

Resource Adequacy with Increasing Shares of Wind and PV-Generation: A Comparison of European and U.S. Electricity Market Designs

Hans Auer, TU-Wien, Energy Economics Group (EEG) Audun Botterud, MIT, Lab. for Information and Decision Systems

TU-Graz, EnInnov 2018, 14/02/2018

- 1. Introduction/Background
 - Key questions addressed
 - Developments in electricity market prices in recent years
- 2. Variable renewable electricity generation in Europe and the United States
 - Penetration levels for renewable generation technologies
 - Support schemes for renewable generation technologies
 - Impacts of renewable electricity generation on wholesale market prices
- 3. Short-term electricity market operations
 - Comparison of European and U.S. markets
- 4. Long-term electricity market design
 - Different approaches to resource adequacy
 - Comparison of European and U.S. markets
- 5. Conclusions and recommendations

- What are differences and similarities in electricity market design in Europe and the United States?
- How does the rapid increasing in wind and PV generation impact electricity markets in the short- and long-term?
 - Wind and PV penetrations levels
 - Support schemes for variable renewable electricity (VRE)
 - Treatment / Implications of renewables in electricity market operations
- What are the pros and cons of the key electricity market design characteristics in Europe and Unites States?
- What are the possible electricity market design options for resource adequacy?
- Recommendations for improvements in electricity market design (general, Europe and U.S. specific)

Literature: European - U.S. Electricity Markets (Intro_2/5)

- Green R. (2008). "Electricity Wholesale Markets: Designs Now and in a Low-carbon Future." *The Energy Journal* 29(2): 95-124.
- Haas R. et al. (2008). "Promoting Electricity from Renewable Energy Source Lessions Learned from the EU, United States, and Japan". in: Competitive Electricity Markets: Design, Implementation, Performance, Elsevier Global Energy Policy and Economics Series, 1st Ed., Editor: F.P. Sioshansi, p. 419-468.
- Imran K., I. Kockar (2014). "A technical comparison of wholesale electricity markets in North America and Europe." Electric Power Systems Research 108: 59-67.
- Pollitt M.G., K.L. Anaya (2016). "Can current electricity markets cope with high shares of renewables? A comparison of approaches in Germany, the UK and the State of New York." *The Energy Journal* 37(2): 69-88.
- Conejo A. J., R. Sioshansi (2018). "Rethinking restructured electricity market design. Lessons learned and future needs." *Electrical Power and Energy Systems* 98: 520-530.

We provide an updated review and comparison of electricity market designs, with specific focus on resource adequacy with increasing renewable generation...

Electricity and Natural Gas Prices in Europe (Intro_3/5)

Sources: EEG-EEMD (2017) and BAFA (2017)

17/02/2018

Electricity and Natural Gas Prices in the U.S. (Intro_4/5)

Source: DOE Staff Report (2017)

17/02/2018

U.S. Capacity Additions and Retirements (Intro_5/5)

Wiser et al. , LBNL/ANL Report, Nov. 2017

Technology	United States		Europe (EU-28)	
	2005	2015	2005	2015
Hydro	6.7	6.1	10.7	10.9
Wind	0.4	4.6	2.1	8.9
Solar	0	1.1	0.0	3.4
Biomass	1.3	1.6	1.4	2.8
Other	0.4	0.4	1.0	2.9
Total [%]	8.8	13.8	15.2	28.8
Total [TWh]	358.2	567.3	490.5	972.2

- Hydropower still the largest renewable electricity resource, followed by wind power
- About twice as much renewables in Europe compared to United States; similar growth rates

Renewable Policy

- Europe: Green certificates, Feed-in tariffs, Feed-in premiums, Auction schemes
- United States: Renewable portfolio standards (state), Renewable portfolio goals (state), Production tax credits (federal), Investment tax credits (federal)

Carbon Policy (low carbon prices in recent years)

European emissions trading system (ETS), Regional emissions trading in U.S. (Northeast and California)

17/02/2018

Renewable Support Schemes in Europe (2012/2017) (Ren_2/6)

Source: EEG Green-X (2017)

Renewable Support Schemes in the U.S. (2017) (Ren_3/6)

Data source: DSIRE (2017)

- Net Metering
 - In majority of U.S. states
 - In several European countries
- Local Energy Sharing
 - Solar PV community
 - Microgrids
- Corporate interest in renewable electricity
 - Purchasing of VER by corporations (e.g. Google 100% renewable)
 - Green electricity offered by food retailers in Europe (e.g. Hofer)
- Community choice aggregation
 - At city and county level in the United States

Renewable Impact on Wholesale Electr. Prices (Ren_5/6)

- The merit order effect reduces electricity prices
 - Empirical literature indicates a larger effect in Europe (5-13 €/MWh) than the U.S. (0-9 \$/MWh)
- The occurrence of negative prices has also increased in Europe and the U.S. with higher VRE penetration levels

Negative prices in German electricity market

Source: Energy Brainpool (2017)

Drivers for Wholesale Price Decreases in the U.S. (Ren_6/6)

