

Ein vereinfachtes Systemmodell des Energieversorgungssystems Deutschlands

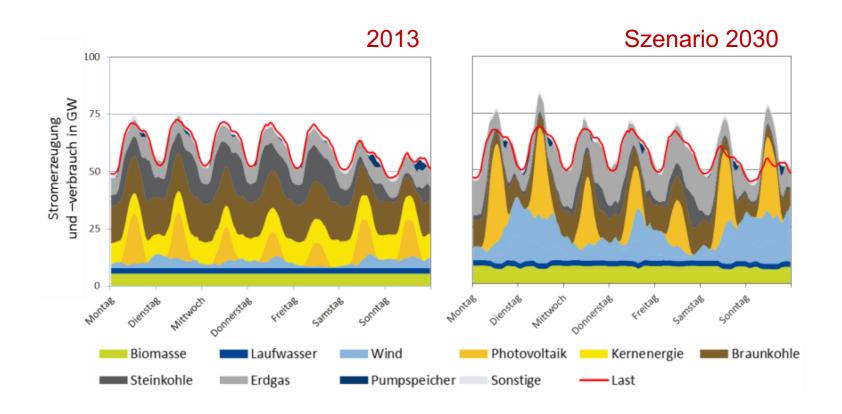
zur Bewertung von chemischen Speichern und Sektorkopplungstechnologien

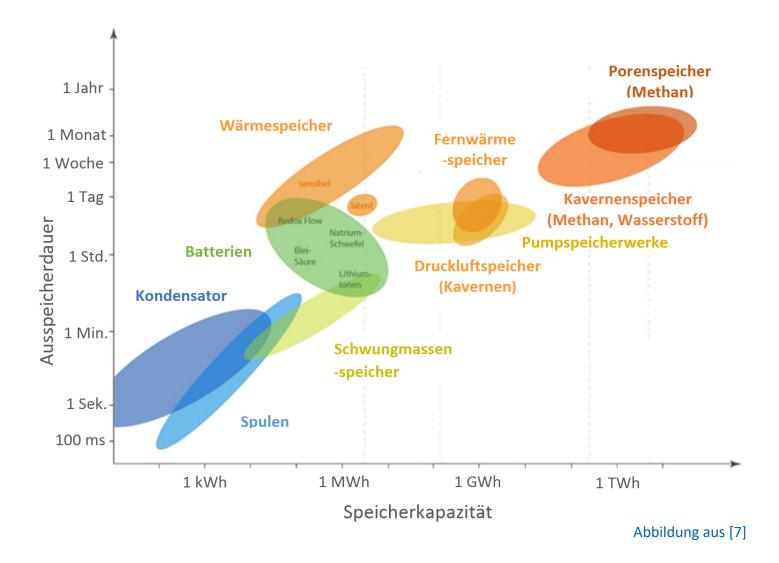
<u>Dipl.-Ing. K. Boblenz</u>, V. Frank (MSc.), Dr. rer. nat. F. Baitalow, Prof. Dr.-Ing. B. Meyer Institut für Energieverfahrenstechnik und Chemieingenieurwesen (IEC)
TU Bergakademie Freiberg (TUBAF)

