

Methoden zur Flexibilisierung des Energieverbunds Industrie-Stadt – eine technische, ökonomische und ökologische Analyse

Motivation und zentrale Fragestellung

- 1/3 des österreichischen Endenergiebedarfs wird von der Industrie verursacht
- Nutzung der Abwärme zur Wärmeversorgung von Haushalten
 - → Problem: Abwärme und Wärmebedarf sind zeitlich inkongruent

Wie kann der Energieverbund Industrie- Stadt flexibler gestaltet werden und das Potenzial an industrieller Abwärme besser ausgeschöpft werden?

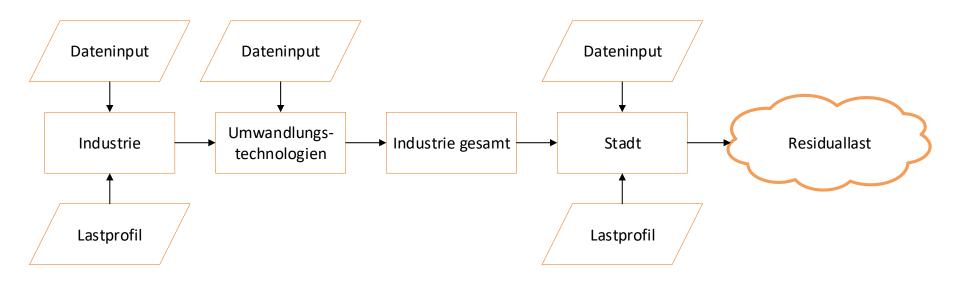
Flexibilisierung des Energieverbunds

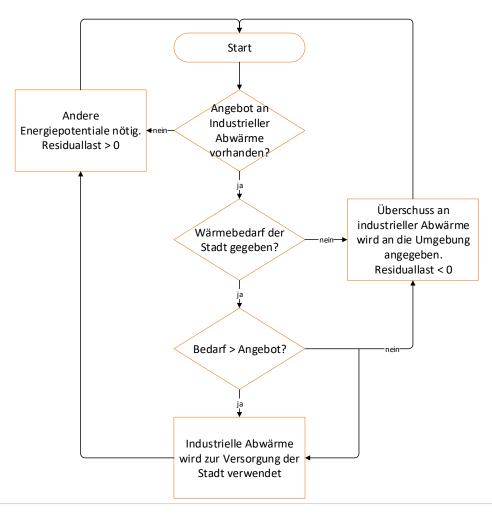
Referenzszenario

keine Abwärmenutzung

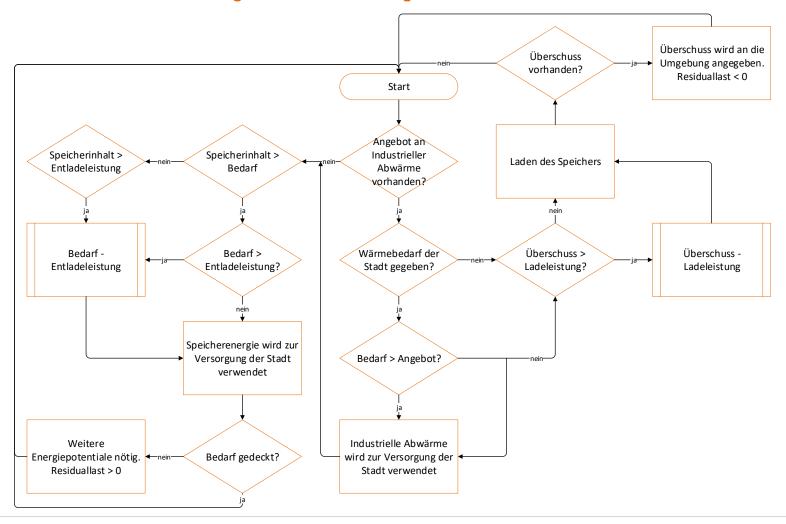
Szenario 1 Abwärmenutzung

Szenario 2 Flexibilitätsoptionen

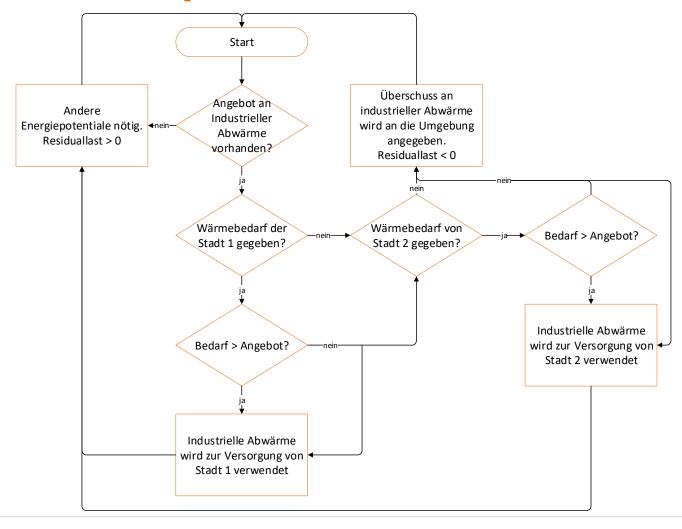




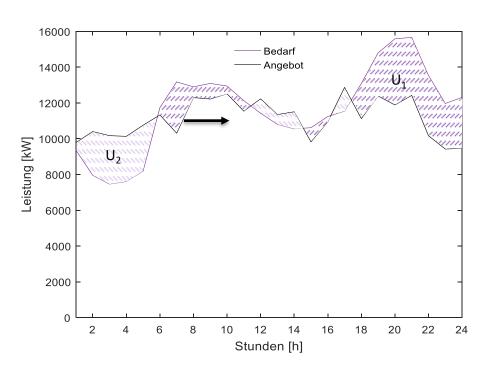
Allgemeiner Modellaufbau



Allgemeiner Modellaufbau



Flexibilitätsoption: Speicher



Flexibilitätsoption: Städteverbund

Flexibilitätsoption: Lastverschiebung

