

aufgrund eines Beschlusses

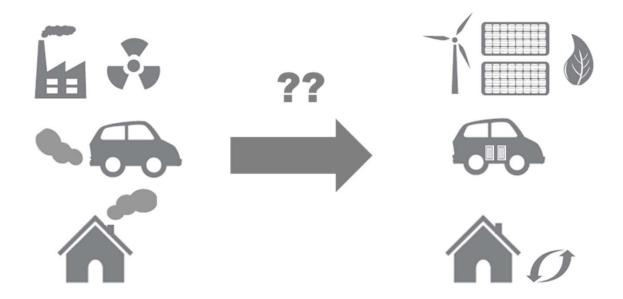
des Deutschen Bundestages

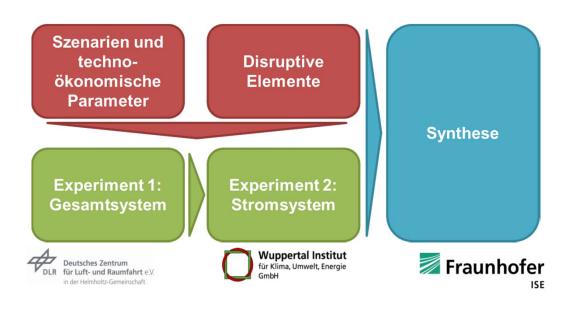
Experiment zur vergleichenden Modellierung der Stromversorgung Deutschlands in 2050 unter Berücksichtigung von Sektorenkopplung

Modellexperimente und -vergleiche zur Simulation von Wegen zu einer vollständig regenerativen Energieversorgung (RegMex)

15. Symposium Energieinnovation 2018, TU Graz

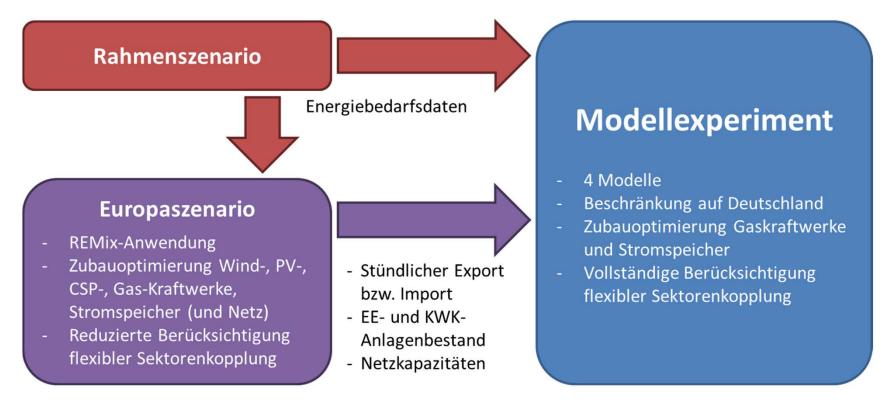
15. Februar 2018


Hans Christian Gils, Thomas Pregger


Motivation des Projekts RegMex

- Hohe Anzahl von Energiesystemmodellen und Transformationsanalysen
- Mangelnde Transparenz in Bezug auf Modelle und Eingabedaten
- Eingeschränkte Reproduzierbarkeit modellbasierter Szenariostudien
- Unklare Robustheit der Schlussfolgerungen zu Systemtransformationspfaden

Einbindung, Fokus und Teilnehmer des Experiments


Institution	Modell
DLR	REMix
Öko-Institut	PowerFlex
Fraunhofer IEE	SCOPE
TU Dresden	ELMOD

Modellexperiment 2:

- Methodisches Ziel: Erhöhung der Vergleichbarkeit von Stromsystemmodellen
- Inhaltliches Ziel: Analyse des Einsatzes von Lastausgleichsoptionen in DE 2050
- Fokus: Stromsektor einschließlich Schnittstellen mit Wärme und Verkehr
- Grundlage: Einsatzoptimierung in stündlicher Auflösung

Vorgehensweise bei Modellexperiment 2

- Einheitliche Parametrierung zur Analyse von Modellunterschieden
- Regionalisierte Betrachtung Deutschlands
- Vorgabe des Stromaustauschs mit den Nachbarländern
- Gaskraftwerke als Platzhalter für Backup, ggf. auch Biomasse oder Öl möglich