15. Symposium Energieinnovation

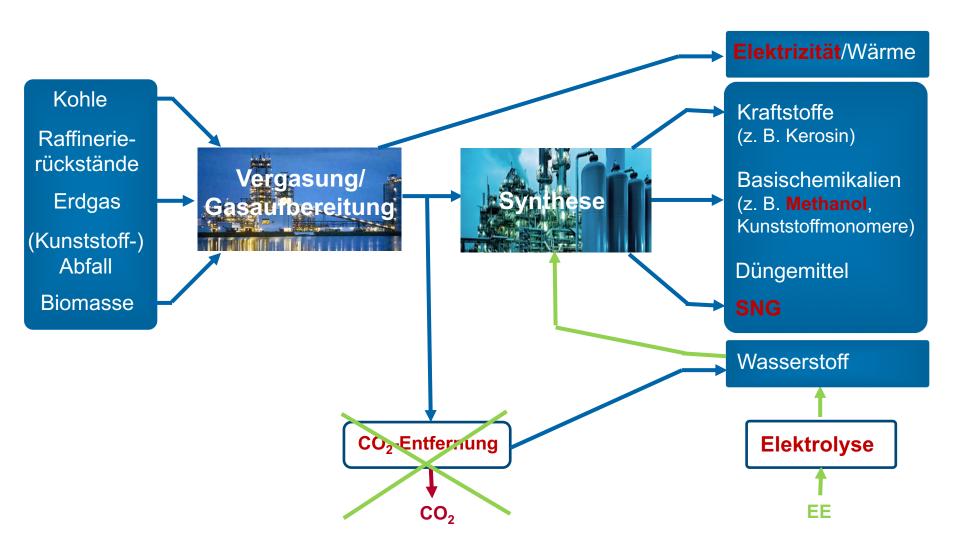
Graz, 16. Februar 2018

Motivation – Herausforderungen der Energiewende

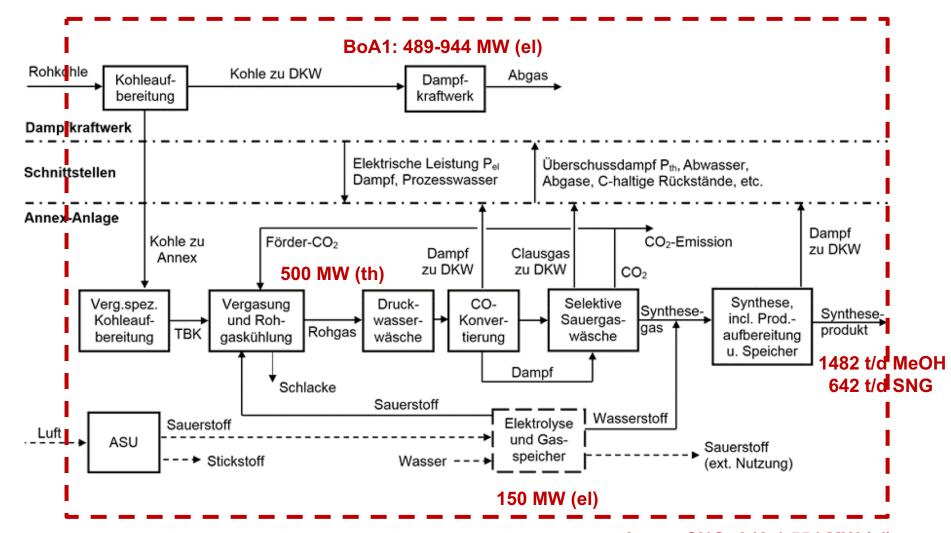



Abbildung nach [3], geändert

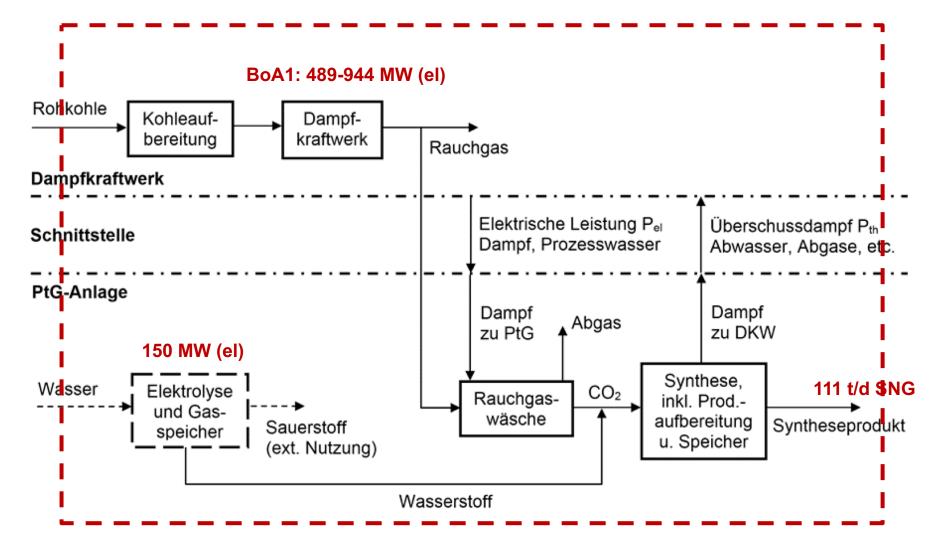
Motivation – Herausforderungen der Energiewende



Polygeneration-Kraftwerke mit Stromspeicherung



Polygeneration-Annex-Konzept



Annex-SNG: 342-1.554 MW (el)

Annex-MeOH: 324-1.545 MW (el)

PtG-SNG: 340-1.545 MW (el)

