

Leistungsgrenzen in Verteilnetzen und Kapazitäten für Elektrifizierte Wärmetechnologien

Hochschule Darmstadt (h_da)
Fachbereich Elektrotechnik und Informationstechnik (EIT)
Hann Ruppert, Simon Brenner, Klaus-Martin Graf

15. Symposium Energieinnovation, 14.-16.02.2018, Graz/Austria

Ausgangssituation

- Hoher Energieverbrauch im Wärmesektor
- Größtenteils Wärmeerzeugung in nicht-elektrischen Wärmeerzeugern (Gas, Öl)
- Ziele der Energiewende gefährdet

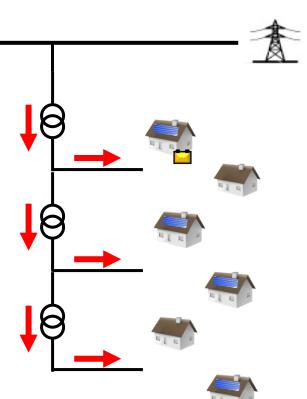
IWU-Szenarien → Mögliche Lösungen für 2030-2050

- Veränderter Gebäudebestand (Reduktion Wärmebedarf)
- Intensive Nutzung neuer elektrifizierter Wärmeerzeugungstechnologien (v.a. Wärmepumpen, BHKW)

Auswirkungen auf die Stromnetze

 Ggfs. erheblich mehr Strombedarf in Verteilnetzen aufgrund elektrifizierter Wärmeerzeugung!

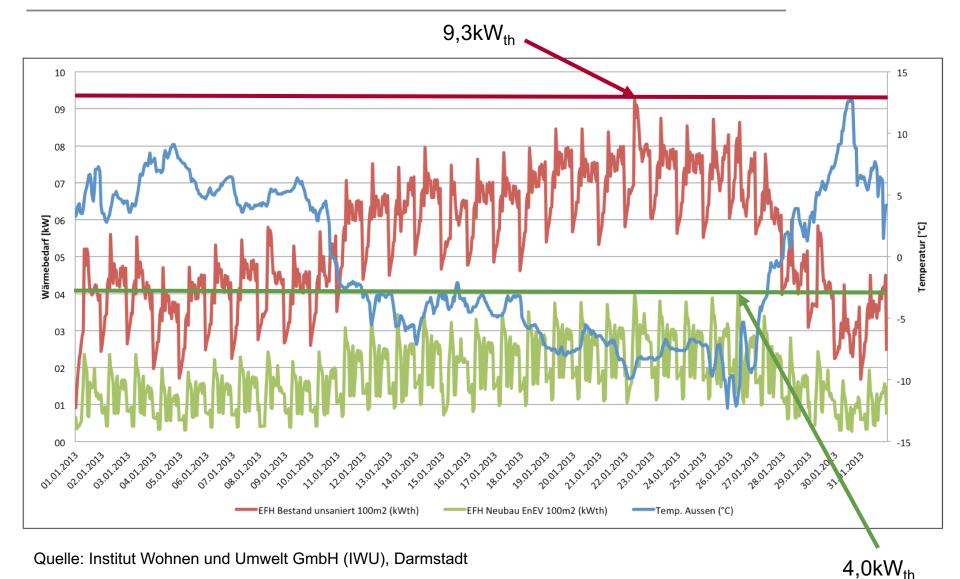
Fragestellung / Ziele


- Wie viel freie Kapazität bieten Verteilnetze für Wärmeerzeugung?
- Welche Versorgungsszenarien sind umsetzbar?
- Welche Grenzen müssen berücksichtigt werden?
- Was sind die begrenzenden Faktoren?

- Untersuchung der Einflüsse für den kältesten Tag im Jahr (T_A = Auslegetemperatur)
- Erstellung und Untersuchung verschiedener Szenarien:
 - Verschiedene **Gebäudetypen** mit unterschiedlichen Dämmstandards (\emptyset_{HH} = 100m²)
 - Ermittlung der Wärmebedarfe anhand von Wärmebedarfskurven (Quelle: IWU)
 - Verteilgrade für die Nutzung elektrifizierter Wärmeerzeugungstechnologien (GLF = 0,9) mit monovalenter und bivalenter Nutzung (nicht-elektrischer Spitzenlastkessel deckt 50% der Leistung)
 - Abschätzung der Nennleistungen unterschiedlicher Wärmeerzeugungstechnologien
 - Stromheizung (SH): $P_{el} = P_{th}$ (Arbeitszahl AZ = 1)
 - Luft-Wärmepumpe (LWP): P_{el} = P_{th} / 1,4 (Arbeitszahl AZ = 1,4)
 - Erdwärmepumpe (EWP): $P_{el} = P_{th} / 2.5$ (Arbeitszahl AZ = 2.5)
 - (Mikro-)BHKW (BHKW): $\eta_{el} = 35\% / \eta_{th} = 50\%$
 - Lastflussrechnung für Mittelspannung (MS) und Niederspannung (NS) für den kältesten Tag im Jahr in 3 Modellnetzen:
 - Städtische Struktur
 - Vorstädtische Struktur
 - Ländliche Struktur
 - Identifikation von Leistungsgrenzen in den Modellnetzen (Grundverbrauch_{HH} = 120 - 500W_{el})

