

DIFFERENCES IN PERCEPTION AMONG EXPERIENCED AND NON-EXPERIENCED ELECTRICAL VEHICLE USERS IN THE AGRICULTURAL SECTOR

15. Symposium Energieinnovation 2018

Claudia MAIR Martina ZIMEK

Agenda

- Research gap
- Method
- Results: the perception of attributes regarding agricultural Electrical Vehicles (EVs)
- Summary and Conclusion
- Policy implications

Introduction

- Impact of climate change challenges for the agricultural sector too
- Agricultural sector: current energy and carbon intensity is far beyond sustainable levels (Caetano et al., 2017)
- E-mobility:
 - significant advances over the past years
 - "just" one item in a complex puzzle (Ajanovic and Haas, 2016) ... <u>but</u> ...
 - local air quality improved
 - reduction in GHG emissions

Research Gap

Institute of Systems Sciences, Innovation & Sustainability Research EnInnov2018 / Mair & Zimek / 14^{th} Feb. 2018

Method (1)

- Survey instrument and data collection:
 - quantitative online survey with standardized questionnaire
 - pre-test on ten people
 - final questionnaire: introduction, general questions, screening questions, socio-demographic questions, control questions
- Definition of attributes
 - choice of attributes: comprehensive literature review

Method (2)

Attributes of agricultural EVs

Institute of Systems Sciences, Innovation & Sustainability Research EnInnov2018 / Mair & Zimek / 14th Feb. 2018

Method (3)

- Sampling and evaluation procedure
 - **2 surveys with 2 samplings** (participants and nonparticipants of EV project of Chamber of Agriculture Styria)
 - **334 respondents** (22 participants; 312 non-participants)
 - 101 respondents: experienced e-mobility farmers
 - 30 respondents: owned an EV
 - 71 respondents: did not own an EV
 - 233 respondents: unexperienced e-mobility farmers
 - Data analysis: SPSS
 - Data mapped on importance-satisfaction matrix

Results (1) - demographic

Experience in e-mobility										
Tota	al in posse	in possession of		erience in	no experience in e-mobility					
	an e-vehicle		e-	mobility						
N=3	34 9	%	21 %		70 %					
Age										
Tota	al 18-35	years	36	-53 years	<53 years					
	35 % exp	erienced	50 % experienced		16 % experienced					
N=3	34 23 % unex	perienced	50 % unexperienced		27 % unexperienced					
Busi	iness Type									
Tota	al livestock farm		wineries and fruit arable farms		others					
N=3	34 58%		growers 20%	51%	17%					
	weak negative but sign correlation with respe- and e-mobility experie	nificant ct to age ence	a e C	arable farmers almost no EV experience; significant and strong correlation						

Institute of Systems Sciences, Innovation & Sustainability Research

EnInnov2018 / Mair & Zimek / 14th Feb. 2018

Results (2) - demographic

Operation type of the business										
Total	conventional farming organic farming									
N=334	779	6			33%					
Energy generatio	'n									
Total	battery storage	photovoltaic	wind- or	other source of		none of this applies				
		system	hydropower	power generation						
N=334	3%	49%	2%	1%		48%				
Special farm features										
Total	farm-gate sale		guest beds		none of this applies					
N=334	31%	18%			59%					
Technical affinity	,									
Total	very positive	positive	partly	negative		very negative				
N=334	52%	43%	5%	>1%		>1%				
experienced have more po attitude towa technologies	experienced EV users have more positive attitude towards new technologies		highly significant result between photovoltaic installation and EV experience			farmers who sell directly from farms are more likely to have EV experience				
9 Institute of Systems Sciences, Innovation & Sustainability Research EnInnov2018 / Mair & Zimek / 14 th Feb. 2018										

Perception of Attributes (1)

Most important attributes of agricultural EVs (following table)

Institute of Systems Sciences, Innovation & Sustainability Research EnInnov2018 / Mair & Zimek / 14th Feb. 2018

	Total		Experienced		Unexperienced		Asymptotic
AgriculturalEVs	Share		Share			Share	Significance
	Rank	[%]	Rank	[%]	Rank	[%]	(2-sided)
Battery recharge time	6	23	9	11	5	29	0.000
Self-sufficient power	1	52	1	65	1	46	0.001
Range	3	41	3	36	2	43	0.214
Environmental friendliness	5	25	4	30	7	23	0.177
Image support	12	5	10	10	13	3	0.008
Public charging station	13	5	13	3	12	6	0.305
Private charging station	4	29	5	29	4	30	0.868
Energy consumption	10	11	11	7	9	12	0.135
General driving performance	11	9	12	5	11	11	0.073
Hilly area driving performance	9	12	8	13	10	12	0.74
Driving performance when loaded	7	23	6	19	6	25	0.226
Transportation capability of people	8	19	7	15	8	21	0.161
Transportation capability of goods	2	42	2	53	3	37	0.005

