

Energieoptimierung von Microgrid Communities in Österreich und Japan

Johannes Mühlegger^{1*}, Robert Höller¹, Yuzuru Ueda²

- ¹ FH Oberösterreich, Studiengang Öko-Energietechnik
- ² Tokyo University of Science, Department of Electrical Engineering

Inhalt

- > Einleitung
- > Datensätze
 - Österreichische Community Wels
 - Japanische Community Ota
- > Autarke Stromversorgung
- > Wirtschaftlichkeit
- Zusammenfassung

Einleitung

Ziel:

- > 90% Autarkiegrad
- > 100% Nettoenergiequote (Bilanzielle Eigendeckung)

Warum?

Geringe Einspeisetarife

> Erhöhung des Eigenverbrauchs

Gefahr von Blackouts und Netz-Regulierungen (Fukushima)

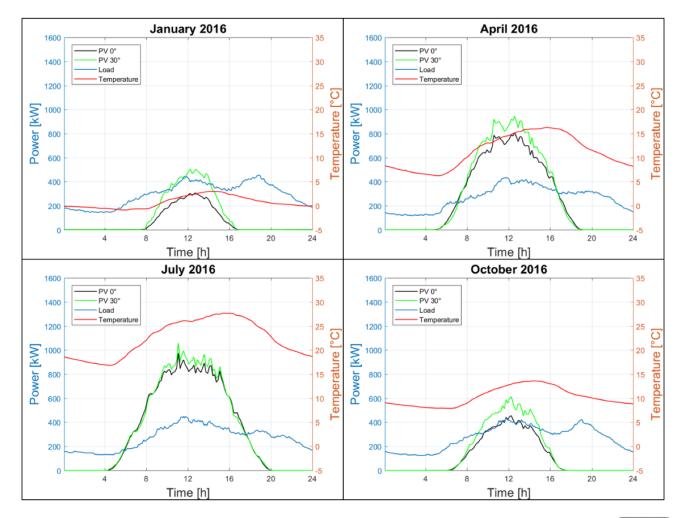
> Erhöhung des Autarkiegrades

Wie?

- > Analyse der Datensätze
- Verbesserung der Stromlast (Ota)
- > Dimensionierung des autarken Stromversorgungssystems

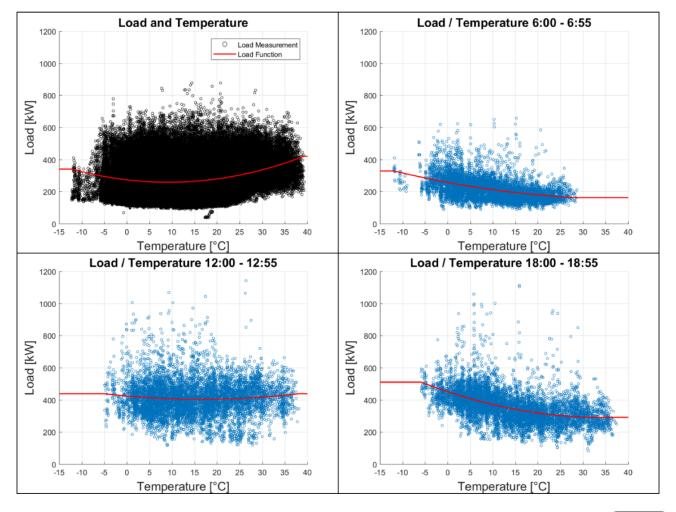
Datensätze

Datensätze	Österreich	Japan
Last Daten	Wels und Umgebung (50 km), 186 Haushalte, 5-minütige Auflösung (2015-2016)	Ota Community, 540 Haushalte, 1-minütige Auflösung (2006- 2008)
GHI Daten	Gemessen am Standort der FH OÖ, Campus Wels	Gemessen am Ota Standort
Temperatur Daten	Gemessen am Standort der FH OÖ, Campus Wels	Gemessen am Standort der JMA Maebashi Station (30 km)