Erstellung und Anwendung des Systemmodells

Modellvalidierung: Abgleich historischer Daten mit den Modellergebnissen

Konzeption des Systemmodells

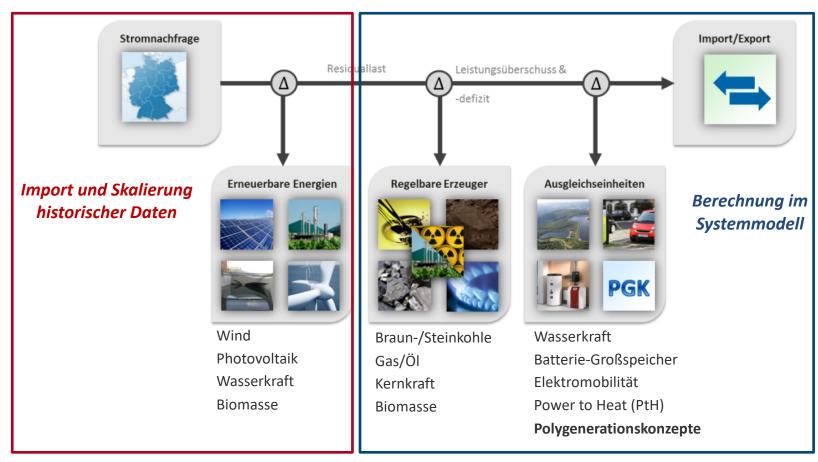


Abbildung nach [3], geändert

Betrachtete Szenarien und Datenbasis

	Referenzjahr 2015	Szenario 2030	Szenario 2030-Poly	
Stromverbrauch	Daten von ENTSO-E	Skalierung der Daten von 2015		
Erneuerbare Energien	Daten von ENTSO-E	Skalierung der Daten von 2015		
Kernenergie, Sonstige	Daten von Agora	Skalierung der Daten von 2015		
Regelbare Erzeuger	Braunkohle, Steinkohle, Erdgas	Biomasse, Braunkohl	e, Steinkohle, Erdgas	
Ausgleichseinheiten	Pumpspeicher			
		Batteriespeicher, Elektromobilität, Powert-to-Heat		
			PolygenerationkonzepteKlass. PolygenerationPolygeneration-AnnexPower-to-Gas	
Chemischer Speicher			SNG (Gasnetz), Methanol	
		Im- und Export		

Abbildung nach [3], geändert

1. Grenzkostenabhängige Merit Order

- Brennstoffkosten, CO₂-Pönale
- Blockscharfe Betrachtung durch integrierte Kraftwerksliste
- Berücksichtigung von An- und Abfahrkosten

2. Charakterisierung der Stromerzeuger:

- hist. Erzeugungsdaten (Erneuerbare)
- Beanspruchbarkeiten
- installierte Nettoleistung
- Mindestleistung
- relativer Leistungsgradient

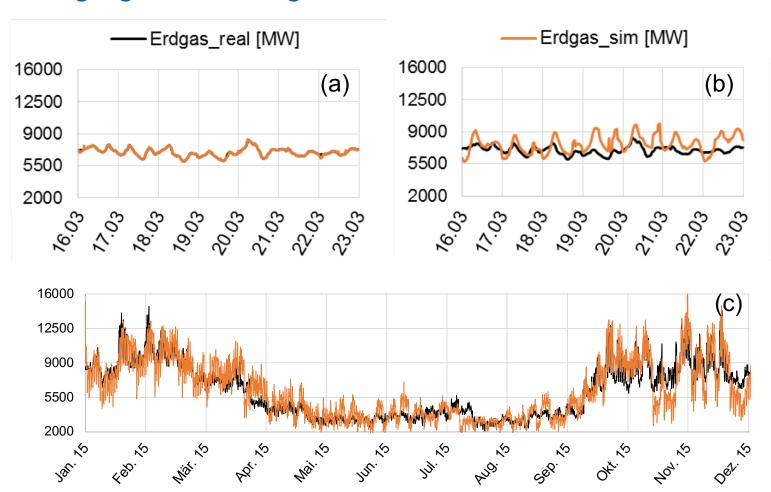
3. Charakterisierung der Ausgleichseinheiten:

- Pumpspeicher (Speicherkapazität, installierte Nettoleistung,)
- Power to Heat (installierte Nettoleistung gemäß Potenzialabschätzung)
- Elektromobilität (Fahrzeuganzahl, Verfügbarkeit, Ladeleistung pro Fahrzeug)
- Polygeneration-Konzepte (Korrelationen aus quasikontinuierlicher Bilanzierung)

