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Presentation outlines

• Introductory background
Distribution systems
Reliability of distribution systems
Value based reliability 
Assessment techniques
Aim of proposed technique  
• Outlines of MLMC method
• Case studies
• Results and future works 
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Reliability of distribution system

• Definition

Interruption, customer satisfaction, continuity of supply

• Why need reliability analysis

Measuring past performance and predicting future performance
Improved system performance
Basis for designing new or expanded existing system planning
Maintenance scheduling and resource allocation
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ØElectric power business has changed dramatically for the past 30 years. 

Ø There has been a considerable change in the structure and electric power system 
operation throughout the world. 

ØAs the world gets more and more dependent on the electric power and since the 
reliability concerns have been increased, studying power interruptions and their 
economic worth attracts more attention.

ØWorth of reliability in terms of customer expected cost of interruption (ECOST)

Value -based reliability index



Assessment data

• Inputs
System topology (distribution feeder)
System information (Loads, customers, repair time)
Fault statistics (Number of faults, failed element, failure rate, location)
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Data input Assessment 
Tech.

Output results

System topology, 
fault statistics

Reliability indices

General block diagram of reliability analysis



Assessment techniques
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Assessment techniques

SimulationAnalytical

Analytic technique- just provide expected or 
average value of the worth index from historic 
data
Actual shape of the statistical distribution 
associated with the index is not considered

MCS - variation of the index (prediction of uncertainty/actual behaviour over the 
time) 



Monte Carlo Simulation

In MC simulation we estimate the expectation using

Two sources of error here:
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Sampling error due to the finite number of samples

Bias error because Ra is an approximate of R
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MSE is used to measure the accuracy of the MC estimator. 

Monte Carlo Simulation

To achieve RMSE of ε requires:

NMC = O(ε^−2)

bias = O(ε)

In the case of a very reliable system, a large number of samples is required to satisfy the 
given accuracy level.

!"# = %&'()* +, + [# +, − + ]1
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Proposed method

Reducing computational cost of reliability evaluation by MLMC

M. B. Giles, “Multilevel Monte Carlo methods,” Acta Numerica, vol. 24, pp. 259-328, 2015.

What is the basic difference between MCS and MLMC?
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Two level Monte Carlo

Estimator:

, so cost will be reduced greatly.

! "# = ! "% + !["# − "%]

#
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Advantage: if "# − "% is small, no need many samples to accurately estimate 

In a SDE simulation, if we want to estimate !["#], it is much cheaper to simulate using 
["%]
Since "%~"#

!["# − "%]
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Basics of MLMC

Expected value is same – aim is to reduce variance of estimator 

Idea is to independently estimate each of the terms on the R.H.S., in a way which 
minimises the overall variance for a given accuracy.

Finest level is still the same, but will use very few samples at that level.

! "# = ! "% +'
()*

#
!["( − "(-*]

Consider MC simulation with different levels, / = 0, 1, 2, ……5
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Basics of MLMC

! "# = ! "% +'
()*
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"(,=Fine path estimator having timestep size ℎ, = 29(=

"(.=Coarse path estimator having timestep size ℎ. = 29((9*)=
As level increases and the grid resolution becomes finer, the require timesteps or time 
increase
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Case studies

1. Network, reliability data
2. Component modeling and Up time history
3. SDE modelling
4. Load and cost models 
5. Reliability indices calculation
6. Results
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Distribution system of RBTS bus 2
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Flowchart
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Set Initial data

n=1

Construct SDE model of TTF  of 
each component on coarse and 

fine levels

Generate random numbers 
between [0,1]

Generate operating history of 
each component on both 

levels 

Determine average failure rate  of 
each component on both levels

Determine average failure rate  of 
each load point on both levels

Consider time-varying 
load and cost models 
if calculation required

Determine 
ECOST on both 

levels

Calculate sum of the 
ECOST values on coarse 

and fine levels

n>N

Go to steps to check the 
convergence and determine 
overall multilevel estimator

n=n+100

Set initial level L=2

Update number of samples Ns 
on each level using N0  samples

Update sum of 
ECOST for each level 

Compute average absolute 
value of ECOST and 

variance on each level 

Determine optimal number 
of samples Nl on each level 

Is Nl >Ns 

Test for weak 
convergence

Evaluate additional 
samples

Is remaining bias error 
>β/√2   

Calculate multilevel 
estimator

UpdateL=L+1

Yes

Yes

No

No

(a) ECOST estimation on coarse and fine levels (b) Convergence test 
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SDE

