

Modelica based optimization - state of the art and future challenges

Gerald Schweiger, David Blum, Michael Wetter

..."in practice there are relatively few optimization problems that can be solved efficiently. In many cases we can only hope to find a good-enough local optimum in finite search time, trading off between climbing hills in one place and looking for places that might have better hills to climb"

Static optimization:

 Finding the <u>optimal point</u> (Euclidean space) to optimize a given objective function.

Dynamic optimization:

- Finding the <u>optimal control trajectories</u> over a time horizon to optimize a given objective function.
 - Trajectory optimization
 - Optimal control (=Optimalsteuerung)
 - Dynamic optimization/programming
 - MPC (Model Predictive Control). MPC is a control method based on repeated optimal control

General form of a dynamic optimization problem

minimize
$$\phi\left(t_f, x(t_f)\right) + \int_{t_0}^{t_f} L(t, x(t), u(t))dt$$

 $s.t.F(t,\dot{x}(t),x(t),u(t)) = 0$ $x(0) = x_0$ Path constraints: $g_i(x(t),u(t) \le 0$ Point constraints: $g_e(x(t),u(t) = 0$

Solution strategies

<u>General form of a dynamic optimization problem</u>

<u>General form of a dynamic optimization problem</u>

AEE INTEC

Polynomials approximate the variables of a DAE

The polynomials use the Lagrange basis polynomials, and they use the collocation points as the interpolation points.

$$\begin{aligned} x_i(\tau) &= \sum_{k=0}^{n_c} x_i \, \widetilde{l_k}(\tau), \quad y_i(\tau) = \sum_{k=1}^{n_c} y_i \, l_k(\tau), \\ \vdots \\ \dot{x}_i(\tau) &= \frac{dx_i}{d\widetilde{t_i}}(\tau) = \frac{d\tau}{d\widetilde{t_i}} \frac{dx_i}{d\tau}(\tau) = \frac{1}{h_i} \sum_{k=0}^{n_c} x_{i,k} \frac{d\widetilde{l_k}}{d\tau}(\tau) \end{aligned}$$

$$\widetilde{l_k}(\tau) = \prod_{\substack{l=0,\dots,n_c\\l\neq k}} \frac{\tau - \tau_l}{\tau_k - \tau_l}, \quad l_k(\tau) = \prod_{\substack{l=1,\dots,n_c\\l\neq k}} \frac{\tau - \tau_l}{\tau_k - \tau_l}$$

AEE INTEC

Polynomials approximate the variables of a **DAE**

The polynomials use the Lagrange basis polynomials, and they use the collocation points as the interpolation points.

$$\begin{aligned} x_i(\tau) &= \sum_{k=0}^{n_c} x_i \, \tilde{l}_k(\tau), \quad y_i(\tau) = \sum_{k=1}^{n_c} y_i \, l_k(\tau), \\ \dot{x}_i(\tau) &= \frac{dx_i}{d\tilde{t}_i}(\tau) = \frac{d\tau}{d\tilde{t}_i} \frac{dx_i}{d\tau}(\tau) = \frac{1}{h_i} \sum_{k=0}^{n_c} x_{i,k} \frac{d\tilde{l}_k}{d\tau}(\tau) \\ \tilde{l}_k(\tau) &= \prod \frac{\tau - \tau_l}{\tilde{l}_k}, \quad l_k(\tau) = \prod \frac{\tau - \tau_l}{\tilde{l}_k} \end{aligned}$$

 $\widetilde{t_k}(\tau) = \prod_{\substack{l=0,\dots,n_c\\l\neq k}} \frac{\tau - \tau_l}{\tau_k - \tau_l}, \quad l_k(\tau) = \prod_{\substack{l=1,\dots,n_c\\l\neq k}} \frac{\tau - \tau_l}{\tau_k - \tau_l}$

The polynomials are defined on a finite number of collocation points. Hence, they **convert the infinite to a finite dimensional** optimization problem, which can be solved by a NLP solver

Why Modelica?

General Trends

- Previous studies have reported that the <u>time spending for</u> <u>model development</u> is significantly high (up to <u>80%</u>) [1-5]
- <u>70% of project costs</u> are consumed by <u>model creation</u> and calibration [6-8]
- There is an urgent need for <u>automated model creation</u> for optimization [10-12]

- Previous studies have reported that the <u>time spending for</u> <u>model development</u> is significantly high (up to <u>80%</u>) [1-5]
- <u>70% of project costs</u> are consumed by <u>model creation</u> and calibration [6-8]
- There is an urgent need for <u>automated model creation</u> or optimization [10-12]

Declarative language

AEE INTEC

- Allow acausal modelling
- The order of the equations does not matter.

Multi-domain modelling

 Modelica is a multi-domain language, not geared towards any specific domain. Easily couple models containing for example, mechanical and electrical components.

Object-oriented

Models are classes and thus can easily be extended using ordinary object-oriented features.

Visual component programming

- Hierarchical system architecture capabilities.

Fully implicit DAE modelling approach

$$\mathbf{0}=F(t,x,\dot{x},y)$$

Modelica for optimization

Modelica is mainly intended for simulation

An extension to accommodate dynamic optimization problems is required

- Optimica: defines new syntax and semantics for specifying constraints and an objective
- Currently supported by JModelica.org, OpenModelica and IDOS

Modelica for optimization

Modelica is mainly intended for simulation

An extension to accommodate dynamic optimization problems is required

- Optimica: defines new syntax and semantics for specifying constraints and an objective
- Currently supported by JModelica.org, OpenModelica and IDOS

Modelica for optimization

Modelica is mainly intended for simulation

An extension to accommodate dynamic optimization problems is required

- Optimica: defines new syntax and semantics for specifying constraints and an objective
- Currently supported by JModelica.org, OpenModelica and IDOS

Restrictions

- The most widely used numerical techniques for dynamic optimization are based on first-order necessary conditions for local optimality
 - The objective function and the DAE System must be twice continuously differentiable
 - Hybrid constructs are excluded!!!

Applications in the energy sector

- Optimal use of an electrochemical storage tank in combination with a MV photovoltaic
- Optimal start of a steam boiler
- Model predictive control of buildings
- Model predictive control of district heating systems
- Optimal start of a combined-cycle power plant

Dynamic Optimization of a district heating system

min.
$$\int_{t_0}^{t_f} (\alpha T_{\text{prod}} + \beta dp_{\text{prod}} + \gamma \dot{Q}_{\text{prod}}^2 + \delta dp_{\text{prod}}^2) dt,$$

s.t. model dynamics,

$$\begin{split} m_{Prod}(t) &\leq m_{Prod}^U \quad \forall t \in [t_0, t_f], \\ T_{Customer}^L &\leq T_{Customer}(t) \quad \forall t \in [t_0, t_f], \\ dp_{Customer}^L &\leq dp_{Customer}(t) \quad \forall t \in [t_0, t_f], \end{split}$$

- Complex dynamical effects
 - Producer increases supply temperature in advance
 - Temperature front propagates slowly
 - Customers close to producer benefit quickly from increased temperature
 - Customers at the periphery benefit from higher flowrates
- Optimization can handle
 - Flow-dependent delays
 - Slow temperature dynamics
 - Fast pressure/flow dynamics
 - Distributed network

More Solver for dynamic optmization

- More Solver for dynamic optmization
- <u>Mixed-integer-optimal control problems</u>

- More Solver for dynamic optmization
- <u>Mixed-integer-optimal control problems</u>
- More domain specific libraries

- More Solver for dynamic optmization
- <u>Mixed-integer-optimal control problems</u>
- More domain specific libraries
- Scalability studies

Thank you for your Attention