

Fairness and the Willingness to Pay for Public Goods

Mark Andor Manuel Frondel Stephan Sommer

RWI - Leibniz-Institute for Economic Research

Graz, 02-15-2018

Fairness

- Fairness may affect a wide range of economic outcomes such as redistribution and taxes (Esarey et al. 2012; Höchtl et al. 2012) and international climate negotiations (Kesternich et al. 2014; Lange and Vogt 2003; Vogt 2016)
- Fairness perceptions are also of major relevance for price setting (Kahneman et al. 1986)
- Consumers gain transaction utility from the perceived value of a deal (Thaler 1985)
- The only study that causally analyzes the effect of fairness on the WTP for public goods is Ajzen et al. (2000)

- We conduct a stated-choice experiment among 11,000 individuals to explore how fairness affects the WTP for green electricity in Germany
- Our results suggest a preference for equal contributions as removing existing exemption rules raises the stated WTP for green electricity
- Huge effects: Equalizing the contributions across the customer groups has a larger effect than quartering the amount of the own contribution
- · Far-reaching implications for policy-makers in other fields

Promotion of Renewable Energy Sources

- Promotion via a system of technology-specific feed-in tariffs (FIT) that was introduced in 2000
- Until 2016 the capacity of RES rose from 12 to 104 Gigawatt, while the share of generation was about 33%
- The promotion is financed via the so-called EEG-levy (in 2017 6,88 ct/ kWh)
- Altogether, customers had to bear EUR 24 billion in 2016

Industry Exemptions

- Energy-intensive companies are eligible for rebates to assure international competitiveness if
 - 1 their consumption level exceeds 1 million kWh
 - 2 their electricity cost intensity exceeds a sector-specific percentage
 - 3 they implemented an energy management system
- 2,105 companies were exempted in 2016, i.e. 4% of industrial companies
- These companies consume about 40% of industrial electricity

- We conducted a between-subject stated-choice experiment among 11,375 household heads using the representative household panel of forsa
- Participants were randomly split into three experimental groups
- Single binary question on the willingness-to-pay for increasing the share of renewable energy sources
- We vary the information on the exemptions and the payment rule

Experimental Setting

Framework

In Germany, the promotion of renewable energies is financed via the so-called EEG-levy. This levy has to be paid by every household for each unit of electricity consumed (kWh) and in 2015 amounts to $6.17~{\rm ct/kWh}$.

Since the average electricity price in 2015 is 28.8 ct/kWh, this corresponds to a share of some 21%.

Treatment Groups

Keep Condition

"Given that the exemptions are kept, are you willing to pay an increase in the EEG-levy by \times ct/kWh to achieve the goal of increasing the share of renewable energies to 35% by 2020?" x[\in 1, 2, 4]

Abolish Condition

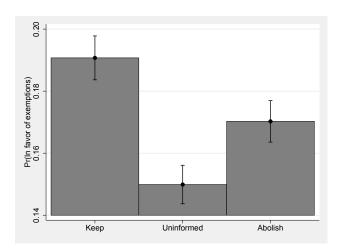
"Given that the exemptions are abolished, are you willing to pay an increase in the EEG-levy by \times ct/kWh to achieve the goal of increasing the share of renewable energies to 35% by 2020?"

Uninformed Condition

"Are you willing to pay an increase in the EEG levy by \times ct/kWh to achieve the goal of increasing the share of renewable energies to 35% by 2020?"

Levy	Keep Condition		Abolish Condition		Uninformed Condition	
	Obs.	Share	Obs.	Share	Obs.	Share
1 Cent / kWh	1,098	38.16%	1,121	73.60% (18.00**)	1,131	58.62% (9.87**)
2 Cent / kWh	1,104	29.17%	1,048	67.56% (19.29**)	1,090	49.36% (9.90**)
4 Cent / kWh	1,061	22.53%	1,069	60.90% (19.48**)	1,186	40.81% (9.44**)

Values in parentheses give the t-test statistic for equality in means between the treatment conditions and the control condition. ** denotes statistical significance at the 1% level.



	WTP = YES
	Coeff. / Std. Err.
Abolish	0.373** (0.012)
Uninformed	0.188** (0.012)
2 ct/kWh	-0.085** (0.012)
4 ct/kWh	-0.160** (0.012)
Age	0.002** (0.000)
Female	0.072** (0.011)
East Germany	-0.077**(0.013)
College degree	0.046** (0.011)
In(Income)	0.038** (0.010)
Green party	0.182** (0.017)
Industry share	-0.001(0.000)
In(Distance)	-0.012* (0.006)
Constant	0.067 (0.092)
Observations	8,879

Note: Standard errors are in parentheses. **,* denote statistical significance at the 1 % and 5 %level, respectively.

Justification of the Exemptions

Conclusion

- WTP for green electricity critically hinges on the payment rule
- Removing the existing exemption rule for the industry raises the stated WTP
- Equalizing the contributions has a larger effect than quartering the amount of the own contribution
- Learning about the existence of an unequal payment system rule decreases the WTP substantially
- Results have far-reaching implications for policy-makers in other fields

Reference

Contact Information

Stephan Sommer Hohenzollernstr. 1-3 45128 Essen, Germany stephan.sommer@rwi-essen.de www.rwi-essen.de

- Ajzen, Icek, Lori H Rosenthal, and Thomas C Brown (2000). "Effects of perceived fairness on willingness to pay". In: *Journal of Applied Social Psychology* 30.12, pp. 2439–2450.
- Esarey, Justin, Timothy C Salmon, and Charles Barrilleaux (2012). "What motivates political preferences? self-interest, ideology, and fairness in a laboratory democracy". In: *Economic Inquiry* 50.3, pp. 604–624.
- Höchtl, Wolfgang, Rupert Sausgruber, and Jean-Robert Tyran (2012). "Inequality aversion and voting on redistribution". In: European Economic Review 56.7, pp. 1406–1421.
- Kahneman, Daniel, Jack L Knetsch, and Richard H Thaler (1986). "Fairness and the assumptions of economics". In: *Journal of Business*, \$285–\$300.

- Kesternich, Martin, Andreas Lange, and Bodo Sturm (2014). "The impact of burden sharing rules on the voluntary provision of public goods". In: *Journal of Economic Behavior & Organization* 105, pp. 107–123.
- Lange, Andreas and Carsten Vogt (2003). "Cooperation in international environmental negotiations due to a preference for equity". In: *Journal of Public Economics* 87.9, pp. 2049–2067.
- Thaler, Richard (1985). "Mental accounting and consumer choice". In: *Marketing Science* 4.3, pp. 199–214.
- Vogt, Carsten (2016). "Climate coalition formation when players are heterogeneous and inequality averse". In: *Environmental and Resource Economics* 65.1, pp. 33–59.