Quasikontinuierliche Bilanzierung der Polygeneration-Konzepte

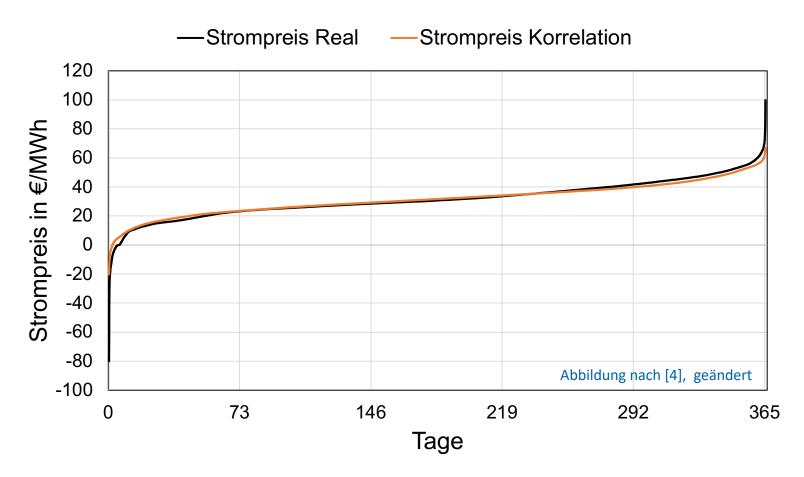
Bilanzierung einzelner Anlagenteile in Abhängigkeit vom Netzzustand

Netzzustand:	"Leistungsüberschuss"		"Leistungsdefizit"
Betriebsmodus:	"Speicherbetrieb"	"Normalbetrieb"	"Rückverstromung"
P _{el, Dampfkraftwerk}	P _{min} -P _{max}	P_{max}	P _{max}
P _{ch, Speichermedium}	konst.	konst.	konst.
P _{el, Eigenbedarf}	konst.	konst.	konst.
P _{el, Spitzenlast}	0	0	P _{min} -P _{max}
P _{el, LZA (<0)}	(P _{max})	$(P_{max}-P_{min})$	(P _{min})
Pol Floktrolyso (<0)	P _{max} -P _{min}	0	0



Ausgewählte Validierungsergebnisse für das Referenzjahr 2015

Erzeugungskurven - Erdgas

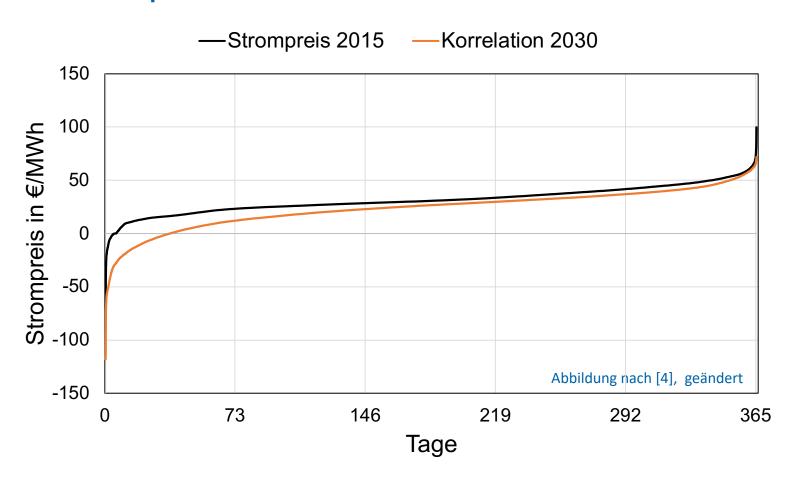


Ausgewählte Validierungsergebnisse für das Referenzjahr 2015

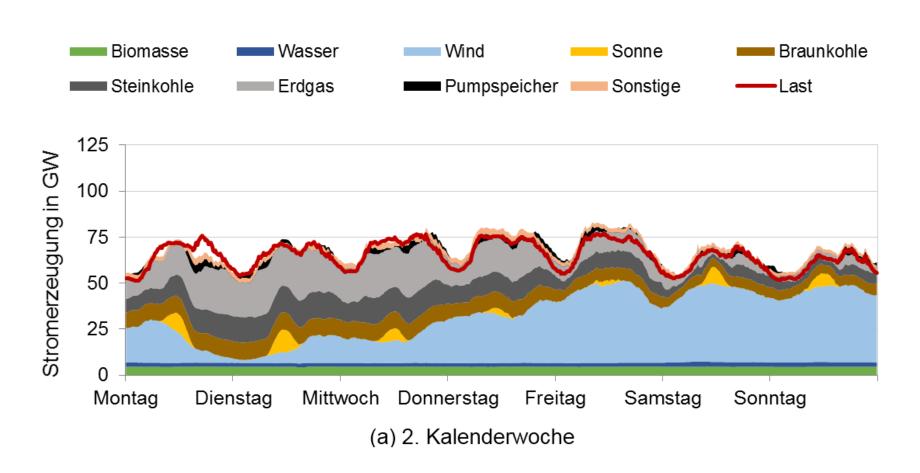
Strompreiskorrelation in Abhängigkeit von der Residuallast:

