Geomagnetically Induced Currents in Austria

Rachel Bailey, ZAMG Georg Achleitner, APG Thomas Halbedl, TU Graz Roman Leonhardt, ZAMG

Geomagnetically Induced Currents (GIC)

Enhanced electrojet and rapid variations seen in geomagnetic field

Credit: NASA

Solar eruption, Coronal mass ejection (CME)

Cloud of energetic particles hits Earth's magnetosphere

Geomagnetically Induced Currents (GIC)

Meteorologie un Geodynamik

March 13th 1989

Quebec without power for 9 hours

Credit: PS&E

APG and GIC – why?

- Correlation between **large amounts of DC and geomagnetic activity** discovered by Austrian Power Grid, data from 2014:
- Investigations started because of unexpected **noise emissions** of transformers
- **DC currents** can be detected as source for noise emissions
- First studies with TU Graz show significant correlation between GIC and DC currents in Austrian Power Grid

APG and GIC – why?

• Correlation between **large amounts of DC and geomagnetic activity** discovered by Austrian Power Grid, data from 2014:

• Studies are important for risk analysis of the impact of GIC

Why Austria?

• Levels of GIC expected to be similar to GIC in Scotland or lower Scandinavia (Denmark) due to **lower conductance** of Alps

Geodynami

Conrad Observatory

- Geomagnetic observatory in Austria (INTERMAGNET **WIC**)
- In the limestone Alps

Credit:ZAMG/Lammerhuber

and the second

• **dB/dt** ... geomagnetic variations

• **ρ(x, t)** ... ground conductivity

• **M**_{network} ... power network topology

- **dB/dt** ... geomagnetic variations
 - Conrad Observatory
 - Assumed to be homogeneous
- **ρ(x, t)** ... ground conductivity

Credit:ZAMG/Lammerhuber

ZANC Zentralanstalt fi Meteorologie un Geodynamik

• **M**_{network} ... power network topology

- **dB/dt** ... geomagnetic variations
 - Conrad Observatory
 - Assumed to be homogeneous
- **ρ(x, t)** ... ground conductivity
 - Cooperation with Geological Survey
 - 2D surface conductivity
 - 1D subsurface layer conductivity
- **M**_{network} ... power network topology

- **dB/dt** ... geomagnetic variations
 - Conrad Observatory
 - Assumed to be homogeneous
- **ρ(x, t)** ... ground conductivity
 - Cooperation with Geological Survey
 - 2D surface conductivity
 - 1D subsurface layer conductivity
- **M**_{network} ... power network topology
 - Provided by power grid operators
 - Need all parameters
 - Includes surrounding countries

Scenario: Strong geoelectric field

• Scenario: 1 V/km geoelectric field --> max. GIC = 49.13 A near Vienna

Scenario: Removal of station from grid

- Stations in 380 kV grid with greater distances to connecting nodes are most susceptible to large GIC
- \rightarrow The same nodes cause large increases in GIC elsewhere when removed
- Generally, removing a node leads to an increase in GIC in the rest of the grid
- Depending on how the node is removed, separating parts of the grid can also lead to a decrease in GIC
- More future work can develop realistic GIC mitigation strategies

Measurements – Stations

APG Network Configuration

Measurements – Example

Extreme scenario

2003 (Halloween) geomagnetic storm:

- Past work:
 - Halbedl et al. (2014): *Measurement and analysis of neutral point currents in a 400-kV-network*
 - Halbedl et al. (2016): Analysis of the impact of geomagnetic disturbances on the Austrian transmission grid
 - Bailey et al. (2017): Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach
- Future work:
 - Establish a Space Weather Competence Centre in Austria
 - Build contact with interested parties (APG, ÖBB, etc. ...)
 - Monitor and study space weather and regional/national impacts
 - Ensure quick communication in space weather events

Summary

- Magnitude of GICs in Europe are not insignificant
- GIC in Austria may reach dangerous levels during mild storm
- Work is ongoing in Austria to study, monitor and predict space weather events

Extra: Station Locations

Model & Measurements

- Thin-sheet model (Vasseur and Weidelt, 1977):
 - Quasi-3D model with lateral conductivity variations at surface
 - Input: dB/dt and ρ(x, t)
 - Output: E(x, t)
- Grid circuit model (Kirchoff and Ohm's laws), *Lehtinen-Pirjola 1984 method*:
 - Input: E(x, t) and M_{network}
 - Output: GIC in all stations
- Compare to **measurements of DC in transformer**:
 - Conducted by the Austrian Power Grid over past two years

Credit: APG

GIC in Austria – Model Observations

- Strongest currents found at edges of long lines
- Network is most susceptible to strong E_x fields/E-W geomagnetic variations
- No one station/area is particularly susceptible to extreme currents

GIC in Austria – Model Observations

- Strongest currents found at edges of long lines
- Network is most susceptible to strong E_x fields/E-W geomagnetic variations
- No one station/area is particularly susceptible to extreme currents

GIC in Austria – Model Observations

- Strongest currents found at edges of long lines
- Network is most susceptible to strong E_x fields/E-W geomagnetic variations
- No one station/area is particularly susceptible to extreme currents

• Scenario: 1 V/km geoelectric field

max. GIC = 49.13 A near Vienna