Optimierung

Zielfunktion

$$\min U = U_1 + U_2$$

Nebenbedingungen

$$B_{t} \geq \sum_{i=1}^{n} A_{i,t+T_{i}} \Rightarrow U_{1} = \sum_{i=1,t=0}^{n,t_{e}} B_{t} - A_{i,t+T_{i}}$$

$$B_{t} < \sum_{i=1}^{n} A_{i,t+T_{i}} \Rightarrow U_{2} = \sum_{i=1,t=0}^{n,t_{e}} A_{i,t+T_{i}} - B_{t}$$

Variable Bedingungen

$$0 \le T_i \le 100$$

 $T_2 - T_1 = 4$
 $T_1 = T_3$

Indikatoren

Deckungsgrad (DG)

$$DG [\%] = \frac{100}{8760} * \int_{t=0}^{8760} DG_t [-] * dt$$

$$B_{St,t} \ge A_{IB,t} \Rightarrow DG_t [-] = \frac{A_{IB,t} [MW]}{B_{St,t} [MW]}$$

$$B_{St,t} < A_{IB,t} \Rightarrow DG_t [-] = 1$$

CO2 – Emissionen

$$\begin{aligned} &CO2_{neu} \left[\frac{t}{a} \right] \\ &= B \\ &* \left((1 - VG) * \left(\sum_{i=1}^{n} \left(EmF_{ET,i} * All_{ET,i} \right) \right) + (VG - DG) \end{aligned}$$

Barwert (NPV)

$$NPV [\in] = \sum \frac{REV - EXP}{(1+i)^t} - INV$$

→ Maximierung des Barwerts als Basis für die Speicherauslegung

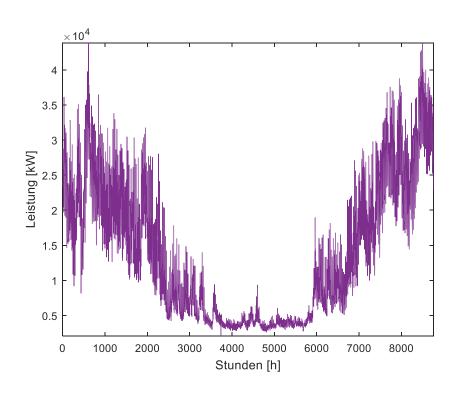
Ausnutzungsgrad (AG)