	mmzustand / bäudeszenario	Bestand:,un- modernisiert'	Bestand: ,teil- modernisiert'	Bestand: ,voll- modernisiert'	Neubau
1.	Extremszenario Bestand ,unmod.'	100	0	0	0
2.	Extremszenario Bestand ,teilmod.	0	100	0	0
3.	Extremszenario Bestand ,vollmod.	0	0	100	0
4.	Extremszenario Neubau	0	0	0	100
5.	Gebäudemix	25	25	25	25
6.	Optimistische Dämmentwicklung Bestand	9,5	9,5	81	0
7.	Realistische Dämmentwicklung Bestand	17,5	17,5	65	0
8.	Pessimistische Dämmentwicklung Bestand	25,5	25,5	49	0

Gebäudeszenarien mit unterschiedlichen Anteilen (%) verschiedener Gebäudetypen je Wohngebiet



Szenarien - Wärmebedarfe (Beispiel Dresden – Jan 2013)

Technologie / Basisszenario	Stromheizung	Luft- Wärmepumpe	Erd- Wärmepumpe	Mikro - BHKW
Extremszenario Stromheizung	100	0	0	0
2. Extremszenario Luft-WP	0	100	0	0
Extremszenario Erd-WP	0	0	100	0
4. Extremszenario Mikro-BHKW	0	0	0	100
5. Ausgeglichene Anteile	25	25	25	25
6. Dominanz Luft-WP	10	50	20	20
7. Dominanz Erd-WP	10	20	50	20
8. Dominanz Mikro- BHKW	10	20	20	50

Verteilgrade mit unterschiedlichen Anteilen (%) verschiedener elektrifizierter Wärmeerzeugungstechnologien

	rmebedarf, stung / Gebäudeszenario	Max. Wärme- bedarf HH	Nennleistung Luft-WP	Nennleistung Erd-WP	Nennleistung Stromheizung	Nennleistung Mikro-BHKW
1.	Extremszenario	8,72	6,23	3,49	8,72	6,10
	Bestand ,unmodernisiert'	(4,36)	(3,11)	(1,74)	(4,36)	(3,05)
2.	Extremszenario	7,54	5,39	3,02	7,54	5,28
	Bestand ,teilmodernisiert'	(3,77)	(2,69)	(1,51)	(3,77)	(2,64)
3.	Extremszenario	5,91	4,22	2,36	5,91	4,14
	Bestand ,vollmodernisiert'	(2,96)	(2,11)	(1,18)	(2,96)	(2,07)
4.	Extremszenario	4,14	2,96	1,66	4,14	2,90
	Neubau	(2,07)	(1,48)	(0,83)	(2,07)	(1,45)
5.	Gebäudemix	6,58	4,70	2,63	6,58	4,60
Э.	Gebaudemix	(3,29)	(2,35)	(1,32)	(3,29)	(2,30)
6.	Optimistische	6,33	4,52	2,53	6,33	4,43
	Dämmentwicklung Bestand	(3,17)	(2,26)	(1,27)	(3,17)	(2,22)
7.	Realistische	6,69	4,78	2,68	6,69	4,68
	Dämmentwicklung Bestand	(3,34)	(2,39)	(1,34)	(3,34)	(2,34)
8.	Pessimistische	7,04	5,03	2,82	7,04	4,93
	Dämmentwicklung Bestand	(3,52)	(2,52)	(1,41)	(3,52)	(2,46)

Wärmebedarfe und Nennleistungen (kW) für verschiedene Szenariokombinationen (Werte für die bivalente Betriebsweise in Klammern)

