before the slow waves are visible. That is why an "infinite" column
with a length `= 1000m is set and the pressures are observed thirty meters below the excitation
point. The water saturation is set to Sw = 0.99 in the calculation.

As shown in Figure 6 and 7, the pore water pressure has two step jumps while the pore air
pressure has three. This phenomenon can be rationalized as follows. For the pore water pressure,
the first jump is the arrival of the fast wave. The second slow wave, arriving at a later time, is of
negative amplitude and cancels the fast wave. However, the third slow wave can not be detected.
For the pore air pressure, the fast wave and the second slow wave arrive at the same time as the
waves for the pore water pressure. The difference is that the second slow wave is of positive
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Figure 6: Pore water pressure pw versus time for different κw and κa
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Figure 7: Pore air pressure pa(y = 970m) versus time for different κw and κa
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amplitude and enlarges the fast wave. The third slow wave arriving at an even later time, is also
of positive amplitude and keeps enlarging the overlapped waves.

As mentioned above, when calculating with the real permeabilities, for both the pore water
and the pore air pressure, the slow waves are rapidly dissipated such that they have no effect
when they arrive at the observation point. Therefore, only the arrival of the fast wave can be
observed in experiments. Besides, the amplitude of the pore water pressure is slightly affected by
changing the permeability. For the pore air pressure this is true only for the fast compressional
wave whereas the amplitudes of the slow waves are strongly increasing with increasing the
permeability.

Summarizing, there exist three compressional waves, however, for most natural materials the
permeabilities may never become such large numbers that the slow compressional waves are
visible.

5 Conclusions

Based on the theory of mixtures, an analytical solution in the Laplace domain for a partially
saturated poroelastic one dimensional column has been deduced. The time domain solutions
are obtained by with the convolution quadrature method. The solution of the fast wave veloc-
ity versus the water saturation coincides well with Biot-Gassmann’s prediction and, hence, with
Murphy’s experiments (Massillon sandstone). The fast wave velocity will decrease with increas-
ing the water saturation until the water saturation is very close to 1, then it will increase rapidly.
Both of the two slow wave velocities have a turning point when the saturation degree is around
0.8 (0.85 for the second slow wave, 0.75 for the third slow wave), which reflect the different
features for the fluid phase patterns. The attenuation of the fast wave is very small, while that of
the two slow waves is very large, especially, that of the third slow wave. For the nearly saturated
case, the partially saturated solution come close to the saturated solution. When decreasing the
water saturation, the displacements become much larger, the pore water pressure decrease to
very small values, and the pore air pressure first increase and then decrease. By assuming very
large permeabilities of the fluids, the second and the third slow waves are observed with regard
to the pore pressure. The third slow wave can only be observed in the pore air pressure result.
For the realistic permeabilities of Massillion sandstone the two slow waves are highly damped
and not visible in the results.

A Abreviations

In section 3, the following abbreviations are used:

B1 = K +
4
3

G B2 = ρ−βSwρw− γSaρa B3 = (α−β)Sw B4 = (α− γ)Sa

B5 = ζSwwSw +
n

Kw
Sw−Su B6 =

βSw

ρw
B7 = ζSaaSw +Su

B8 = ζSwwSa +Su B9 = ζSaaSa +
n

Ka
Sa−Su B10 =

γSa

ρa
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C1 = B1B6B10

C2 =−(B1B5B10 +B1B6B9 +B2B6B10 +B2
3B10 +B2

4B6)

C3 = B1(B5B9−B7B8)+B2(B5B10 +B6B9)−B3B4(B7 +B8)+B2
3B9 +B2

4B5

C4 = B2(B7B8−B5B9)

N1 =−
C2

3C1
N2 =

3
√

2
N3

N3 =
3

√
−2C3

2 +9C1C2C3−27C2
1C4 +

√
4(−C2

2 +3C1C3)3 +(−2C3
2 +9C1C2C3−27C2

1C4)2

B Analytical solutions for a 1d partially saturated poroelastic
column

For the water pressure boundary condition (û(y = 0) = 0, σ̂(y = `) = 0, p̂w(y = `) = Pw, p̂a(y =
`) = 0):

û =
Pw

Ms

3

∑
i=1

[(
αSw

K +4/3G
ti + pi

)
eλis(y−`)− e−λis(y+`)

1+ e−2λis`

]
(34a)

p̂w =
Pw

M

3

∑
i=1

[
ai

(
αSw

K +4/3G
ti + pi

)
eλis(y−`)+ e−λis(y+`)

1+ e−2λis`

]
(34b)

p̂a =
Pw

M

3

∑
i=1

[
bi

(
αSw

K +4/3G
ti + pi

)
eλis(y−`)+ e−λis(y+`)

1+ e−2λis`

]
, (34c)

where p1 = b2λ3−b3λ2, p2 = b1λ3−b3λ1, p3 = b2λ1−b1λ2.
For the air pressure boundary condition (û(y = 0) = 0, σ̂(y = `) = 0, p̂w(y = `) = 0, p̂a(y = `) =
Pa):

û =
Pa

0
Ms

3

∑
i=1

[(
αSa

K +4/3G
ti +qi

)
eλis(y−`)− e−λis(y+`)

1+ e−2λis`

]
(35a)

p̂w =
Pa

0
M

3

∑
i=1

[
ai

(
αSa

K +4/3G
ti +qi

)
eλis(y−`)+ e−λis(y+`)

1+ e−2λis`

]
(35b)

p̂a =
Pa

0
M

3

∑
i=1

[
bi

(
αSa

K +4/3G
ti +qi

)
eλis(y−`)+ e−λis(y+`)

1+ e−2λis`

]
, (35c)

where q1 = a3λ2−a2λ3, q2 = a3λ1−a1λ3, q3 = a1λ2−a2λ1.
For the displacement boundary condition (û(y = 0) =U0, σ̂(y = `) = 0, p̂w(y = `) = 0, p̂a(y =
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`) = 0):

û =
U0

N

3

∑
i=1

[
(eiρw + fiρa +giti)

eλis(y−2`)+ e−λisy

1+ e−2λis`

]
(36a)

p̂w =
U0

N

3

∑
i=1

[
(eiρw + fiρa +giti)ais

eλis(y−2`)− e−λisy

1+ e−2λis`

]
(36b)

p̂a =
U0

N

3

∑
i=1

[
(eiρw + fiρa +giti)bis

eλis(y−2`)− e−λisy

1+ e−2λis`

]
, (36c)

where e1 = b3λ3−b2λ2, e2 = b1λ1−b3λ3, e3 = b2λ2−b1λ1, f1 = a2λ2−a3λ3, f2 = a3λ3−aaλ1,
f3 = a1λ1−a2λ2, g1 = λ2λ3, g2 = λ1λ3, g3 = λ1λ2, N = λ2λ3t1 +λ1λ3t2 +λ1λ2t3.
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