

DEGRADATION OF MAGNETIC PROPERTIES OF ELECTRICAL STEEL SHEETS DUE TO DIFFERENT CUTTING TECHNIQUES

Madeleine Bali

Institut für Elektrische Antriebstechnik und Maschinen Technische Universität Graz

14. Februar 2018

Madeleine Bali

- Einführung
- Programm
- Ergebnisse
- Modell
- Simulation

Überblick

- Einführung
- Forschungsprogramm
- Experimentelle Ergebnisse
- Modellierung des Schneideffekts
- Simulationsergebnisse
- Zusammenfassung

[1] M. Bali, *Magnetic material degradation due to different cutting techniques and its modeling for electric machine design*, Ph.D. dissertation, Graz University of Technology, 2016.

- Programm
- Ergebnisse
- Modell
- Simulation

Spannungsarmglühen

Motivation

- Das Schneiden induziert mechanische/thermische Spannungen im Material
 - führt zu Gitterversetzungen , Gitterverzerrungen → Gitterfehler/-defekte
 - Einfluss auf Domänenwandbeweglichkeit, Domänenwachstum
 - Veränderung der magnetischen Eigenschaften
 - Einfluss auf Wirkungsgrad der Maschine

Einführung

- Programm
- Ergebnisse
- Modell
- Simulation

Einführung

Programm

Ergebnisse

Modell

Simulation

Welche Schneidverfahren gibt es?

Mechanisches Schneiden

- Schlagschere
- Stanzen
- Laserschneiden
 - Kohlendioxidlaser (CO₂-Laser)
 - Festkörperlaser (FKL-Laser)
- Drahterodieren
- Wasserstrahlschneiden

Einführung

- Programm
- Ergebnisse
- Modell
- Simulation

gestanzt

lasergeschnitten

[2] Y. Kurosaki, H. Mogi, H. Fujii, T. Kubota, and M. Shiozaki, *Importance of punching and workability in non-oriented electrical steel sheets*, Journal of Magnetism and Magnetic Materials 320 (2008), 2474–2480.
[3] Y. Demir, O. Ocak, Y. Ulu, and M. Aydin, *Impact of lamination processing methods on performance of permanent magnet synchronous motors*, Proceedings of ICEM 2014, XXIst International Conference on Electrical Machines, pp. 1218–1223.

Einführung

Programm

Ergebnisse

Modell Simulation

Einfluss der Schneideinstellungen

- Stanzen: Schneidspaltgröße, Schneidgeschwindigkeit, Abnutzung Werkzeug
- Laserschneiden:

Laserleistung, Schneidgeschwindigkeit, Gasdruck, Gasreinheit, Betriebsart: gepulst, kontinuierlich

Schneidspalterhöhung

[4] S.-K. Kuo, W.-C. Lee, S.-Y. Lin, and C.-Y. Lu, *The influence of cutting edge deformations on magnetic performance degradation of electrical steel*, IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4357–4363, 2015.

Madeleine Bali

Einführung

Programm

Ergebnisse

Modell

Simulation

Forschungsprogramm

- Materialien:
 - M270-35A
 - M400-50A
 - M800-65A
 - Proben:
 - Blechstreifen (LL, QQ, Mix)
 - Blechstreifenbreiten: Me
 30 mm (SS, CO₂, FKL),
 7.5 mm (SS, FKL), bzw. 7 mm (CO₂)

Insgesamt über 350 unterschiedliche Messungen

Mechanisches Schneiden

Schneidtechnologien:

CO₂-Laser

FKL-Laser

Ständerpakete mit einer Jochhöhe von 12 mm

Wichtig: Alle Bleche eines Materials stammen von der gleichen Muttercoil.

Einführung

Programm

Ergebnisse

Modell

Simulation

Forschungsprogramm

Permeameter (IEC 60404-4)

- Ermittlung der quasi-statischen Hysteresekurven
- Epsteinrahmen (IEC 60404-2) & Ständerpaketmessungen (IEC 62044-3)
 - Ermittlung magnetischer Eigenschaften bei verschiedenen Frequenzen: 50 Hz, 250 Hz, 500 Hz

Zusätzlich:

- Optische Emissionsspektroskopie & Electron Backscatter Diffraction
 - Ermittlung chemische Zusammensetzung und Korngröße