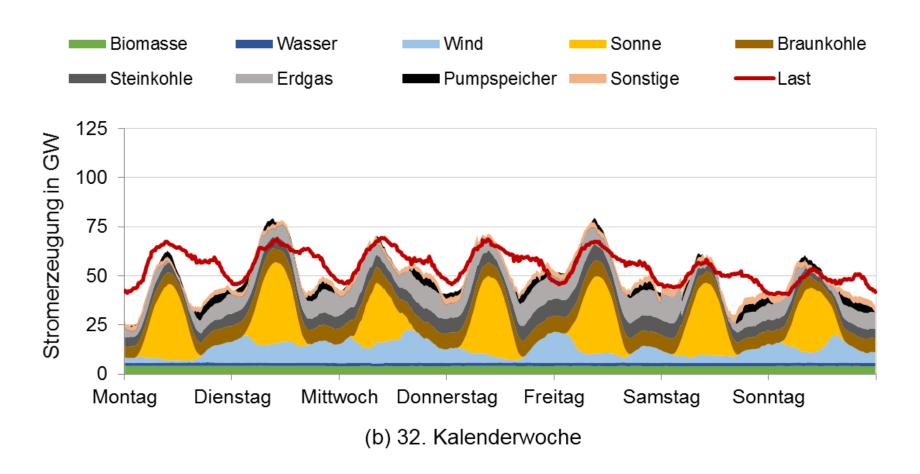
$$K_{Strom} = a \cdot (P_{res})^3 + b \cdot (P_{res})^2 + c \cdot P_{res} + d$$

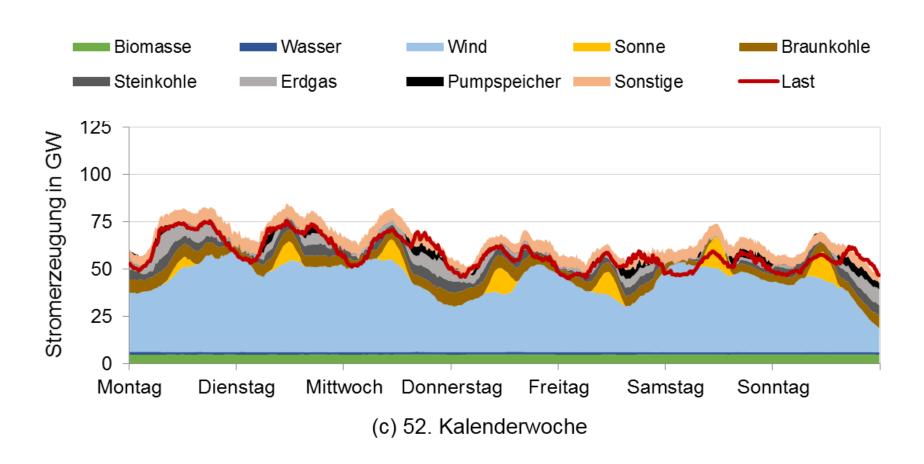
a = 0,0004247967, b = -0,0517134638, c = 2,980702627, d = -30,48109242