Modellexperiment 2: Definition der Europaszenarien

- Fokus: Betrachtung verschiedener Versorgungs- und Netzstrukturen in 2050
- Vorgabe von Eigenversorgungsanteilen benötigt um Nettoimport zu reduzieren
- Strombedarf identisch in allen Szenarien (~700 TWh in DE)

ADLR.	Import	Dezentral	Offshore
Netzausbau*	Endogener Zubau in Deutschland und Nachbarländern	Kein endogener Zubau	Endogener Zubau in Deutschland
Eigenversorgung	Jede Modellregion erzeugt 65% ihres Bedarfs	Jede Modellregion erzeugt 90% ihres Bedarfs	Jede Modellregion erzeugt 65% ihres Bedarfs
Vorgegebene EE-Kapazitäten	PV: 74 GW Wind onsh. 69 GW Wind offsh. 29 GW	PV: 74 GW Wind onsh. 69 GW Wind offsh. 29 GW	PV: 74 GW Wind onsh. 69 GW Wind offsh. 45 GW

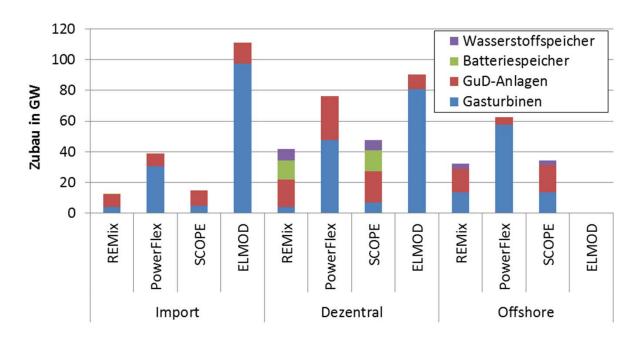
*außer Anbindung Offshore-Windparks

Modellexperiment 2: Szenarien für Deutschland

A _{DLR}	Import	Dezentral	Offshore
Netzausbau*	AC: 130 GW DC: 0 GW	AC: 0 GW DC: 0 GW	AC: 26 GW DC: 32 GW
Nettoimport	107 TWh/a	37 TWh/a	73 TWh/a
Resultierende EE-Kapazitäten	PV: 161 GW Wind onsh. 117 GW Wind offsh. 29 GW	PV: 283 GW Wind onsh. 129 GW Wind offsh. 29 GW	PV: 185 GW Wind onsh. 105 GW Wind offsh. 45 GW
CO ₂ -Preis	248 €/t	337 €/t	315 €/t

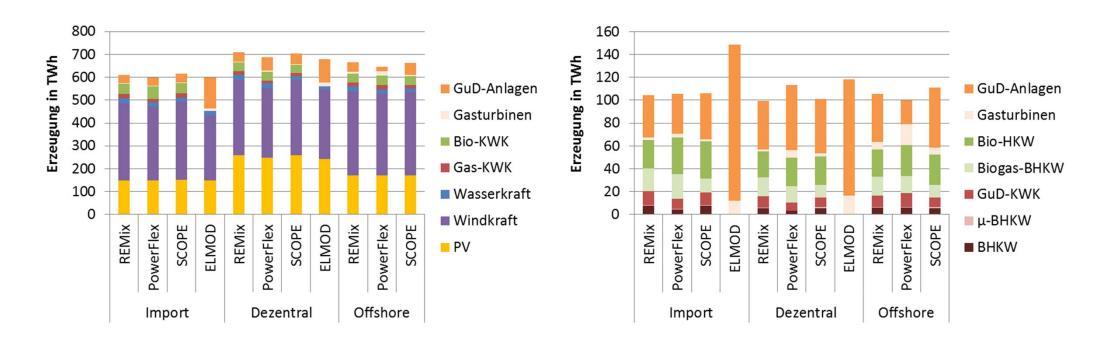
*innerhalb Deutschlands, zzgl. Anbindung Offshore-Windparks

- Definition eines KWK-Anlagenparks (14 GW) auf Basis des benötigten Backups
- Flexibilisierung der Wärmeversorgung durch Wärmespeicher und E-Kessel
- Flexibilisierung der Batterieelektromobilität und weiteres Lastmanagement

