

15. Symposium Energieinnovation 2018 Wasserkraft I / Session C2

Buoyant Energy "Light" – Thermodynamische Analyse eines schwimmenden hydropneumatischen Energiespeichers

Bernd Steidl, Universität Innsbruck, Arbeitsbereich Wasserbau

- 1. <u>Buoyant (=schwimmend, lebhaft)</u> <u>Energy Speicher</u>
 - BE "schwer" (BEQs) vs. BE "Leicht" (BEL)
 - Speicherkapazität BE-Konzept
- 2. Hydropneumatischer BEL-Energiespeicher
 - Ansatz zur Steigerung der Speicherkapazität
 - Textilmaterialien als Hüllkonstruktion
- 3. Zusammenfassung und Ausblick

- 1. <u>Buoyant (=schwimmend, lebhaft)</u> <u>Energy Speicher</u>
 - BE "schwer" (BEQs) vs. BE "Leicht" (BEL)
 - Speicherkapazität BE-Konzept
- 2. Hydropneumatischer BEL-Energiespeicher
 - Ansatz zur Steigerung der Speicherkapazität
 - Textilmaterialien als Hüllkonstruktion

3. Zusammenfassung und Ausblick

- 1. <u>Buoyant (=schwimmend, lebhaft)</u> <u>Energy Speicher</u>
 - BE "schwer" (BEQs) vs. BE "Leicht" (BEL)
 - Speicherkapazität BE-Konzept
- 2. Hydropneumatischer BEL-Energiespeicher
 - Ansatz zur Steigerung der Speicherkapazität
 - Textilmaterialien als Hüllkonstruktion
- 3. Zusammenfassung und Ausblick

"Buoyant Energy Quarters" (kurz: BEQs, österreichisch: schwimmende Energiegrätzel)

Ideale Speicherkapazität

$$W_{opt.}(t_{max}) = \rho \cdot g \cdot A \cdot h^2 / 4 = m \cdot g \cdot h / 2$$
$$h_A = h_B = h / 2 = H$$

Grundsätzliches BEL-Konzept

Ideale Speicherkapazität

- 1. <u>Buoyant (=schwimmend, lebhaft)</u> <u>Energy</u> Speicher
 - BE "schwer" (BEQs) vs. BE "Leicht" (BEL)
 - Speicherkapazität BE-Konzept
- 2. Hydropneumatischer BEL-Energiespeicher
 - Ansatz zur Steigerung der Speicherkapazität
 - Textilmaterialien als Hüllkonstruktion

3. Zusammenfassung und Ausblick

BUOYANT ENERGY STORAGE

Ansatz zur Steigerung der Speicherkapazität

Grundsätzliches BEL-Konzept

BEL-Hydropneumatisch

- Thermodynamische Extrembetrachtung
 - Isotherme und Adiabate Zustandsänderung.

BUOYANT ENERGY STORAGE

Ansatz zur Steigerung der Speicherkapazität

Isotherme Zustandsänderung: pV = nRT = const.

- Sehr langsamer Lade- und Entladevorgang.
- Idealer Wärmeaustausch mit der Umgebung.
- T [°C] = const.

BUOYANT ENERGY STORAGE

Ansatz zur Steigerung der Speicherkapazität

Isotherme Zustandsänderung: pV = nRT = const.

• Annahmen:

$$H = h/2 = const. \qquad | \qquad Q = const.$$
$$V_A = V_B \qquad | \qquad Q \cdot t = V_A \qquad | \qquad x_i \cdot A_i = t \cdot Q$$

BUOYANT ENERGY STORAGE

Ansatz zur Steigerung der Speicherkapazität

Isotherme Zustandsänderung: pV = nRT = const.

• Annahmen:

$$H = h/2 = const. \qquad | \qquad Q = const.$$
$$V_A = V_B \qquad | \qquad Q \cdot t = V_A \qquad | \qquad x_i \cdot A_i = t \cdot Q$$

 $^{-1}$

Innendruck
$$p_{iso}(t) = p_{pre} \cdot \left(1 - \frac{t \cdot Q}{V_A + V_B}\right)$$

Druckhöhe
$$H_{PT,iso}(t) = H + \frac{1}{\rho_w \cdot g} \cdot \left[p_{pre} \cdot \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)^{-1} - p_0 \right]$$

Leistung
$$P_{iso}(t) = \rho_w \cdot g \cdot Q \cdot H_{PT,iso}(t) = \rho_w \cdot g \cdot Q \cdot \left\{ H + \frac{1}{\rho_w \cdot g} \cdot \left[p_{pre} \cdot \left(\frac{1}{1 - \frac{t \cdot Q}{V_A + V_B}} \right) - p_0 \right] \right\}$$

Arbeit
$$W_{iso}(t) = \int_0^t P_{iso}(t)dt = \rho_w \cdot g \cdot t \cdot Q \cdot H + p_{pre}(V_A + V_B) \cdot \ln\left(\frac{1}{1 - \frac{t \cdot Q}{V_A + V_B}}\right) - t \cdot Q \cdot p_0$$

BUOYANT ENERGY STORAGE

Ansatz zur Steigerung der Speicherkapazität

Adiabate Zustandsänderung: pV/(nT) = const.

- Ideale Isolation der äußeren Hülle.
- Kein Wärmeaustausch mit der Umgebung.

Ansatz zur Steigerung der Speicherkapazität

Adiabate Zustandsänderung: pV/T = const.