!"# = % "#, ' !' + ) "#, ' !* 0 < ' < -
(deterministic changes + random changes) 

µ= Rate of change of average value of stochastic process (drift) 
σ= Degree of variation of stochastic process over time (volatility) 

dW=Brownian motion

Solution: Milstein discretisation 

S/01 = S/ + µ S/, t/ h + σ S/, t/ ∆W/ + 1
2 σ

: S/, t/ (∆W/: − h),

step size ℎ = ⁄@ A , n timesteps and Brownian increments ∆*B
C = 2Dand E is called the level

Oksendal, B. Stochastic differential equations: an introduction with applications. Springer Science & Business Media, 2013.

Harrison, J. Michael. Brownian motion and stochastic flow systems. New York: Wiley, 1985.



SDE modelling

Construct SDE models of TTF at levels ! = 0 and ! > 0

S&'( = S&'( + µS&'( h( + σS&'( dW( +
1
2 σ

1S&'( (dW(
1 − h(),

S&'6 = S&'6 + µS&'6 h6 + σS&'6 dW6 +
1
2 σ

1S&'6 (dW6
1 − h6),
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Operating history of component i:

78' = −9:'(;<=) !> ?



Load and cost modelling

For a supply point p:
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!" = !"$%&×("×)"×∑+,+-+. /0(2)
2$42567 , MW

8" = 8%9:×
∑+,+-+. ;<
2$42567 , ($/kW)

Annual peak load (!"$%&), weekly peak load as a percentage of annual peak (("), daily peak load as a 
percentage of weekly peak ()") and hourly peak load as a percentage of daily peak (=")

Sector customer damage function (SCDF) [9] is analyzed to found the cost (8") related to a load point P 
interruption for a duration >"

Direct evaluation of ECOST is very difficult, is to evaluate  the impacts and losses 
incurred by customers due to power supply failures



Average failure rate for component i:

System ECOST

19

!" = $
∑&'() *+,

, (occ./yr) 

. is the number of times component / fails during whole simulation period and 0 is the desired number of 
simulated periods. 

12 = ∑"34
5, !", (occ./yr)

Average failure rate for load point p:

6789: = ∑234
5; 12<2 72. (k$/yr) 

System ECOST:

>" denotes the number of outage events interrupting the service of the load point P

>2 is the total number of supply points in the system.



Test results
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Case Disconnecting Switches Fuses Alternative Supply Transformer Action 
Restoration

A Yes Yes Yes Repairing
B No No No Repairing
C No Yes No Repairing
D Yes No Yes Repairing
E Yes Yes Yes Replacement
F Yes No No Repairing

Case studies for network reinforcement effect analysis 

0 500 1000 1500

Case A

Case B

Case C

Case D

Case E

Case F

ECOST

MLMC MC ECOST (k$/yr) variation due to network reinforcement

Method Case A Case B Case C Case D Case E Case F
MC (s) 35.23 1110.13 49.67 80.19 0.92 317.25

MLMC (s) 1.14 48.19 1.71 2.76 0.032 25.15

Effect of network reinforcement on cost estimation time



Test results
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0 100 200 300 400

Average

1:00 AM

8:00 AM

16:00 PM

ECOST

MLMC MC

ECOST (k$/yr) variation due to time-varying load and cost models

Method Average 1:00 AM 8:00 AM 16:00 PM
MC (s) 35.23 15.87 134.37 25.43

MLMC (s) 1.14 0.51 5.04 0.87

Effect of time-varying load and cost models on computation time



Test results
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0 50 100 150 200 250 300

B2

B3

B4

B5

B6

ECOST

MLMC MC

ECOST (k$/yr) variation due to network size and load types

Method B2 B3 B4 B5 B6
MC (s) 35.23 69.27 49.33 47.40 27.06

MLMC (s) 1.14 3.65 1.85 1.58 0.9

Effect of network size and load types on computation time



Reduced samples

Fig. Required number of samples for convergence [Case A] at each level of MLMC and MCS

MLMC    124238   13003   6268  2262 
MC          15000       

Number of samples vs Level
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Summary

• Achieved desired accuracy and saving of cost using multilevel Monte Carlo 
method 

• MLMC is simple and interesting, but key challenge is how to apply it in 
reliability analysis

• Can easily be expanded in future work to include additional factors such as 
weather dependent failure and repair models and integration of 
distributed generation. 

• Distribution system planning and design engineers could predict accurate 
reliability indices with accelerating the process. 
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