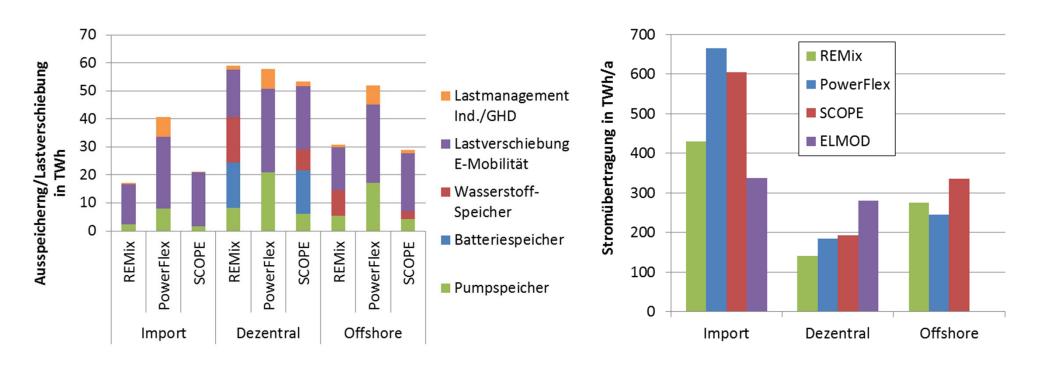


Identifizierte Modellunterschiede

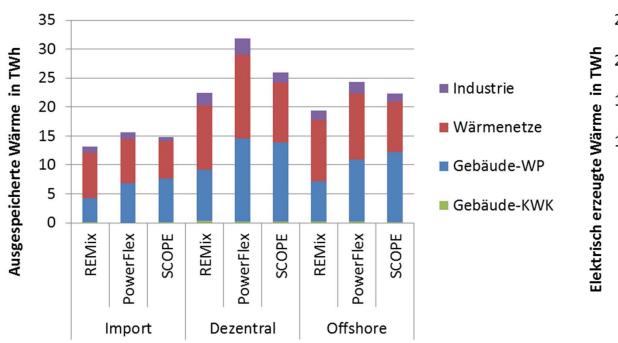
Technologie	Unterschiede
Technologieumfang	Nur Stromsektorbetrachtung in ELMOD
Kapazitätszubau	Keine Zubau zusätzlicher Speicher und Kraftwerke in PowerFlex und ELMOD
Stromnetz	Auflösung: Abbildung von Hochspannungsknoten in ELMOD AC-Netz: NTC-Modell in SCOPE und PowerFlex, DC-Lastfluss in REMix und ELMOD
Zeithorizont	Perfekte Voraussicht in REMix und SCOPE Rollierende Voraussicht in PowerFlex und ELMOD
Wasserkraft	Abbildung individueller Kraftwerke in SCOPE
Batterie- Elektromobilität	Unterschiedliche Technologieabbildung in allen Modellen Regionale Lade- und Fahrprofile in Powerflex Kein Rückspeisung ins Stromnetz in PowerFlex
Lastmanagement	Unterschiedliche Technologieabbildung in allen Modellen Keine Berücksichtigung von Kosten in PowerFlex
KWK	Kein Notkühler bei Gegendruckanlagen in SCOPE Nur Gegendruckbetrieb bei PowerFlex
Wärmepumpen	Temperaturabhängige Arbeitszahl in SCOPE und REMix
Wärmespeicher	Keine Abbildung von variablen Kosten, Be- und Entladewirkungsgrad in PowerFlex
Wasserstoffspeicher	Separate Dimensionierung von Lade- und Entladeeinheit in REMix

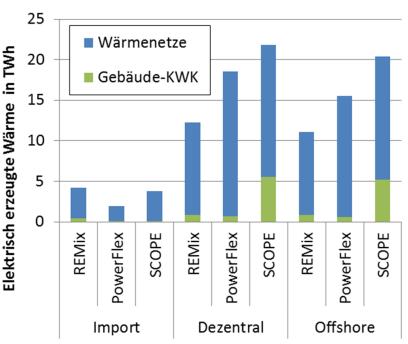

Ergebnisse: Zubau an regelbaren Kraftwerken und Speichern

- Zubau von Kraftwerken und Speichern nur in REMix und SCOPE betrachtet
- PowerFlex und ELMOD setzen ungedeckte Last als Backup-Bedarf an
- GuD-Kapazitäten in PowerFlex exogen vorgegeben (zweistufiges Vorgehen)
- ELMOD summiert regionale Spitzen der residualen Last auf


Ergebnisse: Stromerzeugungsstruktur

- Netzengpässe führen zu deutlich höherer Abregelung in ELMOD
- Anlagenscharfe Abbildung von Wasserkraftwerken bewirkt geringere Erzeugung
- Unterschiede in KWK-Modellierung bewirken deutliche Abweichungen


