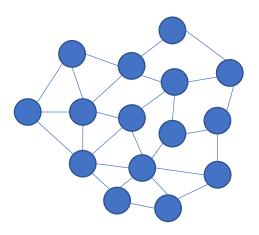
Blockchain als Lösungsansatz für die zukünftige Stromversorgung?

Einführung

Aufgabenstellung


Blockchain als Lösungsansatz für die zukünftige Stromversorgung?

- → Einsatzmöglichkeiten
- → Chancen und Risiken
- → potenzielle Auswirkungen

Definition Blockchain

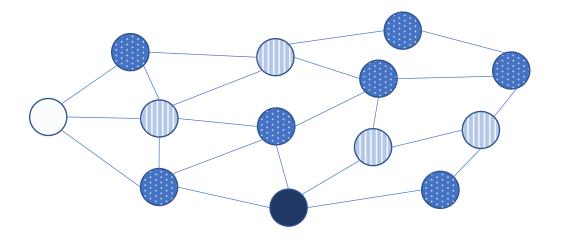
- Blockchain als technisches Konzept
- verteilte Netzwerkstruktur
- Konsensmechanismus durch Netzwerk
- Kernfunktionen:
 - Nachweis der Integrität von Daten
 - Registrierung und Beurkundung von Sachverhalten
 - Abwicklung von Transaktionen

Blockchain-Typen

	Öffentliche Blockchain	Private Blockchain
Identität der Teilnehmer	anonym	bekannt
Zugang	offen (permissionless)	autorisiert (permissioned)
Lesen	jeder	nicht zwingend jeder alles
Schreiben	jeder	jeder
Validieren	jeder	meist bestimmte Teilnehmer
Geschwindigkeit	langsam	schneller
Assets	on-chain Assets	alle Assets möglich

Quellen: siehe zugehöriges Paper

Vorteile


- höherer Datenschutz durch Autorisierung
- schnellere Validierung
- geringere Energiekosten für Transaktionen

Grundstruktur einer privaten Blockchain

Aufbau einer verteilten Netzwerkstruktur mit den Teilnehmern:

- Plattformbetreiber
- aktive Teilnehmer
- Vertrauensteilnehmer

Legende: Plattformbetreiber Anbieter Nachfrager Vertrauensteilnehmer

Stromhandel Einsatz im klassischen Stromhandel und Peer-to-Peer-Handel

- Automatisierung der Ausführung von Handelstransaktionen & Verrechnung → Senkung Prozesskosten, kürzere Intervalle
- Vernetzung der Teilnehmer → Kommunikationsmöglichkeit
- Nachvollziehbarkeit der einzelnen Handelstransaktionen
- Entfall/Verringerung der Informationsweiterleitung

Risiken/ Nachteile

- Steigerung der Komplexität des Systems → Gefahr von Fehlern
- Prepaid-Charakter → Umbuchungen notwendig
- OTC-Handel nur bedingt über Blockchain abbildbar (individuelle Produkte)

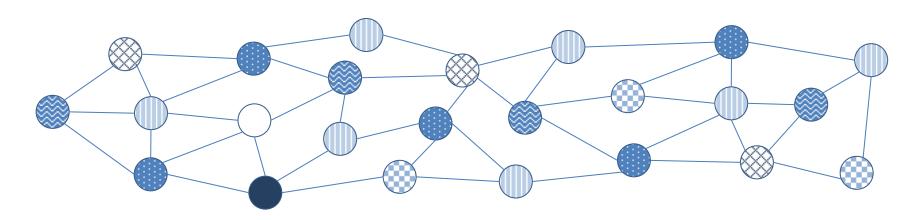
Systemdienstleistungen Frequenzhaltung, Engpass- und Einspeisemanagement

- Vernetzung von Erzeugungs- und Verbrauchseinheiten zur Erbringung von Systemdienstleistungen → Ansteuerung durch ÜNB im Bedarfsfall
- Möglichkeit der Nutzung des Potentials von kleinen Akkumulatoren
- Automatisierung der Verrechnung

Risiken/ Nachteile

- Steigerung der Komplexität des Systems durch Vielzahl an Beteiligten → Fehlerpotential, hoher Aufwand für Präqualifikation
- Schnittstellen zu bestehenden Systemen → Fehlerpotential
- Umbuchungen notwendig

Abrechnung Verbraucher & Besitzer von Erneuerbare-Energien-Anlagen



- Kunden mit Smart Meter
 - Automatisierung der Abrechnung
 - Abrechnungsintervalle beliebig
 - exakte Abrechnung (Energie- und Leistungswerte für alle vier Quadranten)
- Kunden ohne Smart Meter
 - Automatisierung der Abrechnung
 - kein zweites Abrechnungssystem notwendig
- Allgemein
 - Automatisierung der "Verteilung" der einzelnen Strompreisbestandteile
 - Umbuchungen notwendig

