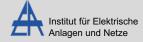
Regionaler Netzwiederaufbau Voraussetzungen und Herausforderung

Stefan Polster*

Herwig Renner – IFEA TU Graz Robert Schmaranz – KNG Christan Rupp, Christian Tengg - KELAG

EnInnov2018 - Graz, 14.02.2018



© Animation R. Schmaranz

TU Graz | Institut für Elektrische Anlagen und Netze | Vortragender: Stefan Polster

UFEA

Netzwiederaufbau – Strategien


- Top-Down
 - Spannungsweiterschaltung aus nicht gestörtem Netz

Weiterschaltung der RG CE-Spannung

- Bottom-Up
 - Aufbau von Netzinseln ohne externer Spannung
 - Schwarzstartfähige KWs benötigt

Überregionaler Inselnetzbetrieb ausgehend von Kärnten und Salzburg

- Strategien auf Übertragungsnetz fokussiert
 - Back-Up: Regionaler Netzwiederaufbau

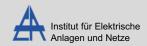
Voraussetzungen an Inselnetze für regionalen Netzwiederaufbau I

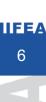
- Schwarzstartfähigkeit
 - Versorgung der Leittechnik und Eigenbedarf ohne externe Spannung
 - Min. ein schwarzstartfähiges Kraftwerk im Inselnetz

Abfangen im EB ermöglicht keine Schwarzstartfähigkeit

- Inselnetzfähige Regelung
 - Einhaltung von Spannung- und Frequenzgrenzen bei Lastzuschaltungen
 - Frequenzregelung kritischer zu beurteilen

Höhere Regelzeitkonstanten bei F-Regelung geringe rotierende Energie im Inselnetz


Voraussetzungen an Inselnetze für regionalen Netzwiederaufbau II


- Mindestlast
 - Min. eine Maschine ohne Mindestlast
 - Alternativ Bereitstellung einer Grundlast

Verfügbarkeit der Grundlast muss jederzeit sichergestellt sein Stabilisierender Effekt von Pumplasten

- Fernsteuerbarkeit
 - Einbindung der Schalter in Leittechnik
 - Sicherstellung des Eigenbedarfs der Kommunikation und Hilfsantriebe

Flächendeckend ab 110-kV-Ebene Wichtige Schaltknoten in Mittelspannungsnetzen

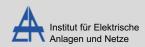
Voraussetzungen an Inselnetze für regionalen Netzwiederaufbau III

- Netzsynchronisation
 - Koordinierte Sollwertvorgabe
 - Überprüfung der Synchronisationsbedingung

Kann Synchronisation nicht sichergestellt werden, ist keine Aktive Teilnahme am Netzwiederaufbau möglich

- Training
 - Dynamischen Netzsimulatoren
 - Schwarzstart- und Inselnetzversuche

Schwachstellen aufdecken und korrigieren Überprüfung der Voraussetzungen



Praktische Umsetzung

- Regelmäßige Versuche durchgeführt von
 - Kärnten Netz GmbH
 - Austrian Power Grid
 - KELAG und Verbund Hydro Power
 - TU Graz Institut für Elektrische Anlagen und Netze
- Fokus der Versuche 2017
 - Verbesserung Frequenzverhalten
 - Inselsynchronisation

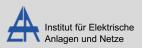
Übersicht Versuchsnetz

Verbesserung Frequenzverhalten

- Ziel: Reduktion des Frequenzeinbruches nach Lastzuschaltung
 - Stabileres Inselnetz
 - Schnellerer Netzwiederaufbau
- Untersuchte Ansätze:
 - Erhöhung der rotierende Energie
 - Zusätzlicher Generator im motorischen Leerlauf
 - Schnellere Frequenzregelung
 - Implementierung Düsenvorhaltung

