

HOCHTEMPERATUR-WÄRMESPEICHER

Nina Hack, Simon Unz, Tobias Reich, Michael Beckmann

EnInnov 2018 in Graz, 14.02.2018-16.02.2018

Systematische Einordnung Wärmespeicher

Einteilung nach dem Prinzip des Speicherprozesses:

- Chemische
- Sorptive
- Latente
- Sensible

Einteilung nach Art des Wärmeeintrags und Wärmeaustrags

- Direkt: Wärmeträgermedium = Speichermedium
- Indirekt

Testmaterial: Wabenkörper aus Keramik

Material	(F) -Dichte [kg/m³] (W) -Masse [kg]	Kapazität c (F) -[J/(kg*K)] (W) - [kJ/K]	Oberfläche (F) - [m²/m³] (W) - [m²]	Wärmeleit- fähigkeit λ [W/(m*K)]	Speicherdichte bei Erwärmung auf 800 °C [MJ/m ³]
C130 (F)	2700	877	1090	2,1	669
C130 (W)	6,6	5,788	7,4		
C520 (F)	2000	810	1090	1,9	468
C520 (W)	5,0	4,050	7,4		

(F) ... Festkörper/Vollmaterial (W)... Wabenkörper

Versuchsanlage

TU Dresden, 16.02.2018

Nina Hack

Versuchsanlage

Versuchsbedingungen/Parametervariationen

Versuchsparameter	Variationsstufen	Experimentell untersuchte Parameterkombinationen	
Frequenz des Gebläses (Luftmassenstrom)	20 Hz (~ 40 kg/h) 29 Hz (~ 67 kg/h) 38 Hz (~ 92 kg/h)	600 °C / 20 Hz / 20 K/min (*) 600 °C / 29 Hz / 20 K/min 600 °C / 38 Hz / 20 K/min 800 °C / 29 Hz / 20 K/min 800 °C / 29 Hz / 30 K/min 800 °C / 29 Hz / 40 K/min 800 °C / 29 Hz / 50 K/min (*) als Beispiel vorgestellt	
Maximale Gas- Eintrittstemperatur (Zieltemperatur)	600 °C 800 °C		
Heizrate des Luftvorwärmers	20 K/min 30 K/min 40 K/min 50 K/min		

Messmethoden

TU Dresden, 16.02.2018

Ergebnisse – Beispielhafter Temperaturverlauf

Ergebnisse - Selbstentladung

Versuchszeit [h]

Ergebnisse - Materialstabilität

TU Dresden, 16.02.2018

Ergebnisse - Materialstabilität

TU Dresden, 16.02.2018

Anwendungsmöglichkeiten

Speicherketten:

- Strom-Wärme-Strom-Speicher: z.B. Thermopotentialspeicher
- Wärme-Wärme-Wärme-Speicher: z.B. Abwärmenutzung innerhalb industrieller Prozesse
- Strom-Wärme-Wärme-Speicher: zur Nutzung von Überschussstrom in industriellen Prozessen

Thermopotentialspeicher - Systemkette

 $\eta_{total} = \varepsilon_{HP} \cdot \eta_{HE} = \nu_{HP} \cdot \nu_{HE}$

Ideal thermodynamic cycle - assumptions:

- No heat losses
- Upper temperature from heat pump = upper temperature from heat engine
- Lower temperature from heat pump = lower temperature from heat engine
- → High efficiency potential under ideal conditions: only dependent from the Carnot-factors $v_{HP} \cdot v_{HE}$

TU Dresden, 16.02.2018

Nina Hack

Thermopotentialspeicher - Beladung

Fakultät Maschinenwesen Institut für Verfahrenstechnik und Umwelttechnik, Professur für Energieverfahrenstechnik

Thermopotentialspeicher - Entladung

Fakultät Maschinenwesen Institut für Verfahrenstechnik und Umwelttechnik, Professur für Energieverfahrenstechnik

Zusammenfassung

Einsatzbedingungen:

- Materialwahl: C520 ist besser
- Aufheizrate ohne Schädigung: 20K/min
- Einsatztemperatur: im Test 800°C, erwartbar sind über 1.000°C

Be-/Entladecharakteristik:

- Sehr gleichmäßige Entladung
- Bei Beladung sind Wärmeverlusteffekte an der Versuchsanlage deutlich
- Selbstentladung bei der Versuchsanlage durch ungünstige Oberflächen-zu-Volumenverhältnis sehr hoch

→ Die Versuchsdaten werden gerne f ür wissenschaftliche Zwecke zur Verf ügung gestellt!

Danksagung

Hiermit bedanken sich die Autoren recht herzlich beim Projektpartner Nagel Ingenieurbau GmbH Schwarze Pumpe.

Großer Dank gilt auch den Fördermittelgebern:

Europäische Union

Europa fördert Sachsen.

Diese Maßnahme wird mitfinanziert durch Steuermittel auf Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Misson sobofft Prijekor

»Wissen schafft Brücken.«

Nina.Hack@tu-dresden.de