Modell

grain orientation spread **Min**: 0; Max: 16

10

Korngrößen

Programm

Einführung

- Ergebnisse
- Modell
- Simulation

 Korngrößendurchmesser des unbeschädigten Materials:

	M270-35A	M400-50A	M800-65A
Mittlerer Korngrößen- durchmesser in µm	81	54	27

M270-35A

M400-50A

M800-65A

100 µm

Einführung

Programm

Ergebnisse

Modell

Simulation

Permeameter - Schneidart

Relative Permeabilität

Einführung

Programm

Ergebnisse

Modell

Simulation

Zusammenfassung: Permeameter

- Hysteresekurven, schmale Proben: Bauch_{Laser} > Bauch_{Schlagschere} und stärker geschert
 - Spezifische Verluste, schmale Proben: Schnittpunkt p_{Laser} > p_{Schlagschere} vs. p_{Laser} < p_{Schlagschere}
 - Relative Permeabilität:

 $\mu_{\max, Laser} < \mu_{\max, Schlagschere}$

Einführung

Programm

Ergebnisse

Modell

Simulation

Epsteinrahmen

- Ermittlung der Magnetisierungskurve, relativen Permeabilität, spezifischen Verluste
- Unterschied zu Permeametermessungen:
 Frequenz (50, 250, 500 Hz)
 - ➢ ,Mix[´]-Anordnung

Einführung

Programm

Ergebnisse

Modell

Simulation

Zusammenfassung: Epsteinmessungen vs. Permeameter

- Magnetisierungskurven, schmale Proben, Laser: stärker geschert
- Spezifische Verluste, schmale Proben:
 - Schnittpunkt $p_{\text{Laser}} > p_{\text{Schlagschere}}$ vs. $p_{\text{Laser}} < p_{\text{Schlagschere}}$ verschiebt sich zu kleinerem B mit steigender Frequenz und Material mit kleinerem Korngrößendurchmesser
- Relative Permeabilität:

 $\mu_{\text{max,Laser}} < \mu_{\text{max,Schlagschere}}$ $\mu_{\text{max,Laser}} \rightarrow \text{Plateaucharakteristik, je schmaler die Probe}$

- Überblick
- Einführung
- Programm
- Ergebnisse
- Modell
- Simulation

Ständermessungen

- Ermittlung der Magnetisierungskurve, relativen Permeabilität, spezifischen Verluste
- Unterschied zu Epsteinmessungen:
 - Geometrie
 - Bleche geklebt und verpresst

Einführung

Programm

Modell

Simulation

Ständermessungen - Schneidart

Spezifische Verluste

Schnittpunkt:

- verschiebt sich zu kleinerem B mit steigender Frequenz und Material mit kleinerem Korngrößendurchmesser
- Schnittpunkte treten bei kleineren Flussdichten auf als bei Epsteinproben

Einführung

Programm

Ergebnisse

Modell

Simulation

Ständermessungen - Schneidart

Relative Permeabilität: $\mu_{max,Laser} < \mu_{max,gestanzt}$

- Einführung
- Programm
- Ergebnisse
- Modell
- Simulation

Überblick

- Einführung
- Forschungsprogramm
- Experimentelle Ergebnisse
- Modellierung des Schneideffekts
- Simulationsergebnisse
- Zusammenfassung

Februar 2018

Überblick

Einführung

Programm

Ergebnisse

Modell

Simulation

Annahmen & Vereinfachungen

- Geschnittene Proben bestehen aus einer beschädigten Materialzone mit der Zerstörungstiefe d und einer unbeschädigten Materialzone.
- $d \ll l_y$
- Beide Zonen haben homogene Eigenschaften.

Einführung

Programm

Ergebnisse

Modell

Simulation

Identifikation der (un)beschädigten BH-Charakteristiken

• Messdaten (H_1 , B_1), (H_2 , B_2): unabhängig voneinander ermittelt (\rightarrow schmale und breite Epsteinproben)

- Homogenisierung: $H_{\text{sample}} = H_1 = H_2 = \tilde{H}$
- Datenpunkte (H, B_{nd}) und (H, B_{dg}) werden berechnet von:

$$\begin{bmatrix} 1 - \gamma_1 & \gamma_1 \\ 1 - \gamma_2 & \gamma_2 \end{bmatrix} \begin{bmatrix} B_{nd} \\ B_{dg} \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \quad \text{with } \gamma_1 = \frac{2d}{w_1} \text{ und } \gamma_2 = \frac{8d}{w_1}$$

• B_1 , B_2 , B_{nd} , B_{dg} gehören alle zur gleichen magnetischen Feldstärke *H*.