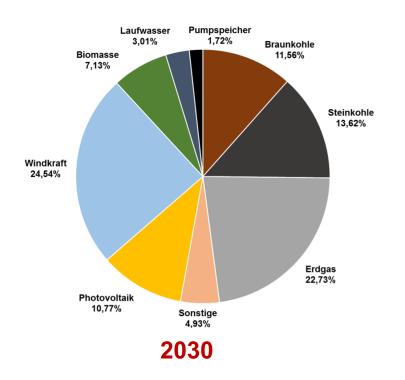
Simulationsergebnisse – Szenario 2030

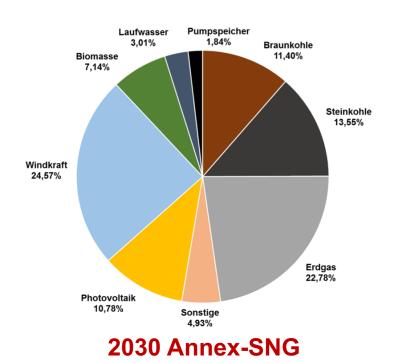

Börsenstrompreis


Stromerzeugung in einigen beispielhaften Wochen


Stromerzeugung in einigen beispielhaften Wochen

Stromerzeugung in einigen beispielhaften Wochen





Simulationsergebnisse - Polygeneration-Konzept Annex-SNG

- Speicherung von 0,07 TWh erneuerbarer Energie über Wasserelektrolyse
- Erzeugung und Einspeicherung von 3,02 TWh SNG
- Gesamtstromerzeugung des Polygeneration-Konzept von 6,14 TWh
- verminderte Erzeugung aus Braun- und Steinkohle: 0,98 bzw. -0,5 TWh
- Stärkung der Pumpspeicher- und Erdgaskraftwerke: +0,68 bzw. +0,09 TWh
- verminderte Im- und Exporte (Netzbelastung): -0,08 bzw. -0,07 TWh

Systemmodell der Elektroenergieversorgung Deutschlands

- Modellerstellung und –validierung erfolgt
- Grenzkostenabhängige Merit Order
- Strompreiskorrelation
- Berechnung von Zukunftszenarien möglich

Polygeneration-Konzepte

- bereits kleine installierte Vergaser- (500 MW) und Elektrolyseleistungen (150 MW) zeigen sichtbaren Einfluss im Gesamtsystem
- Verringerung der Kohleverstromung
- Stärkung der Pumpspeicher- und Gaskraftwerke

Ausblick

- Bewertung weiterer Polygeneration-Konzepte zur Kraftstoff- und Chemierohstofferzeugung
- Wirtschaftlichkeitsbetrachtungen unter systemdynamischen Bedingungen

Vielen Dank & Glück Auf!

Dipl.-Ing. Kristin Boblenz

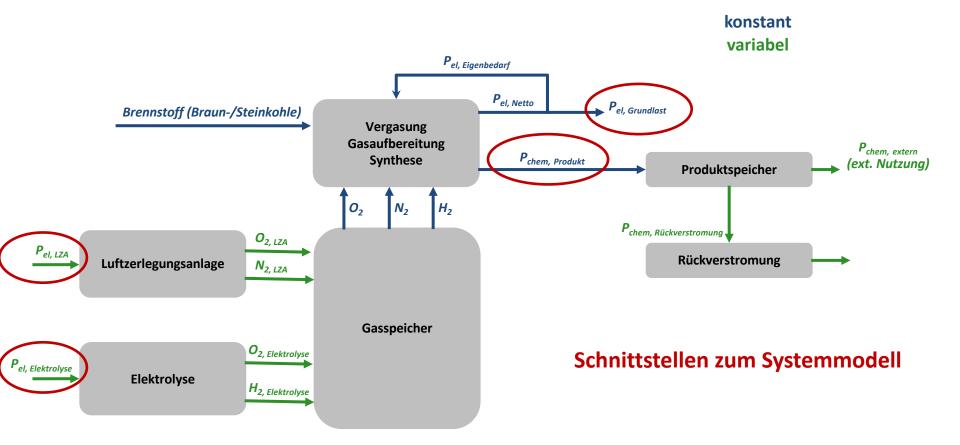
Institut für Energieverfahrenstechnik und Chemieingenieurwesen (IEC) TU Bergakademie Freiberg

Email: kristin.boblenz@iec.tu-freiberg.de

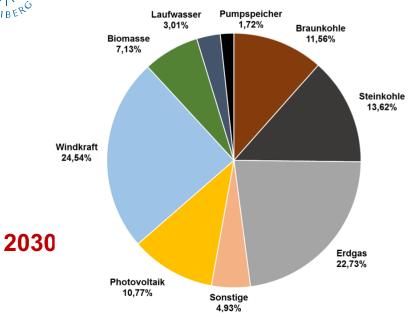
Tel: 0049 3731 39 4481

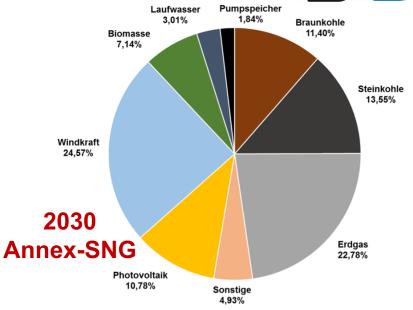
Gefördert durch:

