

THERMAL ENERGY STORAGE FOR THERMAL MANAGEMENT IN E-MOBILITY

Georg Engel, Markus Hinteregger, Gregor Gregorcic

AEE - Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, AUSTRIA

Table of Contents

- Boundary conditions
- Basics of sorptive heating & cooling
- Component design
- Experimental results
- Simulation results
- Conclusion

source: carnorama.com

Motivation and Background

Issue:

- Li-ion batteries require narrow temperature window
- Improper operating conditions limit power and lifetime

Approach:

 Thermal management of batteries based on compact thermal energy storage

Austrian Flagship Project Tes4seT (2014-2018): "Thermal Energy Storage for Sustainable Energy Systems"

- 5 Development lines for thermal storage applied in:
- **Mobility**
- **Buildings**
- Industry

Boundary Conditions

(A) Cool during charge:

- 900 W thermal losses / 45 min
- Keep battery below 50°C

(B) Cool during drive:

- 300 W thermal losses / 80 min
- Keep battery below 50°C

(C) Preheat in winter:

- Ambient temperature: -15°C
- Preheat battery to +5°C

(D) Regenerate thermal storage:

- Use waste heat if possible (ICE)
- Otherwise regenerate using plug-in

sources: abb.com; motortrend.com; insideevs.com, pngall.com

Schematics: Thermochemical Heat Storage

source: ECN

Schematics: Sorptive Heating / Cooling

Components: Evaporator/Condenser

Flat fin HX

- Dedicated test rig, PhD thesis
- Up to 2.5 kW cooling power (stable)

25

Components: Sorption Reactor Design

- High power/energy requires dedicated HX design
- 2.5 kg SAPO₃₄ (Aqsoa Z02)
- Currently assessed in test rig
 (1) Finned HX coated with adsorbent (Mitsubishi Ihs.)

AEE INTEC

(2) To be filled with granules

(3) Direct crystallization (Fahrenheit/SorTech rhs.)

source: Mitsubishi

AEE - INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

source: Fahrenheit Georg Engel, confiidential | 14.12.2017

System: Assembly of thermal storage and test rig

- Rectangular vessel: FEM
- Assembly of storage and test rig
- Preliminary experimental results available

Experimental results: Compare 3 adsorber Discharge for cooling in summer

	SAPO-34 [kg]	Ads. volume¹ [l]	Ads. weight ¹ [kg]	Power average [W]	Total energy [Wh]
Empty Mitsubishi	2.5	(15.7) *	(9.8) *	958	415
Filled Mitsubishi	3.3	(15.7) *	(10.8) *	1067	549
Fahrenheit	2.5	15.4	15.5	482	337

¹incl. vessel, ^{*}estimate for further developments

www.aee-intec.at

AEE INTEC

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

Experimental results: Filled Mitsubishi Discharge for cooling in summer

- Peak cooling power:
- Window condition:
- Length of window:
- Adsorbed water mass in window:
- Total extracted (cold) energy in window: 0.55 kWh
- Average cooling power in window:

2 kW P_cold > 0.2 kW 31 min 0.775 kg w: 0.55 kWh 1.1 kW

Experimental results: Filled Mitsubishi Discharge for heating in winter

3

2

1

0

-1

-2

07:10

Qdot ec(hx)[kW]

Qdot ec(m)[kW]

Qdot HZ sorp[-]

07:15

Qdot_sorp(hx)[kW]

Qdot sorp(m)[kW]

Qdot(hx) mean[kW](<0.2)

07:20

07:25

- Initial temperature:
- Peak heating power:

10°C 2.3 kW

07:30

Time

07:35

07:40

07:45

- Total extracted (heat) energy in window: 0.68 kWh
- Average heating power in window: 1.35 kW
- TCM + PCM (water/ice): Evaporate w/out heat supply, at 0°C exploit cristallization enthalpy for evaporation
- Heat of adsorber up to 20°C observed

System simulation: Overview Simulink master

- Thermal storage (FMU) coupled to: Battery, combustion engine, cabin, cooler, thermostat
- Static driving profile
- Work in progress

Simulation: Preliminary results "Battery cooling during drive"

Comparison of the cooling power requirement of the battery at 35 ° C ambient temperature. The battery is loaded with 80% of the energy requirement in the WLTC driving cycle by the electric drive.

• T_{amb}=35°C

AEE INTEC

- T_{batt}=36°C
- WLTC (Driving cycle)

Heat quantity intake in the evaporator of the adsorptive storage tank:

• E_{thst} = 0.32kWh

Thermal cooling power requirement after 1200s:

- Without storage: 0.43kWh
- With storage: 0.17kWh
- Energy savings: 0.26kWh = 60%

Georg Engel, confiidential | 14.12.2017

Discussion: System KPIs and scaling

- Using light-weight vessel with support from HX
- Storage system size estimate: 20 liters
- Storage system weight estimate: (short term: 40 kg) mid term: 20 kg

KPIs	per volume	per weight
Cooling energy density	27 Wh/I	27 Wh/kg
Cooling power density	55 W/I	55 W/kg
Heating energy density	34 Wh/I	34 Wh/kg
Heating power density	68 W/I	68 W/kg

¹ at default BCs., and with the scaled requirement P>10 W/kg

Conclusion

www.aee-intec.at

- Objective: Development of compact thermal energy storage for thermal management of the battery in a vehicle
- Development:
 - Material selection, component & system design
- Storage system assessed in experiment:
 - cooling: 27 Wh/kg(/l) resp. 55 W/kg(/l)
 - heating: 34 Wh/kg(/l) resp. 68 W/kg(/l)
- Preliminary simulation results:
 - 60% energy savings for battery cooling within first 20 minutes of driving
- Outlook:
 - Comprehensive analysis and Hardware-in-the-loop

Thank you for your Attention