Beschreibung des Modells

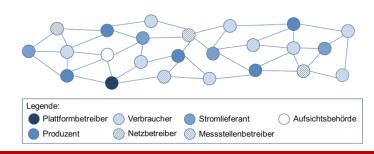
Legende:

Plattformbetreiber Verbraucher

Stromlieferant

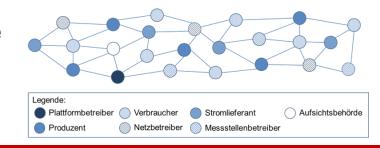
Aufsichtsbehörde

Produzent

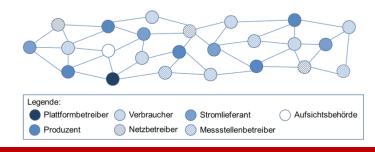


Netzbetreiber Messstellenbetreiber

Auswirkungen auf Marktrollen (1/4) Plattformbetreiber & Stromlieferant


- Plattformbetreiber
 - Bereitstellen, Betrieb und Weiterentwicklung der Plattform
 - Verwaltung der Blockchain → Aufnahme neuer Teilnehmer
 - unabhängiges Unternehmen
- Stromlieferant
 - neue Konkurrenz
 - Backup-Funktion → geringeres Absatzvolumen & schlechtere Planbarkeit
 - variable Stromtarife mit automatisierter Abrechnung

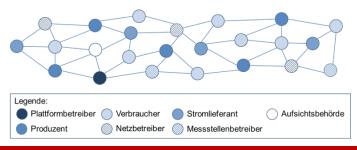
Auswirkungen auf Marktrollen (2/4) Messstellenbetreiber & Netzbetreiber


- Messstellenbetreiber
 - zuverlässiger Betrieb intelligenter Messsysteme Grundvoraussetzung für Blockchain-Einsatz
 - weitgehender Entfall der Erhebung, Verarbeitung und Weiterleitung von Daten
- Netzbetreiber (Verteil- und Übertragungsnetzbetreiber)
 - keine unmittelbare Veränderung der physikalischen Stromversorgung
 - Zugriff auf gespeicherte Verbrauchs- und Erzeugungsdaten für Betriebsführung
 - Entfall der Fahrplananmeldung
 - automatisierte Abrechnung der Netzentgelte

Auswirkungen auf Marktrollen (3/4) Peer-to-Peer-Produzent

- Peer-to-Peer-Produzent
 - direkter Verkauf von kleinen Strommengen → Ersatz Festvergütung
 - vorrangige EE-Einspeisung → Mindestvergütung bei Nicht-Verkauf
 - Rolle als Stromlieferant mit umfangreichen Verpflichtungen → neue Rolle des "besonderen" Stromlieferanten notwendig

Auswirkungen auf Marktrollen (4/4) Verbraucher & Aufsichtsbehörde



Verbraucher

- Strombezug über P2P-Plattform möglich
- Vertrag mit Stromlieferant weiterhin notwendig
- Strombezug von mehreren Lieferanten → komplexere Abrechnung
- Bewusstsein für Strompreisbestandteile notwendig

Aufsichtsbehörde

- Übernahme durch z. B. Agentur ACER, Kartellbehörde oder BNetzA
- Vertrauensteilnehmer → Beteiligung an Validierung
- Entfall bzw. Verringerung des Berichtaufwands

Änderungsbedarf Bilanzkreissystem – Bilanzkreiskonto des Bilanzkreisverantwortlichen

Zuordnung der Erzeugungsanlage zum Bilanzkreis des Lieferanten

- → Übernahme der Bilanzkreisverantwortung
- → neue Zusammensetzung des Bilanzkreiskontos

Eingang	Ausgang	
Beschaffung (Großhandel)		
P2P-Erzeugung	Verbrauch	

bei Differenz: Beschaffung Ausgleichsenergie

Blockchain als Lösungsansatz für die zukünftige Stromversorgung?

- Rationalisierungspotential
 - Automatisierung
 - Entfall/Verringerung von Informationsweiterleitung
- neue Möglichkeiten durch Vernetzung vieler kleiner Erzeuger, Verbraucher und Akkumulatoren
 - Direktvermarktung von kleinen Mengen EE-Strom
 - Einsatz kleiner Akkumulatoren für Systemdienstleistungen
 - → Möglichkeit neuer Geschäftsmodelle
- Anpassungen von Prozessen, Mechanismen und Gesetzen erforderlich
- weiterführende Behandlung der technischen Realisierbarkeit notwendig

Autoren: Eva Götz, Alfons Haber, Sascha Hauke

Hochschule Landshut Am Lurzenhof 1 84036 Landshut Tel. +49 (0)871 – 506 0

Fax +49 (0)871 – 506 506

info@haw-landshut.de www.haw-landshut.de