

Estimating the value of demand response for resource

adequacy

Hamid Aghaie

AIT Austrian Institute of Technology, Austria

February 2018

Introduction

- Resource Adequacy Problem
 - Insufficient investment in new non-renewable generation capacity
 - Generators have difficulty to recover their investment cost
- 3 main reasons
 - I. Political or regulatory price interventions
 - Bid cap or price cap suppresses scarcity (high) prices
 - II. Increasing investment risks
 - Uncertainty in future market regulation and design
 - III. Integration of large share of variable renewables
 - Lower prices
 - Less utilization of conventional generators

- Resource Adequacy Value:
 - The contribution to the generation fleet during peak load
- Higher resource adequacy of a generation technology results in differ/postponing investment in new power plants (mainly peaking units such as CCGT)
- The resource adequacy value of intermittent renewables is relatively low
 - In the last three years in Germany, this value for wind and PV was between 4% to 8% of their total installed capacity

Research Question:

- How much is the resource adequacy value of DR in the German electricity market?
- In other words, how much DR is available during peak load (as a percentage of total DR capacity)
- System operators need to consider the risk of exceeding DR constraints by estimating resource adequacy value of DR.

- Resource adequacy value of DR mainly depends on:
 - Type of DR and DR dispatch constraints
 - Share of RES in the market
 - DR penetration
 - Reserve margin
 - Peak load season

- Generation Capacity Expansion Model
 - Probabilistic Model
 - Uncertainty from variable RES, DR, ...
 - Resource inadequacy events are infrequent
- Approach
 - Modeling generation and load uncertainty
 - Monte Carlo samples from generation and load by considering the uncertainties.
 - Capacity Credit of RES
 - Forced outage of conventional generation
 - Demand growth rate
 - Load forecast error
 - Weather-related uncertainty

Model

Fig. 6. Simulation algorithm flowchart

AUSTRIAN INSTITUTE OF TECHNOLOGY

Fig. 7. Simulation flowchart for one year

DR capacity would be dispatched if the load exceeds the reserve margin.

- DR constraints:
 - Maximum DR-call hours per day
 - Maximum DR-call hours per year
 - Maximum MWh dispatched DR per day
- Data: Day-ahead German electricity market

Fig. 5. Typical supply curve

• DR utilization values reflect the probability-weighted average of DR utilization over a large number of scenarios.

Fig 6. Average DR Dispatch hours per day at different reserve margins

- At 6.5% reserve margin and in presence of 20% generation by variable RES
 - total annual DR call is 29 hours
 - maximum DR call hours per day : 5 hours
 - maximum amount of dispatched DR per day : 1,760 MWh/day
- In order to maintain 100 % resource adequacy value for DR, the call limit should be as high as 5 hours per day at 6.5 % reserve margin.

Fig. 7. Sorted average DR dispatch hours per day (hours/day)

- By assuming a maximum 4 hours call per day limit, the resource adequacy value of DR is approximately 16 % at the 0 % reserve margin, and 65 % at 6.5 % reserve margin.
- At the same dispatch limit (4 hours/day): resource adequacy of DR in Germany is 65% and in Colorado 70%.

Fig 8. Average volume of dispatched DR per day at different reserve margins

- At 6.5% reserve margin and in presence of 20% generation by variable RES
 - total annual DR call is 29 hours
 - maximum DR call per day is 5 hours
 - maximum amount of dispatched DR per day is 1,760 MWh/day
- Any DR dispatch constraint lower than these numbers will result in resource adequacy value of less than 100% for DR.
- System operators need to consider the risk of exceeding DR constraints by estimating resource adequacy value of DR.

Thank You!

- Capacity credit of variable RES
 - Generation by variable RES during peak load
 - Peak load in Germany occurs in cold winter evenings
 - Capacity credit of PV is almost zero

Fig. 8. Capacity credit ratio of variable RES versus RES penetration