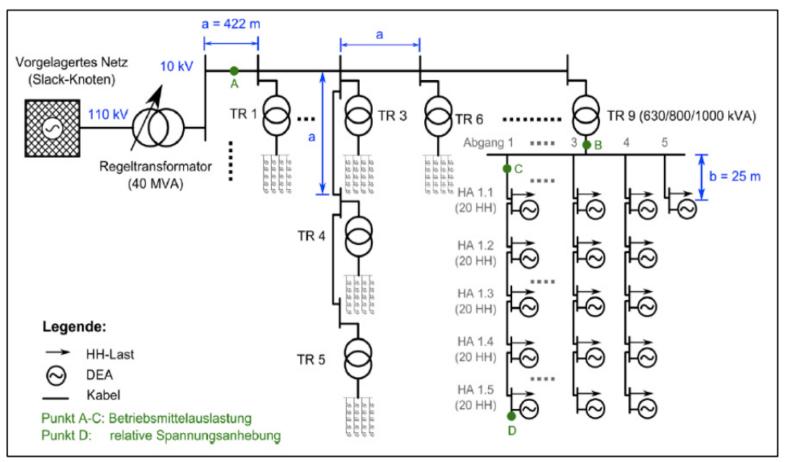


Abbildung 18: Darstellung der Struktur des städtischen Modellverteilnetzes QUELLE: WIELAND ET AL. 2013, S. 8

• Einwohner: 83.607 / Einwohnerdichte: 14.746/km²

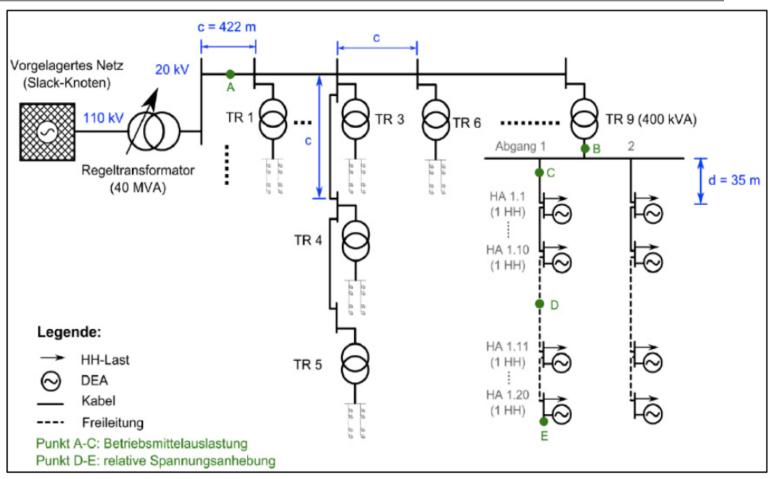


Abbildung 19: Darstellung der Struktur des vorstädtischen Modellverteilnetzes QUELLE: WIELAND ET AL. 2013, S. 9

• Einwohner: 5.867 / Einwohnerdichte: 217/km²

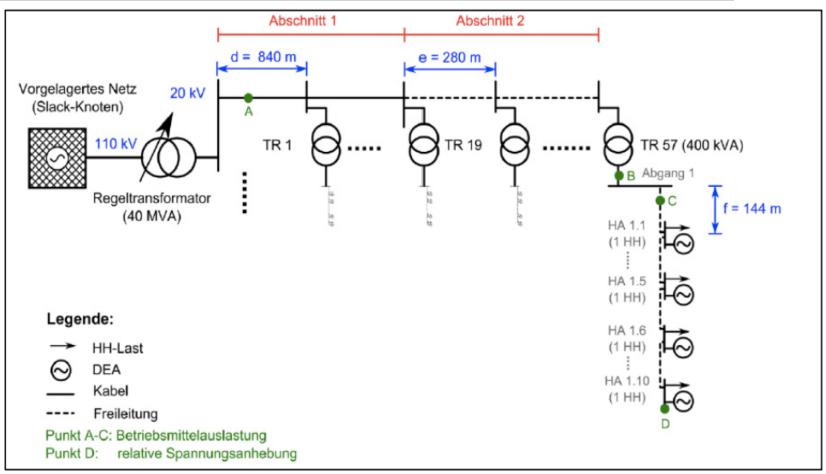


Abbildung 20: Darstellung der Struktur des ländlichen Modellverteilnetzes

QUELLE: WIELAND ET AL. 2013, S. 11

• Einwohner: 713 / Einwohnerdichte: 52/km²

Ergebnisse – Leistungsgrenzen je Haushalt (HH)