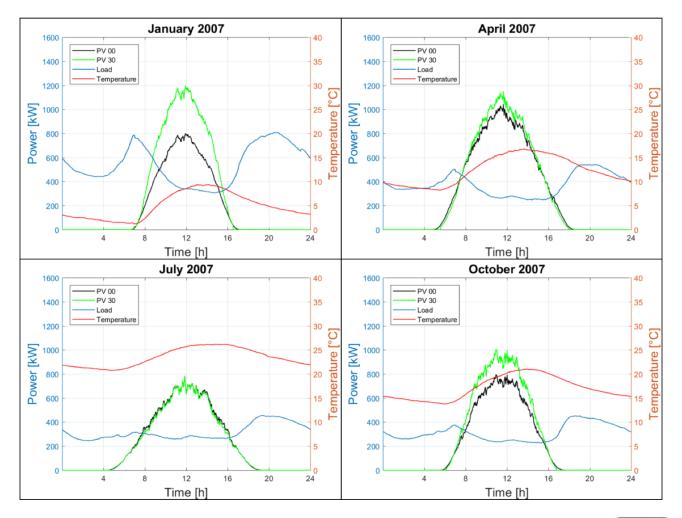

Datenanalyse:

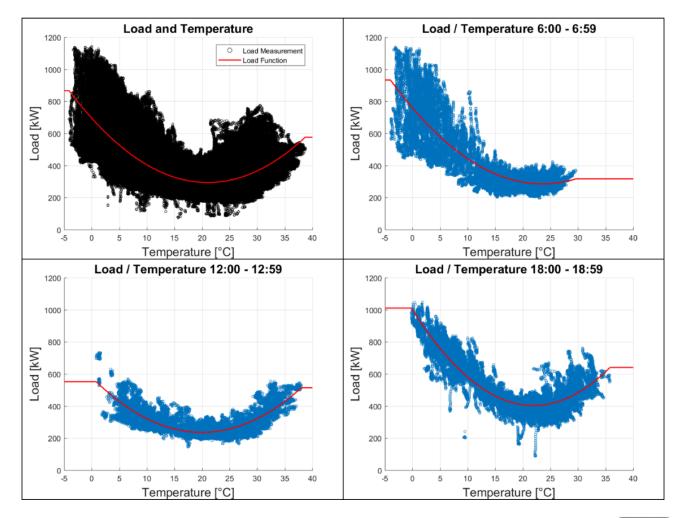
- > Monatlich gemittelte Last-, Umgebungstemperatur- und PV Ertrags- Profile
- > PV Ertrag basierend auf den GHI Messungen berechnet (2 MWp, Südausgerichtet, 30° Neigung)
- > Temperaturabhängigkeit der Community Stromlasten

Österreichische Community - Wels


Monatlich gemittelte Last-, Umgebungstemperatur- und PV Ertrags- Profile

Österreichische Community - Wels

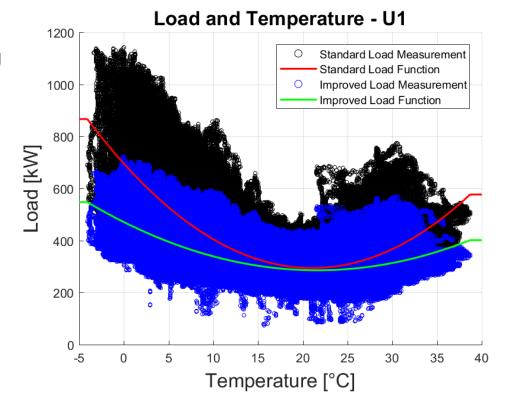

Temperaturabhängigkeit der Community Stromlast


Japanische Community - Ota

Monatlich gemittelte Last-, Umgebungstemperatur- und PV Ertrags- Profile

Japanische Community - Ota

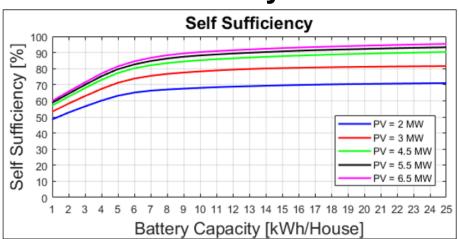
Temperaturabhängigkeit der Community Stromlast