Zusätzliche rotierende Energie

Schwarzstart- und Inselnetzversuche im Netzgebiet Kärnten


$$E_{rot} = \frac{J_{eq}}{2} \cdot (2\pi \cdot f)^2$$

Nach Lastsprung Deckung der Leistungsdifferenz aus rotierender Energie $\Delta P(t) = \frac{dE_{rot}(t)}{dt} = 4 \cdot J_{eq} \cdot \pi^2 \cdot f(t) \cdot \frac{df(t)}{dt}$

$$\Delta P(t) = \frac{dE_{rot}(t)}{dt} = 4 \cdot J_{eq} \cdot \pi^2 \cdot f(t) \cdot \frac{df(t)}{dt}$$

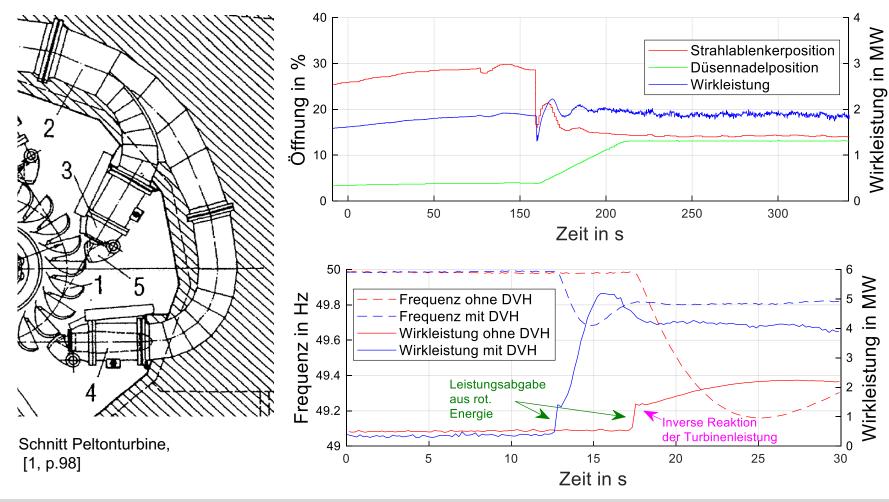
Frequenzgradient zum Zeitpunkt der Laständerung

					Berechnung	Messung	
	$f(t_0)$	ΔΡ	E_{rot}	J_{eq}	df/dt	df/dt	-
	Hz	MW	MWs	tm²	Hz/s	Hz/s	
Versuch 1 Vergleichsmessung	50	-15	939	19	-0,40	-0,38	_
Versuch 2 zusätzliche rot. Energie	50	-15	1658	34	-0,23	-0,23	

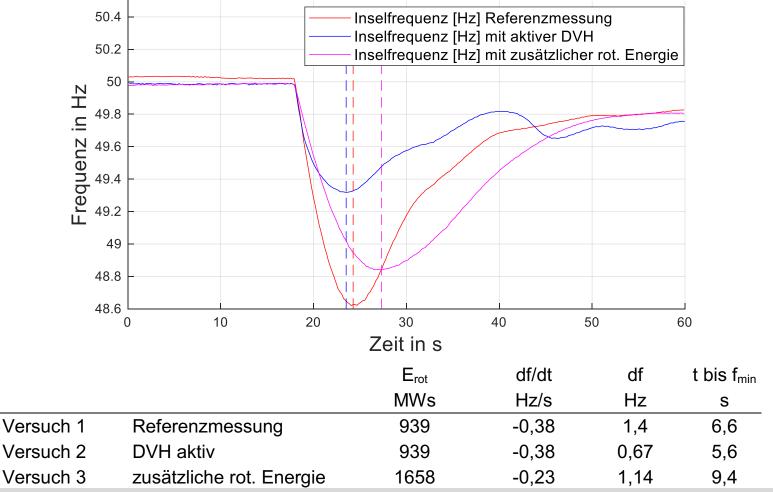

Schnellere Frequenzregelung I

Schwarzstart- und Inselnetzversuche im Netzgebiet Kärnten

- Regelgeschwindigkeit begrenzt von mechanischer und hydraulischer Belastbarkeit
- Peltonturbinen:
 - Leistungsregelung durch Düsenöffnung
 - Leistungsgradient von 2 Prozent pro Sekunde
 - Strahlablenker zur Vermeidung von Überdrehzahlen


