

Determination of the energy conversion efficiencies of inverter-fed induction machines

Stefan Strauss

Einleitung

- Steigende Energiepreise und knappe Ressourcen
- Wirkungsgradbestimmung immer relevanter
- Anteil umrichtergespeister Asynchronmotoren zur Lösung von Antriebsaufgaben steigt ständig
- Einsatz von Umrichterspeisung verringert jedoch den Wirkungsgrad

Einleitung

- Auswirkungen Umrichterbetrieb auf Verluste von vielen Faktoren beeinflusst
 - Maschine
 - Umrichtertyp
 - Pulsfrequenz
- Wirkungsgradbestimmung von umrichtergespeisten Asynchronmaschinen somit schwierig
- In Normen Zusammenstellung von einheitlichen Verfahren zur Wirkungsgradbestimmung

Normen zur Wirkungsgradbestimmung Überblick

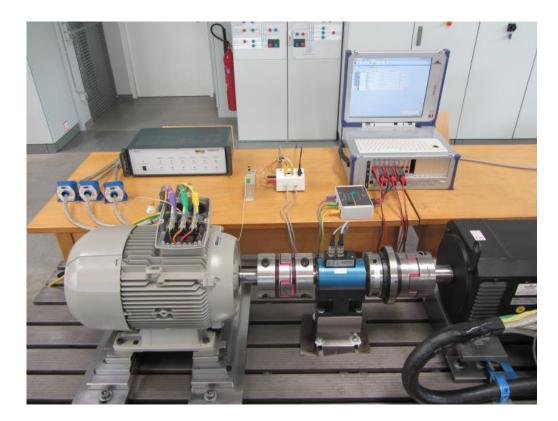
IEC 60034-2: spezielle Verfahren zur Wirkungsgradbestimmung

IEC 60034-2-1: spezielle Verfahren zur Wirkungsgradbestimmung bei sinusförmiger Versorgung

IEC 60034-2-3: spezielle Verfahren zur Wirkungsgradbestimmung bei Umrichterspeisung

Themen dieses Beitrages

- Ablauf zur Wirkungsgradbestimmung bei Umrichterspeisung gemäß IEC 60034-2-3
- Anwendbarkeit des Standards IEC 60034-2-1 zur Wirkungsgradbestimmung bei Umrichterbetrieb
- Analyse der Auswirkungen der Umrichterspeisung auf:
 - Einzelverluste
 - Wirkungsgrad
- Betrachtung der zusätzlichen harmonischen Verluste


Messaufbau

- Messungen an vier handelsüblichen 50Hz vierpoligen Asynchronmaschinen mit Kurzschlussläufern
 - 3, 7.5, 11 und 15kW
- Prüfstand bestehend aus 92kW Synchronmaschine als Belastungsmaschine und Asynchronmaschine als Prüfling
- Zwischen den Maschinen ist eine Drehmomentmesswelle
- Anspeisung durch variablen Laborspannung (0 600V) oder handelsüblichen 400V Industrieumrichter

Messaufbau

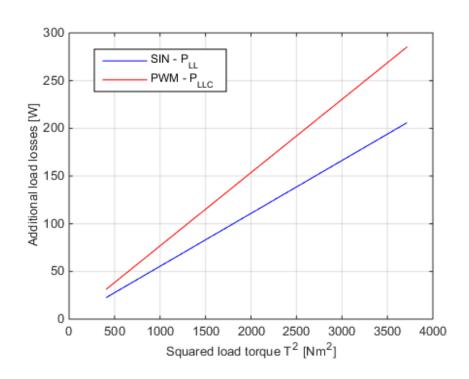
 Messsignale mit dem Transientenrekorder DEWE 5000 mit Abtastrate von 500kHz bei Umrichterbetrieb und 100kHz bei Netzbetrieb aufgenommen