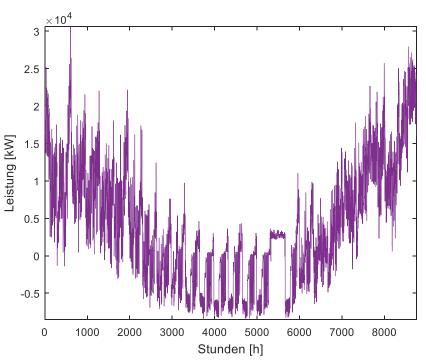
$$AG \left[\%\right] = \frac{DG \left[\%\right]}{VG \left[\%\right]}$$

Rahmenbedingungen

- Stadt
 - 10.000 Einwohner
 - Fernwärmenetz vorhanden,
 Ausbau nötig
 - Nachbarstadt in 8 km
 Entfernung

Kennzahl	GWh	Anmerkung
Wärmebedarf (brutto)	123	Haushalte, Dienstleistungssektor
Regionale Wärmeversorgung	39,7	Abwärme, Biomasse
Wärmebedarf (netto)	83,3	Berücksichtigt vorhandene regionale Versorgung

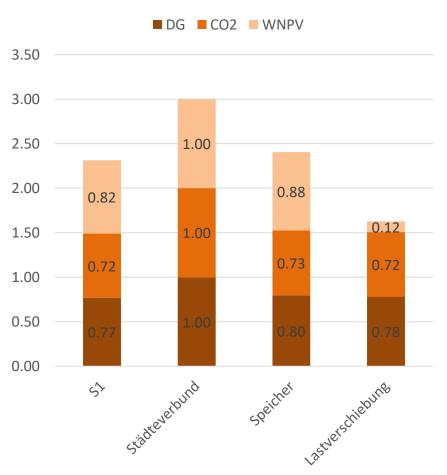

- Industrie
 - Unternehmen 1
 - Schmieden von Blattfedern
 - Unternehmen 2
 - Walzen von Edelstahlstäben
 - Unternehmen 3
 - Bandverzinkung
- Hochtemperaturabwärme: Rauchgas, 500°C
- Niedertemperaturabwärme:
 Kühl- und Prozesswasser, > 30°C