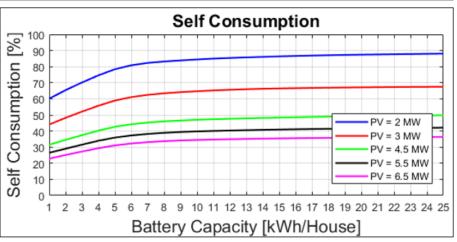

Japanische Community - Ota

Verbesserung der Stromlast

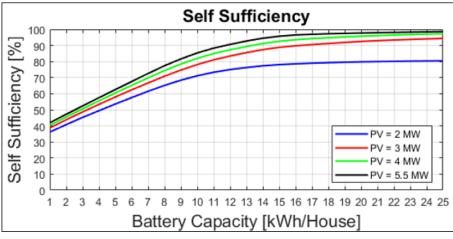
ZEH Entwicklungsplan (Ministry of Economy, Trade and Industry) [1]

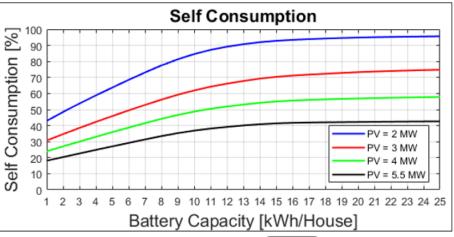
- Nutzung effizienter Geräte
- Vermeidung unnötiger Lasten
- > Angemessene Wärmedämmung


U-Werte [W/m²K]	Österreich [2]	Japan [3]
Wand	0,35	0,53
Dach	0,20	0,24
Fenster	1,40	4,65
Gesamt	0,47	1,08



Autarke Stromversorgung


Autarkiegrad und Eigenverbrauchsquote


Wels System

Ota System

Autarke Stromversorgung

- > Autarkiegrad ≥ 90% (q_s)
- > Nettoenergiequote ≥ 100% (q_{NZE})

$$q_S = \frac{E_{SC}}{E_{Load}}$$
, $q_{SC} = \frac{E_{SC}}{E_{PV}}$, $q_{NZE} = \frac{E_{PV}}{E_{Load}}$

System Parameter	Wels System	Ota System	
PV Leistung [kWp/Haus]	9,26	6,48	
Batterie Kapazität [kWh/Haus]	17,00	15,00	
Autarkiegrad [%]	90,02	91,02	
Eigenverbrauchsquote [%]	44,69	61,85	
Stromnetzbezug [%]	9,98	8,98	
Nettoenergiequote [%]	201,44	147,16	

Wirtschaftlichkeit

Deutliche Preisunterschiede Europa/Japan [4]

- > Österreich 1600 2500 €/kWp [5]
- > Japan ~ 3000 €/kWp (800 €/kWp bis 2025 [6])

LCOEs [€ct/kWh]	LCOE*	LCOE**	LCOE***	LCOE** (in Zukunft)	Einspeise- tarif
Wels System	14,28	11,52	8,86	-	6,00 [7]
Ota System	39,17	34,08	29,45	8,30	25,38 [8]

Stromgestehungskosten bei einer erwarteten BS-Lebensdauer von 10*, 15** und 25*** Jahren

Zusammenfassung

Österreich:

- > Geringere Last
- > Geringerer PV Ertrag
 - Größere Systemkomponenten
- > Geringere Investmentkosten
 - Wirtschaftliche, autarke Stromversorgung

Japan:

- > Höhere Last
- > Höherer PV Ertrag (deutlich mehr Sonnenstunden im Winter)
 - Kleinere Systemkomponenten
- Höhere Investmentkosten
 - (Noch) nicht wirtschaftliche, autarke Stromversorgung

Danksagung

Das Projektteam möchte dem Core Research for Evolutional Science and Technology Program (CREST) der Japan Science and Technology Agency (JST) für die Bereitstellung der japanischen Lastdaten und Bestrahlungsdaten, sowie der Forschungsgruppe des Austrian Solar Innovation Center

(ASiC) der Fachhochschule Oberösterreich für die Zurverfügungstellung der erforderlichen österreichischen Messdaten danken.

Vielen Dank für Ihre Aufmerksamkeit!

> Noch Fragen?