Ergebnisse: Stromspeicher, Netz und Lastmanagement



- Lastmanagementkosten haben wesentlichen Einfluss auf Einsatz
- Abbildung von Elektrofahrzeugen wirkt sich deutlich auf Ladesteuerung aus
- Flexible Dimensionierung der H₂-Speicher erhöht deren Einsatz deutlich
- DC-Lastfluss bewirkt tendenziell geringeren Stromaustausch

Ergebnisse: Wärmespeicher und Power-to-Heat

- Berücksichtigte Kosten/Verluste mit wenig Einfluss auf Wärmespeichernutzung
- Wärmespeichernutzung auch mit Verfügbarkeit von H₂-Speichern korreliert
- Höherer Einsatz von Power-to-Heat durch geringere Stromspeicherladekapazität

Schlussfolgerungen

- Implementierung eines Modellexperiments birgt vielfältige Herausforderungen:
 - Eingeschränkte Modellfähigkeiten
 - Unterschiedliche Modellstruktur
 - Unterschiedliche Technologieabbildung
 - Unterschiedlicher Datenbedarf
 - Ungeklärt Nichtlösbarkeit und hohe Modelllösungszeiten
- Identische Parametrierung führt nicht zu identischen Ergebnissen, aber doch zu relativ ähnlichen
- Abweichungen relativ gut auf Modellunterschiede zurückführbar
- Effekte einzelner Unterschiede durch Herangehensweise nicht quantifizierbar
- Betrachtete Szenarien erlauben Bewertung von Lastausgleich bei unterschiedlicher Erzeugungs- und Netzstruktur

Veröffentlichungen zu REMix

Gils, H. C. (2015) Balancing of intermittent renewable power generation by demand response and thermal energy storage (2015), Dissertation, Universität Stuttgart, http://dx.doi.org/10.18419/opus-6888

Gils, H. C. (2016) Economic potential for future demand response in Germany – Modelling approach and case study. Applied Energy, 162: 401-415. http://dx.doi.org/10.1016/j.apenergy.2015.10.083

Gils, H.C. and Simon, S. (2017) Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands, Applied Energy, 188: 342-355. http://dx.doi.org/10.1016/j.apenergy.2016.12.023

Scholz, Y., Gils, H.C., Pietzcker, R. (2017) Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares, Energy Economics, 64, 568–582. http://dx.doi.org/10.1016/j.eneco.2016.06.021

Gils, H.C, Scholz, Y., Pregger, T., Luca de Tena, D., Heide, D. (2017) Integrated modelling of variable renewable energy-based power supply in Europe. Energy, 123: 173-188. http://dx.doi.org/10.1016/j.energy.2017.01.115

Michalski, J., U. Bünger, F. Crotogino, et al. (2017) Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition. International Journal of Hydrogen Energy 42:13427-13443

Cebulla, F., T. Naegler, M. Pohl: Electrical energy storage in highly renewable European energy systems: Capacity requirements, spatial distribution, and storage dispatch, Journal of Energy Storage 14:211-223

Gils, H.C., Simon, S., Soria, R. (2017) 100% renewable energy supply for Brazil – the role of sector coupling and regional development, Energies 10,1859, doi:10.3390/en10111859

Gils, H.C., S. Bothor, M. Genoese, K. Cao (2018) Future security of power supply in Germany – the role of stochastic power plant outages and intermittent generation, International Journal of Energy Research, in press

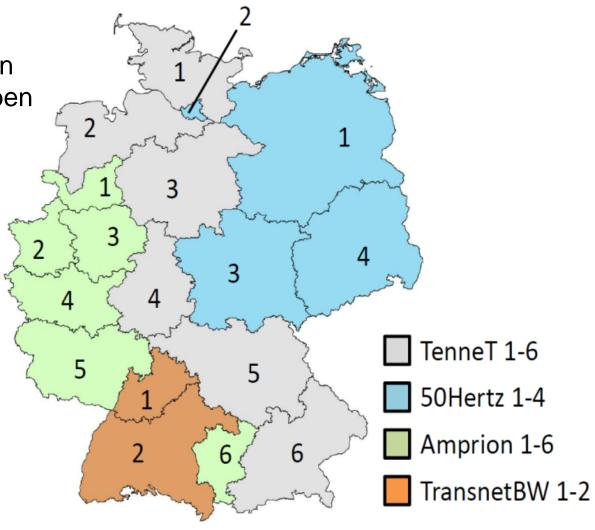
Kontakt

Dr. Hans Christian Gils, DLR, Institut für Technische Thermodynamik, Systemanalyse und Technikbewertung Pfaffenwaldring 38-40 | 70569 Stuttgart | Germany | Telefon +49 711 6862-477 | hans-christian.gils@dlr.de | www.DLR.de/tt

