

Neue Brenner-Geometrien für eine bessere Verbrennung durch Additive Manufacturing

Nina Paulitsch

Combustion Bay One e.U. , advanced combustion management Graz, Austria

> CfP 15. Symposium Energieinnovation TU Graz, NEUE ENERGIE FÜR UNSER BEWEGTES EUROPA, 14. bis 16.02.2018

Co-Autoren und Background I

Fabrice Giuliani Combustion Bay One e.U. advanced combustion management Graz, Austria

advanced combust management Graz, Austria Daniele Cozzi, Michael Görtler JOANNEUM RESEARCH Forschungsgesellschaft mbH MATERIALS Institute for surface technologies and photonics, Niklasdorf, Austria

technologies and photonics, Niklasdorf, Austria

Lukas Andracher

FH Joanneum GmbH University of Applied Sciences Institute of Aviation, Graz, Austria

istitute of Aviation Graz, Austria

Co-Autoren und Background II

Das Projekt "rePorT" wird von der FFG (Österreichische Forschungsförderungsgesellschaft) und dem BMVIT (Bundesministerium für Verkehr, Innovation und Technologie) im Rahmen des "TAKE-OFF" Programms (Vertragsnr. 850454) unterstützt.

Die Machbarkeitsstudie über die Herstellung von neuartigen Brennerteilen mittels Additive Manufacturing wird auch von den oben genannten Institutionen finanziert (Vertragsnr. 862837).

Inhalt

- Einleitung
- Entwicklung
- Herstellung / Produktion
- Testverfahren und Ergebnisse
- Schlussfolgerung

Einleitung

- Entwicklung
- Herstellung
- Testverfahren und Ergebnisse
- Schlussfolgerung

"3-D-Druck leitet die dritte industrielle Revolution ein."

(Zitat aus Die Welt, von Inga Michler | Veröffentlicht am 02.06.2014)

Inhalt

Einleitung

Entwicklung

- Funktion des Drallerzeugers im Brenner
 neues Drallerzeuger-Design
- Herstellung
- Testverfahren und Ergebnisse
- Schlussfolgerung

Entwicklung - Funktion des Drallerzeugers im Brenner

Entwicklung

- neues Drallerzeuger-Design

Inhalt

- Einleitung
- Entwicklung

Herstellung / Produktion

- Stereolithografie
- SLM-Verfahren
- Nachbearbeitung
- Testverfahren und Ergebnisse
- Schlussfolgerung

Herstellung / Produktion - Stereolithografie

- UV- Laserstrahltechnik
- Druckermodell "Formlabs Form 2"
- Kunstharz "Flexible FLFLGR02"
- Prototypen für kalte, nicht reaktive Tests

Herstellung / Produktion - SLM-Verfahren I

Maschine Farsoon FS121M Spezifikationen:

- Plattform Dimensionen → 120mm x 120mm x 100mm in x,y,z Richtung (max. Bauteilgröße)
- Yb bre Laser 200W mit einem Durchmesserbereich von 40 100 μm

Pulver AMPO L718 Spezifikationen:

- Partikelgrößenverteilung 15-45 μm
- Fließfähigkeit (nach DIN EN ISO 4490) weniger als 18 s
- Dichte des Gesamtmaterials 8.20 g/cm3

Herstellung / Produktion - SLM-Verfahren II

Herstellung / Produktion - Nachbearbeitung

Roughness of downwards-facing surface at different angles

Inhalt

- Einleitung
- Entwicklung
- Herstellung

Testverfahren und Ergebnisse

- Testaufbau und Strömungsbedingungen
- Ergebnisse CFD
- Schlussfolgerung

Testverfahren und Ergebnisse - Testaufbau und Strömungsbedingungen

Testverfahren und Ergebnisse - Ergebnisse CFD I

8

6

4

2

0

abs. velocity (m/s)

8

X-Swirler

S2-Swirler

Testverfahren und Ergebnisse - Ergebnisse CFD II

Bei gleichen Betriebsbedingungen

- weitester Strahl mit X-Konfiguration
- größte Rezirkulationszone bei S2-Konfiguration

Der Strahl von

- X-Drallerzeuger weist reguläre axiale Symmetrie auf
- S2-Drallerzeuger wird stark von der S-Form beeinflusst; nicht axialsymmetrisch

Testverfahren und Ergebnisse - Ergebnisse CFD III

Werte bezüglich Druckverlust und Strömungswiderstandsbeiwert

	ΔΡ/Ρ [%]		Cd [-]	
Oberfläche/Richtung	GLATT	RAU	GLATT	RAU
X Kunstharz	1,84	2,09	1,98	2,16
S2 Kunstharz	1,72	1,82	1,84	1,92
X Inconel 718	2,12	2,36	2,55	2,9
S1 Inconel 718	1,78	2,12	2,09	2,55
S2 Inconel 718	2,04	2,21	2,31	2,84

	х	S1	S2
Drallzahl	0,37	0,35	0,40

Schlussfolgerung

Direkte Problemlösung

- Besserer Kompromiss zwischen Brennerform und Maschinenperformance
- Bezug Drallerzeuger
- Entwicklungspotenzial bei Nachbearbeitung
 - Integrierte Entfernung von Stützstrukturen
 - Oberflächenbehandlung/Verbesserung

DANKE für Ihre Aufmerksamkeit! Neue Brenner-Geometrien für eine bessere Verbrennung durch Additive Manufacturing

Nina Paulitsch, Fabrice Giuliani, Daniele Cozzi, Michael Görtler, Lukas Andracher

Combustion Bay One e.U.

advanced combustion management Schuetzenhofgasse 22 8010 Graz, Austria

CFD using ANSYS 15 CFX

3D flow simulation

- with 1.2 Mio volume elements that define the swirler
- 2.2 Mio volume elements define the rest of the computational domain

Keywords: unstructured volume mesh, k-ε turbulence model, RANS solver, dry air, non reactive flow

Testverfahren und Ergebnisse - Ergebnisse CFD III

S2 – Swirler Configuration

Testverfahren und Ergebnisse - Ergebnisse CFD IV

Х

Testbedingungen

		Range	Design point
Air mass flow rate	[g/s]	2 - 3.85	2.70
Gas mass flow rate	[g/s]	0.080 - 0.220	0.138
Flame thermal power	[kW]	2.68 - 10	6.35
<i>U_{ref}</i> (mixture)	[m/s]	3.56 - 6.45	4.7
U_e (mixture)	[m/s]	1.4 - 2.5	1.83
Room pressure	[bar abs]	1.013 - 1.016	same
Room temperature	[K]	291	same

Brennerperformance in der Umgebung der mageren Löschgrenze (LBO)

SLM - Verfahren

	SLM	SLA
Schichtdicke [µm]	30 µm	100 µm
Druckdichte [%]	99,9 %	/
Dauer [h/Stk]	10 h/Stk	3,30 h/Stk