Leistungsgrenze	Grenzwert/Bedeutung	Städtisch	Vor- städtisch	Ländlich
P _{HH+/-,U4%} [kW _{el}]	Verletzung der dena-Empfehlung eines 4%-Spannungsbands für die NS-Ebene	± 1,8	± 4,3	± 2,0
P _{ONT+/-,U4%} [kW _{el}]	[dena12]	± 739,2	± 173,2	± 20,1
P _{HH+/-,U10%} [kW _{el}]	Verletzung des zulässigen Spannungsbands nach EN 50160	± 4,3	± 10,6	± 4,9
P _{ONT+/-,U10%} [kW _{el}]	(kritische Grenze U _N ± 10%)	± 1.793,4	± 424,0	± 48,9
P _{HH+/-,Imax} [kW _{el}]	Überschreitung der	± 1,8	± 9,6	± 22,5
P _{ONT+/-,Imax} [kW _{el}]	Strombelastungsgrenze (kritische Grenze)	± 756,0	± 384,8	± 224,9

- Leistungsgrenzen je HH (GLF = 1) unterschiedlich je Netzmodell:
 - Städtisches Netz: Strombelastung der MS-Leitung: P ≤ 1,8kW
 - Vorstädtisches Netz: Relativ ausgeglichen:
 P ≤ 4,3 9,6kW
 - Ländliches Netz: Spannung an der NS-Leitung: P ≤ 2,0 4,9kW
- Die höheren Leistungswerte im vorstädtischen und ländlichen Netz sind nur erreichbar, wenn eine Verletzung des von der dena empfohlenen Spannungsbands von U_N ± 4% in Kauf genommen wird.

Ergebnisse – Städtisches Modellnetz

h.da

h.da

HOCHSCHULE DARMSTADT

UNIVERSITY OF APPLIED SCIENCE

f. Determine Lektrofechik

KACHEBEEL H.EKTROFECHIK

Städtisches Modellnetz		Mond	valent	Bivalent				
	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Unmodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Tailmadamiaiant	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Teilmodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Vollmodernisiert	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
voiimoaernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Marchan	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Neubau	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Cab find and	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Gebäudemix	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
OPT	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
OPT	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
DEAL	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
REAL	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
DECC	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
PESS	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW

Ergebnisse – Vorstädtisches Modellnetz

h.da

h.da

HOCHSCHULE DARMSTAOT
ONVERSITY OF APPLIED SCIENCE
FACHBEREICH ELEKTROTECHNIK
IN INFORMATIONSTECHNIK

Vorstädtisches Modellnetz		Mono	valent			Biva	lent	
Unmodernisiert	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Onmodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Teilmodernisiert	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
renmodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Vollmodernisiert	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
voiimodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Neubau	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Neubuu	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Gebäudemix	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Gebaudemix	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
OPT	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
OFT	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
DEAL	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
REAL	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
PESS	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
FEJJ	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW

Ergebnisse – Ländliches Modellnetz

14 h, da HOCHSCHULE DARMSTADT OR APPLIED SCIENC HOLD HOCH SCHOLE BLEKTOTECHNIK UND INFORMATIONSTECHNIK UND INFORMATIONSTECHNIK

Ländliches Modellnetz		Mono	valent		Bivalent			
	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Unmodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Tailes a danniai ant	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Teilmodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Vollmodernisiert	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
vonmodernisiert	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Neubau	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Neubau	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
Gebäudemix	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
Gebuudelliix	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
OPT	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
OFI	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
REAL	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
NEAL	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW
PESS	SH	LWP	BAL	D-LWP	SH	LWP	BAL	D-LWP
r L J J	EWP	BHKW	D-EWP	D-BHKW	EWP	BHKW	D-EWP	D-BHKW

- ➤ Bivalente Betriebsweise oder die Nutzung von BHKW's ist in Gebieten mit hoher
 Bevölkerungsdichte (Stadtzentren) vorzuziehen! → Der Einsatz von Biomasse- oder
 Gaskesseln zur Deckung von Wärmebedarfsspitzen ist hier weiterhin sinnvoll.
- ➤ Aber: Ein Mix verschiedener elektrifizierter Wärmetechnologien mit 50% BHKW ermöglicht auch 100% elektrifizierte Wärmeversorgung in städtischen Gebieten mit hoher Bevölkerungsdichte.
- In Verteilnetzen mit vorstädtischer Struktur und mittlerer Bevölkerungsdichte bestehen quasi keine Restriktionen.
- In Verteilnetzen mit ländlicher Struktur und geringer Bevölkerungsdichte kann ebenfalls eine 100% elektrifizierte Wärmeversorgung umgesetzt werden.
 - Ausnahmen: Alleinige Nutzung von Stromheizung bzw. Luft-WP's nur bivalent möglich!
- ➤ <u>Die Wärmewende alleine benötigt keinen Netzausbau! Die Verkehrswende ist in</u> zukünftigen Untersuchungen mit zu berücksichtigen.