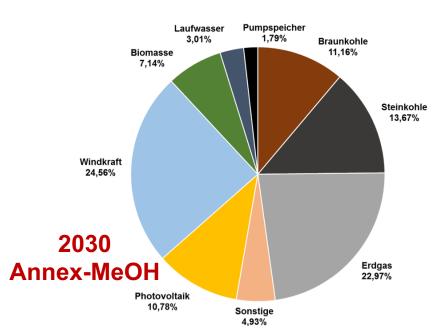
aufgrund eines Beschlusses des Deutschen Bundestages Die vorliegenden Erkenntnisse wurden im Rahmen der BMWi-geförderten (Förderkennzeichen Verbundvorhaben ..HotVeGasII" 0327773G), "HotVeGasIII" (Förderkennzeichen 0327773J) und einem Landesinnovationspromotionsstipendium des Landes Sachsen ermittelt. Die Autoren danken dem BMWi und den beteiligten Unternehmen sowie dem Land Sachsen und dem ESF für die finanzielle Unterstützung.

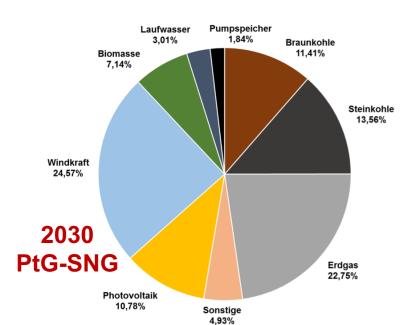

- [1] Boblenz K., Wolfersdorf C., Uebel K., Günther K., Reinmöller M., Guhl S. (2016). Abschlussbericht Verbundvorhaben HotVeGas II (Förderkennzeichen: 0327773G) Grundlegende Untersuchungen zur Entwicklung zukünftiger Hochtemperaturvergasungs- und -gasaufbereitungs-prozesse für dynamische Stromerzeugungs- und -speichertechnologien. TU Bergakademie Freiberg
- [2] BNetzA Bundesnetzagentur (2017). Netzentwicklungsplan Strom 2030, Version 2017, 1. Entwurf
- [3] Mädlow, A. (2015). Bewertung von Polygenerationskonzepten mit Stromspeicherung. Masterarbeit, TU Bergakademie Freiberg
- [4] Frank, V. (2015). Modellierung von Speicheroptionen zur Kopplung verschiedener Energieversorgungsnetze. Masterarbeit, TU Bergakademie Freiberg
- [5] Entso-E (2015). Production, Consumption, Exchange Package. Germany. https://www.entsoe.eu/db-query/country-packages/production-consumption-exchange-package (letzter Zugriff am 08.03.17).
- [6] Agora Energiewende. Agorameter. https://www.agora-energiewende.de/de/themen /-agothem-/Produkt/produkt/76/Agorameter/ (letzter Zugriff am 08.03.17).
- [7] Sterner M., S. I. (2014). Energiespeicher Bedarf, Technologien, Integration. Springer Berlin Heidelberg, Berlin, Heidelberg.

Definition Polygeneration-Kraftwerk






Simulationsergebnisse – Stromerzeugungsmix 2030

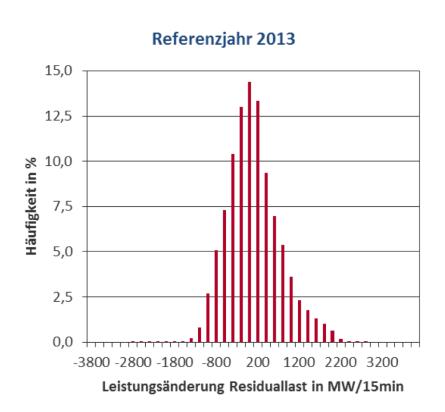


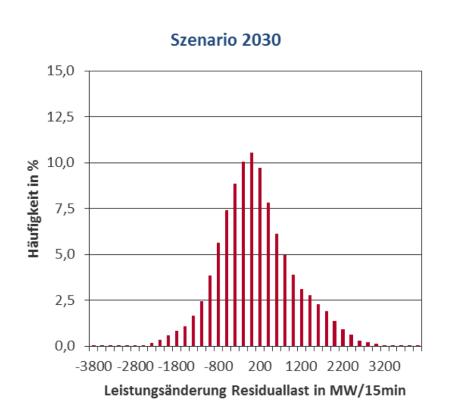
Simulationsergebnisse – 2030 mit Polygenerationkonzepten