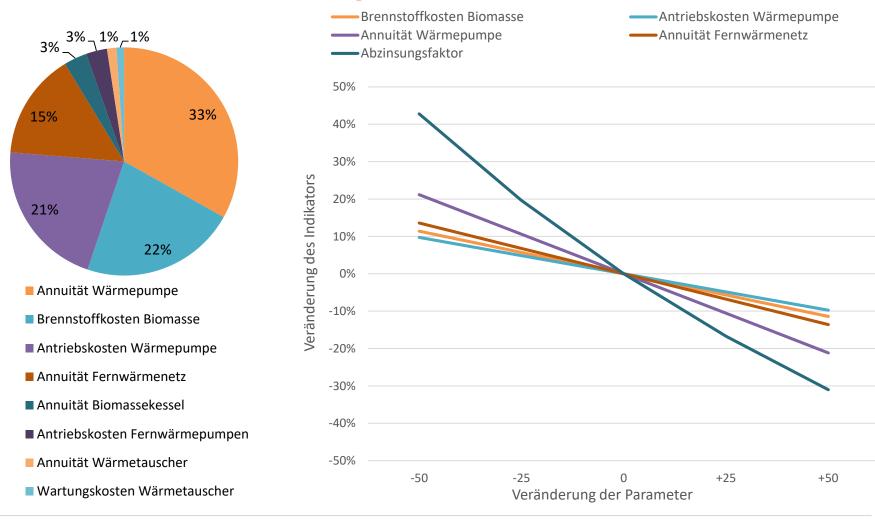
Wärmeversorgung der Stadt - Lastgang

Referenzszenario

Szenario 1

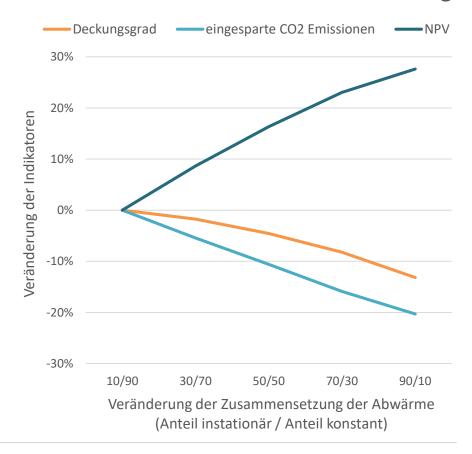


Ausnutzungsgrad: 77%


Ergebnisvergleich der Szenarien

Szenario	DG [%]	AG [%]	CO2 [t]	NPV [M€]
Referenz	0	0	21.605	0
Szenario 1	44	77	12.944	21
Städtever- bund	57	100	10.071	26
Speicher	46	80	12.888	23
Lastver- schiebung	45	78	12.921	3

Sensitivitätsanalyse – Szenario 1



Sensitivitätsanalyse – Szenario 2

- Speichergröße
 - Variation um ± 50%
 - Auswirkungen < 1%
- Distanz Städte
 - Variation um ± 50%
 - Auswirkungen auf den Barwert
 ± 10%
 - Keine Auswirkung auf den Deckungsgrad und CO₂ Emissionen → konstanter Wärmeverlust

Variation der Abwärmezusammensetzung

15

Zusammenfassung

- Modellierung eines Industrie-Stadt Energieverbunds basierend auf stündlichen Lastprofilen
- Integration von Flexibilitätsoptionen
- Bisher wird industrielle Abwärme nicht genutzt
- Ausnutzungsgrad < 100% → Flexibilitätsbedarf
 - Flexibilitätsoptionen
 - Städteverbund
 - Wärmespeicher
 - Lastverschiebung
- Indikatoren
 - Deckungsgrad
 - Eingesparte CO2 Emissionen
 - Barwert
 - Die Schaffung eines Städteverbunds liefert das beste Ergebnis über alle Indikatoren!

Schlussfolgerungen

- Industrielle Abwärme ist ein kostengünstiger Energieträger und sollte daher genutzt werden
- Flexibilitätsoptionen sind nur dann sinnvoll wenn ein vorübergehendes Überangebot an industrieller Abwärme besteht
 - Ständiges Unterangebot: Abwärme kann immer integriert werden
 - Ständiges Überangebot
 - Weniger Abwärme nutzen
 - Weitere Senke vorhanden?

Diskussion und Ausblick

- Bedarf an Flexibilitätsoptionen in der Literatur bekannt
- Modell kann einfach an andere Rahmenbedingungen angepasst werden
- Jeder Industriebetrieb ist einzigartig, Ergebnisse sind nicht 1 zu 1 übertragbar, liegen aber in bekannten Größenordnungen
- Modell ist abhängig von den Daten: Verfügbarkeit? Qualität?
- Modell berücksichtig keine geografische Verortung
- Weiterentwicklungsmöglichkeiten:
 - Kombinierte Betrachtung von Städteverbund und Speicher
 - Integration weiterer Flexibilitätsansätze
 - Integration weiterer Energiesenken (Industrie)

Vielen Dank!

Katharina Karner MSc

FH JOANNEUM Gesellschaft mbH

Bachelor "Energie-, Verkehrs- und Umweltmanagement"

Master "Energy & Transport Management"

Werk-VI-Straße 46

8605 Kapfenberg

Tel: +43 (0) 3862 33600 8364 Fax: +43 (0) 3862 33600 8381

Mail: katharina.karner@fh-joanneum.atl

Internet: www.fh-joanneum.at/evu