Einführung

Programm

Ergebnisse

Modell

Simulation

Gemessene und identifizierte BH-Kurven

- Beispiel: M400-50A, 250 Hz, mechanisch geschnitten
- $B_{nd} > B_1 > B_2 > B_{dg}$ ist erfüllt für die gleiche Feldstärke

Einführung

Programm

Ergebnisse

Modell

Simulation

Identifikation der (un)beschädigten Verlustkurven

Verlustmodel: $p_{loss} = c_1 B + c_2 B^2$

$$\begin{bmatrix} 1 - \gamma_1 & \gamma_1 \\ 1 - \gamma_2 & \gamma_2 \end{bmatrix} \begin{bmatrix} p_{nd} \\ p_{dg} \end{bmatrix} = \begin{bmatrix} p_1^* \\ p_2^* \end{bmatrix}$$

Madeleine Bali

Graz

- Überblick
- Einführung
- Programm
- Ergebnisse
- Modell
- Simulation

Implementierung der identifizierten magnetischen Charakteristiken für andere Geometrien

- Implementierung der vermessenen Ständergeometrie in eine FE Simulation
- Gleiche Zerstörungstiefe *d* wie für die Epsteinproben wird angenommen
- Zusätzlicher Einfluss des Pressens und Verklebens wird mitberücksichtigt

• Zusätzlich Simulation mit Herstellerangaben

- Einführung
- Programm
- Ergebnisse
- Modell
- Simulation

Zusammenfassung: Simulationsmethode

- Verifikation für: drei Materialien, drei Frequenzen, mechanisches und Laserschneiden.
- Die berechneten Verluste sind viel genauer, als die Simulation basierend auf den Herstellerangaben.
- Vorteile:
 - Schnelle und einfache Ermittlung der Eingangsparameter: standardisiertes, weitverbreitetes Messverfahren; nur zwei Messungen notwendig.
 - Angenommene Zerstörungstiefe *d* muss nicht mit tatsächlicher Zerstörungstiefe übereinstimmen.
 - Anwendbarkeit für verschiedene Geometrien, Materialien, Frequenzen und unterschiedliche Schneidverfahren verifiziert.

Einführung

- Programm
- Ergebnisse
- Modell
- Simulation

Weitere Referenzen:

- [5] M. Bali, H. De Gersem, A. Muetze, Determination of Original Nondegraded and Fully Degraded Magnetic Characteristics of Material Subjected to Laser Cutting, IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4242 - 4251, 2017.
- [6] M. Bali, A. Muetze, *Modeling the Effect of Cutting on the Magnetic Properties of Electrical Steel Sheets,* IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2547 - 2556, 2017.
- [7] M. Bali, A. Muetze, Influence of Different Cutting Techniques on the Magnetic Characteristics of Electrical Steels Determined by a Permeameter, IEEE Transactions on Industry Applications, vol. 53, no. 2, pp. 971 - 981, 2017.
- [8] M. Bali, H. De Gersem, A. Muetze, Determination of Original Nondegraded and Fully Degraded Magnetic Characteristics of Material Subjected to Mechanical Cutting, IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 2297 - 2305, 2016.
- [9] M. Bali, A. Muetze, Influences of CO₂ Laser, FKL Laser, and Mechanical Cutting on the Magnetic Properties of Electrical Steel Sheets, IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4446 - 4454, 2015.

Vielen Dank für die Aufmerksamkeit!

Februar 2018

Vielen Dank für die Aufmerksamkeit!

Februar 2018

Einführung

Programm

Ergebnisse

Modell

Simulation

Gemessene und identifizierte Verlustkurven

Beispiel: M400-50A, 250 Hz, mechanisch geschnitten *p*_{nd} > *p*₁ > *p*₂ > *p*_{dg} ist erfüllt für die gleiche Flussdichte

Optische Emissionsspektrometrie

- Ausgewählte 30 mm Blechproben wurden an 3-4 Stellen in der Mitte entfettet und geschliffen und anschließend mit OES untersucht.
- Wieso notwendig: Hersteller sind nur dazu verpflichtet die Angaben, z. B. der Verluste, einzuhalten. Die chemische Zusammensetzung bleibt ihr Geheimnis.
- Die chemische Zusammensetzung beeinflusst die mittlere Korngröße und somit das Verlustverhalten.