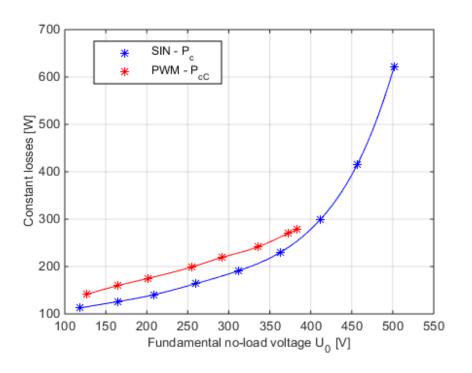
Wirkungsgradbestimmung IEC 60034-2-1

- Prüfungen bei Netzspeisung und Umrichterspeisung
 - Leerlaufprüfung zur Bestimmung von P_k, P_{fw} und P_{fe}
 - Belastungsprüfung zur Bestimmung von P_s und P_r
 - Bestimmung der lastabhängigen Zusatzverluste P_{LL}
- somit ist die Wirkungsgradbestimmung gemäß
 IEC 60034-2-1 für beide Versorgungsarten möglich
- Berechnung der Gesamtverluste f
 ür Netzversorgung P_{Tsin}

Wirkungsgradbestimmung IEC 60034-2-3

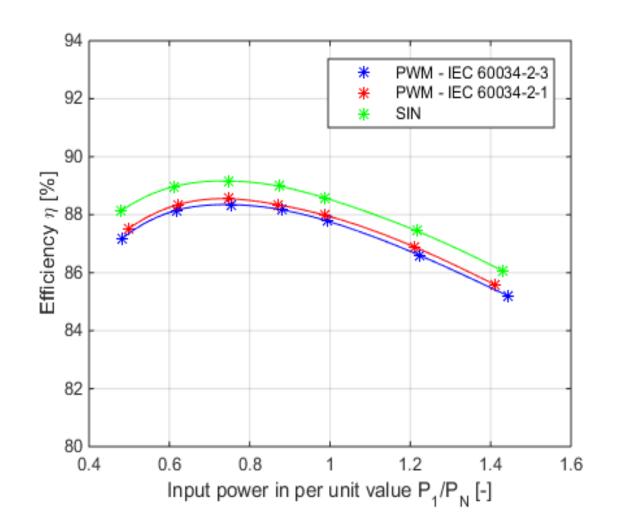
Prüfungen bei Umrichterspeisung


Stefan Strauss


- Leerlauf- sowie Belastungsprüfung
- Bestimmung der lastabhängigen Oberschwingungsverluste P_{HL-Load} aus der Differenz der lastabhängigen Zusatzverluste
- Bestimmung der konstanten Oberschwingungsverluste P_{HL-No-Load} aus der Differenz der konstanten Verluste
- Bestimmung der gesamten Oberschwingungsverluste P_{HL}
- Bestimmung der Gesamtverluste bei Umrichterbetrieb P_{TC}
- somit ist die Wirkungsgradbestimmung bei Umrichterbetrieb möglich

Wirkungsgradbestimmung IEC 60034-2-3

Evaluierung der Messergebnisse Analyse der Wirkungsgrade


- Wirkungsgrad bei Umrichterbetrieb gegenüber dem Netzbetrieb wie erwartet geringer
- Wirkungsgrad bei Umrichterbetrieb um 0.8 bis 2% geringer aufgrund größeren Oberschwingungsverluste
- Abweichung berechneter Wirkungsgrade zwischen IEC 60034-2-1 und IEC 60034-2-3 ist 1%

Evaluierung der Messergebnisse

Analyse der Wirkungsgrade

Evaluierung der Messergebnisse Auswirkungen auf Einzelverluste

- Erhöhung der Einzelverluste aufgrund Umrichterspeisung:
 - Ohmsche Verluste der Ständerwicklung (2 6%)
 - Ohmsche Verluste der Rotorwicklung (3 10%)
 - Eisenverluste (15 16%)
 - Zusatzverluste (4 11%)

Evaluierung der Messergebnisse Harmonische Verluste

- Oberschwingungsverluste P_{HL} berechnet
- Zusätzlich Oberschwingungsleistung ΔP_{el} gemessen
- Vergleich Messung mit Rechnung:
 - Gemessenen P_{HL} unabhängig von Last konstant
 - Berechneten ∆P_{el} deutliche Lastabhängigkeit
 - Gute Übereinstimmung ΔP_{el} mit konstanten Anteil $P_{HL-No-Load}$
 - Unterschied durch berechneten lastabhängigen Anteil P_{HL-Load}

TU

Vielen Dank für Ihre Aufmerksamkeit