Natural gas price decline is the dominant driver in reduced average annual wholesale prices from 2008 to 2016 in ERCOT and CAISO; VRE impacts are modest, in part due to relatively flat supply curve

Wiser et al. , LBNL/ANL Report, Nov. 2017

Comparison: Short-term Market Operations (Short_1/2)

United States

- Build into existing system operators (ISOs)
 - Short-term system operation
 - ISOs do not own transmission system
 - Emphasize physics of the power system
- Short-term market operations
 - Day-ahead market (ISO hourly)
 - Real-time market (ISO 5 min)
 - Complex bids/ISO UC
 - Locational marginal prices
 - Co-optimization of energy and operating reserves
 - More centralized control through ISO
- Variable renewable energy
 - Intermittent policy support
 - Tax credits, renewable portfolio standards
 - "Dispatchable" VER
- Retail competition
 - Retail choice in some states

17/02/2018

<u>Europe</u>

- Introduced new power exchanges (PXs)
 - Include long-term contracts
 - TSOs typically own transmission system
 - Emphasize markets and economics
- Short-term market operations
 - Day-ahead and intraday markets (PX)
 - Real-time balancing markets (TSO)
 - Simple bids/generator UC
 - Zonal pricing/market coupling
 - Sequential reserve and energy markets
 - Market based, decentralized balancing through balance responsible parties
- Variable renewable energy
 - Strong policy support
 - Feed-in tariffs premiums, tenders/auctions
 - VER as "must-take"
- Retail competition
 - Retail choice in all countries

Revenue Sufficiency Challenge with Renewables (Short_2/2)

- Several ways to close the AC-MC gap
 - Scarcity pricing, demand response, higher offer prices in energy market
 - Capacity mechanisms

- Energy only market
 - Prices in energy (and reserves) markets provide investment incentives
 - Importance of scarcity rents
- Capacity mechanisms

Resource Adequacy: Current Status in Europe (Long_2/3)

Resource Adequacy: Current Status in U.S. (Long_3/3)

1411

Recommendations for Improved Market Design (Concl_1/2)

General electricity market improvements

- Gradual removal of technology specific subsidy schemes for clean energy
- Adequate pricing of carbon and other environmental externalities as a market compatible incentive scheme for clean energy resources
- Improved price formation in energy and reserves markets, particularly during scarcity situations
- Move day-ahead markets closer to the operating day
- Improved incentives for system flexibility from supply, demand and energy storage
- Enable participation of distributed energy resources and demand response in electricity markets
- · Reduce reliance on explicit capacity mechanisms to incentivize investments

Specific improvements for Europe

- Improved representation of transmission in market clearing to better reflect congestion in prices
- Imbalance netting to avoid opposite activation of frequency reserves in neighboring zones
- Shortening timeframes in intraday market
- Higher frequency of real-time dispatch and market clearing
- Co-optimization of energy and reserves instead of sequential/separate markets
- Economic dispatch of renewable resources
- Better coordination between TSOs
- Further develop retail competition, notably in terms of introducing more flexible and variable pricing/tariff products

Specific improvements for United States

- Increased liquidity and transparency in longterm contracts
- Implementation of intraday markets for market-based balancing
- Higher time resolution of settlements in real-time energy and reserve markets
- Further refinements of products in ancillary services markets
- Full co-optimization of energy and reserves in all regional U.S. markets
- Better coordination between regional capacity, energy, and reserves markets
- Open up for retail competition in larger parts of the country, along with innovations in flexible pricing/tariff design

- The impacts of variable renewable generation on electricity markets are more visible in European compared to U.S. electricity markets
- U.S. electricity markets better aligned with physics of the power grid: more centralized coordination and control
- European electricity markets more focused on markets: power exchanges also include long-term contracts
- How much of the "optimization problem" should be solved by system operators vs. market participants?
- No single solution: lessons to be learned in both directions
- Getting the price formation in short-term energy/reserve markets is the key challenge; capacity mechanisms only should be a back-up mechanism

- Collaborators
 - Audun Botterud
 - Todd Levin
 - Andrew Mills
 - Ryan Wiser

Massachusetts Institute of Technology (MIT) Argonne National Laboratory (ANL) Lawrence Berkeley National Laboratory (LBNL) Lawrence Berkeley National Laboratory (LBNL)

- MIT International Policy Lab
- References
 - Botterud A. and H. Auer, "Resource Adequacy with Increasing Shares of Wind and Solar Power: A Comparison of European and U.S. Electricity Market Designs," working paper.
 - Wiser R., Mills A.D., Seel J., Levin T., Botterud A., "Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs," Technical Report LBNL-2001082," Nov. 2017.

HANS AUER

Technische Universität Wien Institut für Energiesysteme und Elektrische Antriebe Energy Economics Group (EEG)

> Gußhausstraße 25-29 / E370-3 1040 Wien, Österreich

> > [T] +43 1 58801 370 357[E] auer@eeg.tuwien.ac.at[W] www.eeg.tuwien.ac.at