Szenario	2030		2030-Poly	
Konzept		Annex-SNG	Annex-MeOH	PtG-SNG
Stromnachfrage	-531,34	-531,34	-531,34	-531,34
Konventionelle Erzeuger	289,01	281,48	283,63	281,51
Kernenergie	0,00	0,00	0,00	0,00
Braunkohle	63,23	56,11	56,45	56,21
Steinkohle	74,50	74,00	74,73	74,07
Erdgas	124,34	124,43	125,51	124,29
Sonstige	26,94	26,94	26,94	26,94
Erneuerbaren Energien	248,56	248,56	248,56	248,56
Photovoltaik	58,90	58,90	58,90	58,90
Windkraft	134,20	134,20	134,20	134,20
Biomasse	39,00	39,00	39,00	39,00
Wasser	16,46	16,46	16,46	16,46
Saldo	6,23	-1,30	0,85	-1,27

Simulationsergebnisse – 2030 mit Polygenerationkonzepten

Szenario	2030		2030-Poly	
Konzept		Annex-SNG	Annex-MeOH	PtG-SNG
Defizit	-101,24	-107,97	-106,06	-107,91
Pumpspeicher	-9,39	-10,07	-9,79	-10,06
Großspeicherbatterien	-0,07	-0,06	-0,06	-0,06
Polygeneration-Anlage	-0,00	-6,14	-4,54	-6,13
Import	-91,78	-91,70	-91,67	-91,66
Überschuss	107,47	106,67	106,91	106,64
Pumpspeicher	10,69	11,39	11,11	11,36
Elektromobilität	8,21	6,73	7,24	6,73
Großspeicherbatterien	0,07	0,06	0,06	0,06
Polygeneration-Anlage		0,07	0,06	0,07
Power-to-Heat	0,02	0,01	0,01	0,01
Export	88,48	88,41	88,43	88,41
Saldo	6,23	-1,30	0,85	-1,27


	Stromerzeugung	SNG-/ MeOH-Produktion		Erdgasbezug	
	TWh	TWh	10 ³ t	TWh	10 ³ t
Annex-SNG	6,14	3,02	234,29	3,00	232,34
Annex-MeOH	4,54	3,00	542,71		
PtG-SNG	6,13	0,54	41,87	3,00	232,34


	Häufigkeit in St	tunden pro Jahr	Maximal auftretender	
	Einspeisung nicht möglich	Entnahme nicht möglich	Normvolumenstrom in 10 ³ m ³ /h	
Annex-SNG	2	9	1108	
PtG-SNG	1/4	0	1093	

Veränderung der Residuallast

Laboratory & Large-Scale Test Facilities at IEC

COORVED

PYMEC I&II

TOM-AC

KIVAN

Syngas-to-Fuel

HP-POX®

TUBAF Patente, Veröffentlichungen, Workshops & Konferenzen im Bereich Kohlenstoffkreislaufwirtschaft

Patente

DE 10 2007 006 981 84 2009.01.29 "Verfahren, Vergasungsreaktor und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck"

Deutsche Patentanmeldung Nr. 10 2016 210 350.4 "Vergasungsreaktor zur Erzeugung von Synthesegasen aus festen Vergasungsstoffen mit Hilfe sauerstoffhaltiger Vergasungsmittel"

Deutsche Patentanmeldung Nr. 10 2016 210 348.2 "Verfahren und Vorrichtung zur Nachoxidation von kohlenstoffhaltigen Vergasungsprodukten"

Veröffentlichungen

Towards a Closed Carbon Cycle (C³) & Achieving a Circular Economy for Carbonaceous Resources, Net zero emissions, resource efficiency and resource conservation through coupling of the energy, chemical and recycling sectors, Erdöl, Erdgas, Chemie, erscheint Mai 2017.

Schließung des Kohlenstoffkreislaufes durch Sektorkopplung, Chemie, Ingenieur, Technik, geplant für 2017.

Gasification Technologies for an Emissions Free Coal Utilization and Chemical Recycling, Coupling of the Energy, Chemical and Recycling Sectors towards a Closed Carbon Cycle, Fuel Processing Technology (Plenary Presentation at 2017 ICCS&T), geplant für 2017.

Workshops & Konferenzen