Düsenvorhaltung

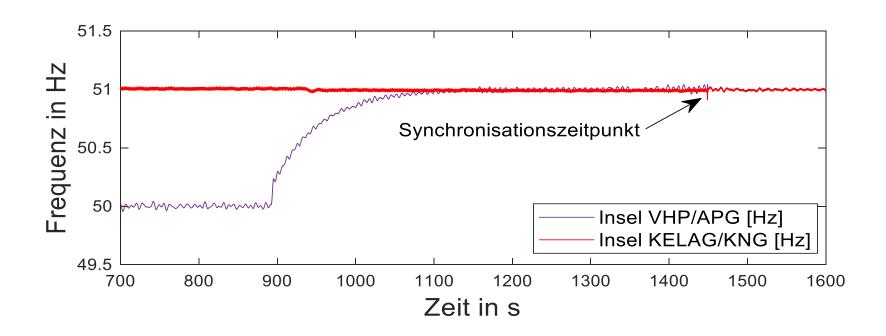
→ Höhere Leistungsgradienten durch Einbindung des Strahlablenkers



Schnellere Frequenzregelung II

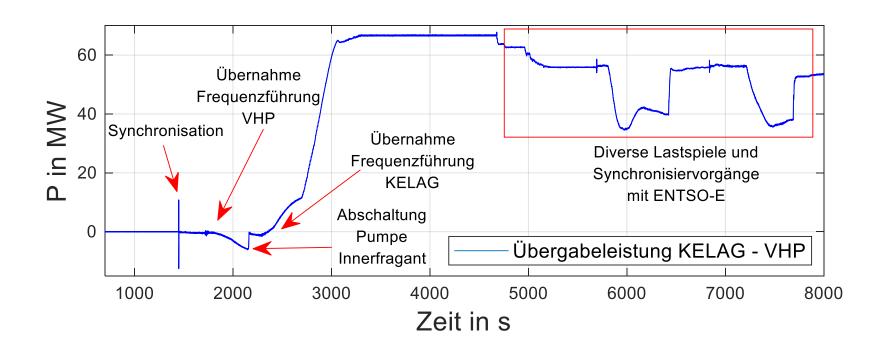
Vergleich zusätzliche rot. Energie und DVH Schwarzstart- und Inselnetzversuche im Netzgebiet Kärnten

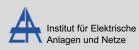
Verbesserung Frequenzverhalten - Fazit Schwarzstart- und Inselnetzversuche im Netzgebiet Kärnten


- Verbesserungspotenzial beider Maßnahmen ist abhängig von:
 - Regelmöglichkeiten der Maschinen
 - Verfügbarer Maschinen
 - → Generalisierung nicht möglich
- Im untersuchten Fall deutliche Verringerung des Frequenzeinbruches durch die Düsenvorhaltung

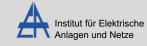
Inselsynchronisation I

	Bemessungsleistung Erzeugung	Insellast (Pumplast)
Insel KELAG/KNG	180 MVA	6 MW
Insel VHP/APG	220 MVA	60 MW





Inselsynchronisation II

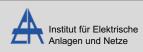


Inselsynchronisation - Fazit

- Synchronisation ist möglich
- Komplexität der Synchronisierung steigt mit Inselgröße
- Ohne Training nur schwer durchführbar

Regionaler Netzwiederaufbau Voraussetzungen und Herausforderung im Netzwiederaufbau

Stefan Polster*



Technische Universität Graz Institut für Elektrische Anlagen und Netze Inffeldgasse 18-I / A-8010 Graz Fax.:++43/(0)316 / 873 8061

Tel.:++43/(0)316 / 873 7567

email: stefan.polster@tugraz.at

http://www.ifea.tugraz.at http://portal.tugraz.at

Literaturverzeichnis

- [1] D. Oeding and B.R. Oswald, Elektrische Kraftwerke und Netze, 2016
- [2] H. Renner, Regelung und Stabilität elektrischer Energiesystem, 2013