Electron backscatter diffraction

- Ermittlung des mittleren Korngrößendurchmessers
- 3 unterschiedliche Probenentnahmen:

Remagraph

Bestimmung der quasistatischen Hysteresekurven

A: Materialprobe B: Joch C: Feldspulen D: J-compensated surrounding coil E: Potentialspule für H F: Verbindung zum J-Fluxmeter G: Verbindung zum H-Fluxmeter

Ergebnisse: Remagraph

 Einfluss der Schneidart: Hysteresekurve Laser- vs. mechanisches Schneiden

Remanenzflussdichten					
$B_{r_{RD}}$	M270-35A_SS	M400-50A_SS	M800-65A_SS		
	0.895 T	0.935 T	0.84 T		
$B_{r_{RD}}$	M270-35A_CO ₂	M400-50A_CO ₂	M800-65A_CO ₂		
	0.285 T	0.375 T	0.49 T		
B _{r_RD}	M270-35A_FKL	M400-50A_FKL	M800-65A_FKL		
	0.33 T	0.435 T	0.555 T		

Ergebnisse: Remagraph

 Einfluss Schneidrichtung: Remanenzflussdichte Laser- vs. mechanisches Schneiden

Remanenzflussdichte - Schlagschere

SS	M270-35A	M400-50A	M800-65A
$B_{r_{RD}}$	0.895 T	0.935 T	0.84 T
$B_{r_{TD}}$	0.46 T	0.575 T	0.655 T

Remanenzflussdichte – FKL-Laser					
FKL-laser	M270-35A	M400-50A	M800-65A		
$B_{r_{RD}}$	0.33 T	0.435 T	0.555 T		
B _{r_TD}	0.3T	0.43 T	0.5T		

Madeleine Bali

Februar 2018

Einführung

Programm

Ergebnisse

Modell

Simulation

Ständermessungen - Schneidart

Spezifische Verluste

Keine signifikanten Unterschiede mehr zwischen den beiden Laserschneidarten

Madeleine Bali

Einführung

Programm

Ergebnisse

Modell

Simulation

Ständermessungen - Schneidart

Magnetisierungskurve

Keine signifikanten Unterschiede mehr zwischen den beiden Laserschneidarten

(b) Magnetization curve

Überblick Zusammenfassung: Einführung Ständermessungen Programm • Magnetisierungskurven, Laser: weniger stark aber immer noch stärker geschert, Ergebnisse B (Kniepunkt)_{Laser} > B (Kniepunkt)_{Schlagschere.} Modell • Spezifische Verluste: Bei kleinem *B*: $p_{\text{Laser}} > p_{\text{Schlagschere'}}$ Simulation Bei mittlerem oder hohem B: $p_{\text{Laser}} \approx p_{\text{Schlagschere}} \text{ oder } p_{\text{Laser}} < p_{\text{Schlagschere}}$ Schnittpunkt verschiebt sich zu kleinerem B mit steigender Frequenz und dickerem Material B_{Schnittpunkt,Ständer} < B_{Schnittpunkt,Epsteinproben} Relative Permeabilität: $\mu_{max,Laser} < \mu_{max,Schlagschere}$ $\mu_{max,Laser} \rightarrow Plateaucharakteristik entfällt$ • Beide lasergeschnittenen Proben sind ähnlich im Verlauf, aber: $p_{\text{FKL-Laser}} = p_{\text{CO2-Laser}}$ $\mu_{\text{max,FKL-Laser}} = \mu_{\text{max,CO2-Laser}}$

Einführung

Programm

Ergebnisse

Modell

Simulation

Versetzungen

Abbildung 2.3 Bestimmung des Burgers-Vektors für eine Stufenversetzung (oben), und eine Schraubenversetzung (unten) [6]

Abbildung 2.8 a) Kleinwinkelkorngrenze, b) Großwinkelkorngrenze, c) Zwillingsgrenze [15]

Abbildung 2.2 Überblick über die verschiedenen Typen von Punktdefekten. Leerstelle, großes Fremdatom, kleines Fremdatom, (obere Reihe), Zwischengitteratom, Frenkel-Defekt, Shottky-Defekt (untere Reihe) [3]

Madeleine Bali

Einführung

Programm

Ergebnisse

Modell

Simulation

Hysteresekurve