Vielen Dank für ihre Aufmerksamkeit!

Hochschule Darmstadt

www.h-da.de

Projektgruppe Smart Grids

https://eit.hda.de/en/forschung/forschungsfelder/energietechnik/projektgruppe-smartgrids/

> Hann Ruppert Hochschule Darmstadt +49 (0) 6151/16-37792 hann.ruppert@h-da.de

Backup Folien

- Diese Studie erfolgte im Rahmen eines Forschungsprojekts mit dem Darmstädter Institut Wohnen und Umwelt (IWU, Projektkoordination), dem Büro für Energiewirtschaft und Technische Planung, Aachen (BET) und der Hochschule Darmstadt (h_da)
- Projekt: "Energieeffizienz und zukünftige Energieversorgung im Wohngebäudesektor"
- Gefördert vom Bundesministerium für Wirtschaft und Energie / Projektträger Jülich
- Das IWU berechnet verschiedene Wärmeversorgungsszenarien auf Basis neuer Technologien und bewertet diese u.a. nach ökologischen Gesichtspunkten
- BET erstellt eine Kostenübersicht für verschiedene Anlagentechnologien
- Die Hochschule Darmstadt (h_da) untersucht u.a. die Auswirkungen k\u00fcnftiger Energieversorgungskonzepte im Wohngeb\u00e4udesektor auf die Stromnetze
- Im Rahmen dieser Studie wurde eine Masterarbeit von Simon Brenner, sowie weitere Berechnungen an der Forschungsgruppe Smart Grids am Fachbereich EIT vorgenommen

¹ http://www.iwu.de/forschung/energie/2017/eegebaeudezukunft/

Simon Brenner interviewte im Rahmen seiner Masterarbeit mehrere Verteilnetzbetreiber in Deutschland. Die wesentlichen Aussagen²:

- Bei den VNB's spielt die Elektrifizierte Wärmeerzeugung bisher kaum eine Rolle
- Noch kein Trend zu Elektrifizierung des Wärmemarktes erkennbar
- Übereinstimmung, dass eine künftige Elektrifizierung wahrscheinlich ist
- VNB's schauen der Wärmewende "gelassen" entgegen
- Es werden keinerlei Risiken hinsichtlich Engpässen im Stromnetz erwartet
- ➤ **Tenor:** "Kapazitätserweiterungen werden für nicht notwendig erachtet." [mit Blick auf Wärmewende]

² Quelle: Simon Brenner: "Auswirkungen auf die Verteilnetze bei Zunahme elektrifizierter Wärmetechnologien in Wohngebäuden im Rahmen der Wärmewende in 2050", Masterarbeit, Hochschule Darmstadt, 14.08.2017, Darmstadt.

Modellnetze basieren auf Österreichischen Verteilnetzen → Übertragbarkeit?

• Angenommene Bevölkerungsdichten können nicht einfach übernommen werden...

• Städtisch: 14.746/km²

Vorstädtisch: 217/km²

Ländlich: 52/km²

• GLF Heizung = 0,9?

- Arbeitszahl Luft- / Erdwärmepumpe am kältesten Tag realistisch?
- Ermittlung maximaler Wärmebedarf vs. Auslegungs-Nennleistung Heizung?
- Verkehrswende nicht berücksichtigt → E-Mobility = zusätzliche Belastung für Netze

KL	Stadt/Gemeinde	Einwohner	Einwohnerdichte
_	Frankfurt a.M.	732.688	2.951/km ²
tiscl	Darmstadt	155.353	1.271/km ²
Städtisch	Aachen	245.885	1.529/km ²
<i>(</i>)	Bad Homburg	53.244	1.041/km ²
	Kronberg im Taunus	18.330	984/km ²
ç	Bensheim	40.051	693/km ²
Vorstädtisch	Seeheim-Jugenheim	16.218	579/km ²
rstä	Bickenbach (Bergstraße)	5.777	624/km ²
8	Rimbach i. Odenwald	8.571	370/km ²
	Stendal (Altmark, SA)	40.269	150/km ²
_	Beelitz (SA)	69	16/km ²
ändlich	Bertkow (SA)	314	25/km ²
-änc	Rorodt (RLP)	48	14/km ²
-	Hövede (SH)	60	20/km ²

Kategorie	Einwohnerdichte
Ländlich	< 100/km ²
Vorstädtisch	$100/\text{km}^2 \le X < 1.000\text{km}^2$
Städtisch	≥ 1.000/km ²