Institute of Systems Sciences, Innovation & Sustainability Research

EnInnov2018 / Mair & Zimek / 14th Feb. 2018

Perception of Attributes (2)

1) Importance and performance of attributes of agricultural Evs (following table)

2) Importance-Satisfaction-Matrix for agricultural EVs including standard error crosses (n=290) (following figure)

Importance and Performance

		Importan	ce	Performance			
Agricultural EVs	Mean	Mean		Mean	Mean		
	Exp.	Unexp.	p-value	Exp.	Unexp.	p-value	
Battery recharge time	1.76	1.764	0.966	2.363	2.483	0.360	
Self-sufficient power	1.47	1.765	0.002	1.598	1.875	0.016	
Range	1.83	1.671	0.102	2.570	2.607	0.798	
Environmental friendliness	1.61	1.820	0.031	1.631	1.755	0.198	
Image support	2.37	2.792	0.000	1.916	2.283	0.000	
Public charging station	2.62	2.397	0.102	2.756	2.778	0.875	
Private charging station	1.33	1.552	0.004	1.398	1.825	0.000	
Energy consumption	1.879	1.855	0.807	2.0	2.256	0.029	
General driving performance	2.06	2.239	0.052	2.289	2.492	0.045	
Hilly area driving performance	2.0	2.096	0.355	2.316	2.540	0.073	
Driving performance when loaded	1.85	1.982	0.168	2.342	2.483	0.253	
Transportation capability of people	2.245	2.314	0.532	2.714	2.595	0.343	
Transportation capability of goods	1.6	1.778	0.067	2.169	2.355	0.123	

Sis

Institute of Systems Sciences, Innovation & Sustainability Research

EnInnov2018 / Mair & Zimek / 14th Feb. 2018

UN GRAZ

Institute of Systems Sciences, Innovation & Sustainability Research

EnInnov2018 / Mair & Zimek / 14th Feb. 2018

SiS

Summary and Conclusion

- Results: in line with previous studies
- All 13 attributes: rather important and satisfactory
- Barriers: "range", "recharge time" and availability of "public charging stations"
- Relatively more important / less satisfactory: "range" and "charging time"
- Importance: highly influenced by EV experience
- Performance/importance ratings most important: "image support", "environmental friendliness", "self-sufficient power use" and "private charging station"

Policy implications

- Important driver: production of electric energy and the infrastructure needed to charge EVs on the farm
 - providing <u>support</u>
- Farmers are clearly interested in EVs for agricultural purposes
 - implementation in the agricultural sector is likely to be <u>much</u> <u>easier</u> than elsewhere

THANK YOU FOR YOUR ATTENTION

Source: https://www.fotolia.com/tag/emobility

Institute of Systems Sciences, Innovation & Sustainability Research EnInnov2018 / Mair & Zimek / 14th Feb. 2018

Sis

Contact Details

Martina Zimek, BSc MSc

Institute of System Sciences, Innovation and Sustainability Research University of Graz Merangasse 18, 8010 Graz, Austria Phone: +43 (0)316 380 – 7330 Email: martina.zimek@uni-graz.at

Claudia Mair, BSc MSc

Institute of System Sciences, Innovation and Sustainability Research University of Graz Merangasse 18, 8010 Graz, Austria Phone: +43 (0)316 380 – 7346 Email: claudia.mair@uni-graz.at

Institute of Systems Sciences, Innovation & Sustainability Research EnInnov2018 / Mair & Zimek / 14th Feb. 2018

References

- Ajanovic, A., Haas, R., 2016. Dissemination of electric vehicles in urban areas: Major factors for success. Energy 115, 1451–1458. 10.1016/j.energy.2016.05.040.
- Caetano, N.S., Mata, T.M., Martins, A.A., Felgueiras, M.C., 2017. New Trends in Energy Production and Utilization. Energy Procedia 107, 7–14. 10.1016/j.egypro.2016.12.122.
- Ferreira, H.P., Fernandes, P.O., 2015. Identification of critical success factors that maximise customers' satisfaction: multivariate analysis. Tourism & Management Studies 11 (1).
- Weinfurter, S., Hansen, E.N., 1999. Softwood lumber quality requirements: Examining the supplier/buyer perception gap. Wood and Fiber Science 31 (1), 83–94.
- World Economic Forum, 2018. The Global Risks Report 2018, 13th Edition, Geneva, Switzerland.