• Annahmen:

$$H = h/2 = const. \qquad | \qquad Q = const.$$
$$V_A = V_B \qquad | \qquad Q \cdot t = V_A \qquad | \qquad x_i \cdot A_i = t \cdot Q$$

Innendruck
$$p_{adi}(t) = p_{pre} \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)$$

Druckhöhe
$$H_{PT,adi}(t) = H + \frac{1}{\rho_w \cdot g} \cdot \left[p_{pre} \cdot \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)^{-\kappa} - p_0 \right]$$

Leistung
$$P_{adi}(t) = \rho_w \cdot g \cdot Q \cdot H + Q \cdot p_{pre} \cdot \left(1 - \frac{t \cdot Q}{V_A + V_B}\right)^{-\kappa} - Q \cdot p_0$$

Verbindungselement

$$T_0$$
 [°C]
 $Vol. V_A$
 $p(t)$
 x_i
 $vol. V_B$
 $p(t)$
 $vol. V_B$
 $vol. V_B$
 $p(t)$
 $vol. V_B$
 $vol. Vol. V_B$
 $vol. V_B$
 $vol. V_B$

Adiabatenkoeffizient $k = c_p/c_V$

Arbeit
$$W_{adi}(t) = \int_0^t P(t) dt = \rho_w \cdot g \cdot t \cdot Q \cdot H + p_{pre} \frac{V_A + V_B}{(1 - \kappa)} \cdot \left[1 - \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)^{1 - \kappa} \right] - t \cdot Q \cdot p_0$$

Ansatz zur Steigerung der Speicherkapazität

Adiabate Zustandsänderung: pV/T = const.

• Annahmen:

Verbindungselement H = h/2 = const. | Q = const. $\begin{array}{c} \overbrace{X_{i}}^{T_{i}}(t)[^{\circ}C] & Vol. V_{A} \\ p(t) & \swarrow \\ \xrightarrow{X_{i}} & \xrightarrow{Y} \end{array}$ $T_0 [°C]$ $V_A = V_B$ | $Q \cdot t = V_A$ | $x_i \cdot A_i = t \cdot Q$ Innendruck $p_{adi}(t) = p_{pre} \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)^{-\kappa}$ | Temperatur $T(t) = T_{pre} \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)^{1-\kappa}$ Vol. V_{R} p(t)Druckhöhe $H_{PT,adi}(t) = H + \frac{1}{\rho_{W} \cdot q} \cdot \left[p_{pre} \cdot \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)^{-\kappa} - p_0 \right]$ Abfluss Q, Pumpturbine Adiabatenkoeffizient $P_{adi}(t) = \rho_w \cdot g \cdot Q \cdot H + Q \cdot p_{pre} \cdot \left(1 - \frac{t \cdot Q}{V_A + V_B}\right)^{-\kappa} - Q \cdot p_0$ Leistung $k = c_p/c_V$ $W_{adi}(t) = \int_0^t P(t) dt = \rho_w \cdot g \cdot t \cdot Q \cdot H + p_{pre} \frac{V_A + V_B}{(1 - \kappa)} \cdot \left[1 - \left(1 - \frac{t \cdot Q}{V_A + V_B} \right)^{1 - \kappa} \right] - t \cdot Q \cdot p_0$ Arbeit

Ansatz zur Steigerung der Speicherkapazität

Ergebnis eines exemplarischen Hydropneumatischen BEL-Speichers

h = 30 m $A = 1000 m^2$ $V = 30000 m^3$ $p_{start} = 10,13 bar$ $Q = 5 m^3/s$ $t_{max} = 3000 s$ k = 1,4

Ansatz zur Steigerung der Speicherkapazität

Ergebnis eines exemplarischen Hydropneumatischen BEL-Speichers

h = 30 m $A = 1000 m^2$ $V = 30000 m^3$ $p_{start} = 10,13 bar$ $Q = 5 m^3/s$ $t_{max} = 3000 s$ k = 1,4

Ansatz zur Steigerung der Speicherkapazität

Ergebnis eines exemplarischen Hydropneumatischen BEL-Speichers

h = 30 m $A = 1000 m^2$ $V = 30000 m^3$ $p_{start} = 10,13 bar$ $Q = 5 m^3/s$ $t_{max} = 3000 s$ k = 1,4

Textilmaterial als Hüllkonstruktion

Mögliche Ausführungsvariante

Vorteile

- Geringes Gewicht
- Leicht transportierbar
- Flexible Konstruktion (Wellenangriff)
 - Multi-Layer-Textilen
 - Ausführung als langgezo
 - gener Schlauch

15. Symposium Energieinnovation | Bernd Steidl | 15.02.2018

Seite 20

Textilmaterial als Hüllkonstruktion

Mögliche Ausführungsvariante

Anforderungen

- Hohe Belastbarkeit gegen äußere Einwirkungen.
- Hohe Dauerhaftigkeit
- Biologisch inert
- Luft- und Wasserdicht

Material	Längszugfestigkeit	Einheit
Vectran [™] HT	3,2	GPa
Glasfaser	~3,4	GPa
Carbonfaser	~4,1	GPa

- 1. <u>Buoyant (=schwimmend, lebhaft)</u> <u>Energy</u> Speicher
 - BE "schwer" (BEQs) vs. BE "Leicht" (BEL)
 - Speicherkapazität BE-Konzept
- 2. Hydropneumatischer BEL-Energiespeicher
 - Ansatz zur Steigerung der Speicherkapazität
 - Textilmaterialien als Hüllkonstruktion
- 3. Zusammenfassung und Ausblick

- Deutliche Steigerung der Speicherkapazität durch Kombination des BEL-Systems mit Druckluft.
- Infolge der Luftkompression kommt es zu einer stark variierenden Druckhöhenänderung während dem Ladeund Entladezyklus.
- Geringes Gewicht, leichter Transport und Produktion in Österreich durch die Verwendung von Textil.
- Modulare Bauweise möglich.
- Pumpspeicher Know-how-Transfer in die Welt.

Zusammenfassung und Ausblick

BUOYANT ENERGY STORAGE