Dieser Vortrag basiert auf Ergebnissen der vom Bundesministerium für Wirtschaft und Energie geförderten Projekts "Modellexperimente und -vergleiche zur Simulation von Wegen zu einer vollständig regenerativen Energieversorgung" (RegMex). Der Projektbericht wird im Sommer 2018 veröffentlicht.

DLR

Gefördert durch:



aufgrund eines Beschlusses des Deutschen Bundestages

Untersuchungsgebiet und Regionalisierung

• 18 Regionen in Deutschland

 Export/Import wird vorgelagert in REMix berechnet und vorgegeben

Technologien

		Zubauopt.
	Photovoltaik	Nein
Erneuerbare	Wind onshore	Nein
erb	Wind offshore	Nein
en	Laufwasserkraft	Nein
E	Speicherwasserkraft	Nein
	Biomasse, fest	Nein
Gas- KW	GuD	Ja
Ω ₹	Gasturbinen	Ja
	Biogas-BHKW	Nein
Y	Erdgas-BHKW	Nein
KWK	Erdgas-μBHKW	Nein
<u>x</u>	Erdgas-ExGuD	Nein
	Biomasse-HKW	Nein
her	Pumpspeicher	Nein
eic	Wasserstoffkavernenspeicher	Ja
Sp	Li-Ionen-Batterie	Ja
Netz Speicher	Gleichstromleitungen	Nein
Ž	Wechselstromleitungen	Nein

		Zubauopt.
	Luft-Wasser-Wärmepumpe	Nein
	Sole-Wasser-Wärmepumpe	Nein
<u>je</u>	Wärmespeicher, Gebäude-KWK	Nein
Wärme	Wärmespeicher, Gebäude-WP	Nein
>	Wärmespeicher, Nah- und Fernwärme	Nein
	Wärmespeicher, Industrie	Nein
	Elektrokessel	Nein
	KWK-Spitzenkessel	Nein
χį	Elektrofahrzeuge (mit Ladesteuerung)	Nein
ijţ	H2-Fahrzeuge	Nein
Mobilität	PEM-Elektrolyseur	Nein
2	H2-Tankspeicher	Nein
ب ۾	HVAC-ComInd	Nein
gement	CoolingWater-ComInd	Nein
gemen	ProcessShift-Ind	Nein
7 L	ProcessShed-Ind	Nein

Basisszenario: REMix-Läufe zum Europäischen Umfeld

- Europaweiter Betrachtungsraum, reduzierte Technologieabbildung
 - Kein Lastmanagement
 - Keine Flexibilisierung von elektrischer Wärme und Elektromobilität
- Angelehnt an <u>eHighway-Studie</u>, Szenario Smart & Local
 - Optimierter Zubau von Wind, PV, GuD und Gasturbinen
 - Nachträgliche, teilweise Umwandlung der GuD in KWK-Anlagen
 - Optimierter Zubau von Batterien, H₂-Speichern und DC-Leitungen
 - Teilweise Reduktion der Wasserkraft in Norwegen (Überkapazität)
 - Ergänzung nationaler/regionaler Eigenversorgungsanteile

Einheitliche Modellparametrierung

Szenario ("Storyline")

- Strombedarf, Wärmebedarf, Wasserstoffbedarf (nach Verbraucher)
- Installierte Leistungen von Kraftwerken, Pumpspeichern, Übertragungsleitungen, Wärmeversorgungsanlagen, Wasserstoffelektrolyseuren und -speichern
- Lastmanagementpotenziale
- Technologieparameter und Kostenparameter aller berücksichtigten Technologien
- Brennstoffkosten und CO₂-Emissionszertifikatspreise

Zeitlich aufgelöste Daten:

- Regionalisierte Last- und EE-Profile
- Nettoimport-Profile aus vorgelagerten Rechnungen mit REMix
- Stündliche Verfügbarkeit von Lastmanagementpotenzialen

