

EMPIRISCHE STUDIE ZUR ENTWICKLUNG VON CO-SIMULATION VON ENERGIESYSTEMEN

Georg Engel, Gerald Schweiger, Claudio Gomes, Josef Schöggl, Irene Hafner, Thierry Nouidui

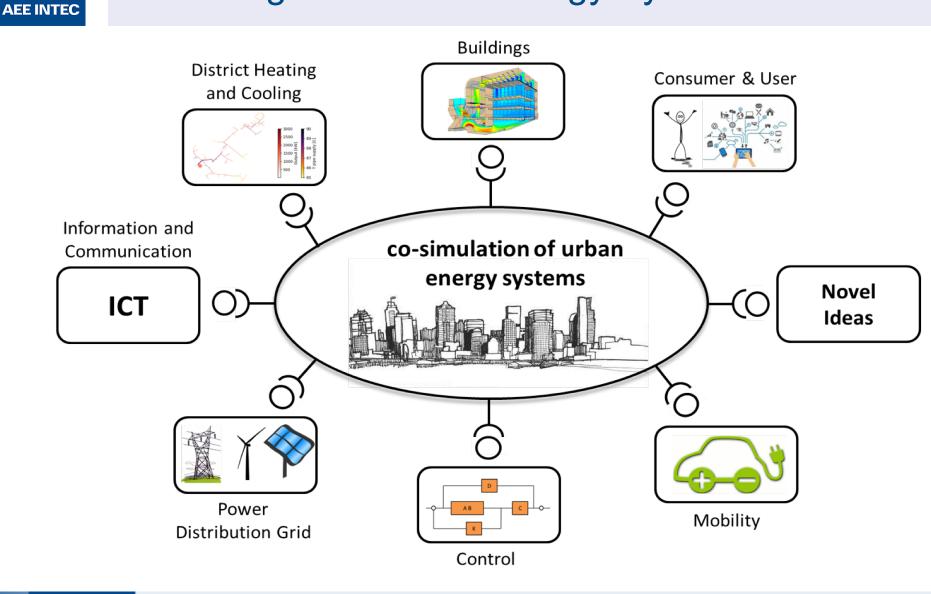
AEE - Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, AUSTRIA

Motivation

Background:

- Energy systems increasingly complex
- Subsystems best modelled with different tools
- <u>Co-simulation</u> couples different tools in one simulation

Issues:


- Which co-simulation interface to choose?
- Which further developments are needed?
- SWOT for co-simulation?
- [...]

Suggest:

- Literature research, case studies: DONE
- Present work: <u>Empirical study (expert questionnaire)</u> to address remaining issues

source: www.all-battery.com

Background: Challenges in Urban Energy Systems

Background: Challenges in Urban Energy Systems II

- Integration of volatile energy sources (PV, wind)
- Match with flexible demand side management
- Include sector-coupling

AEE INTEC

- Simulation-driven assessments as key methods for:
 - optimal design/control of systems
 - decision-support system for policy makers
- New challenges for modeling and simulation:
 - increasing complexity
 - sector/domain coupling / heterogenity
- Individual simulation tools overstrained
- New solutions? - Co-simulation!

Background: Co-Simulation

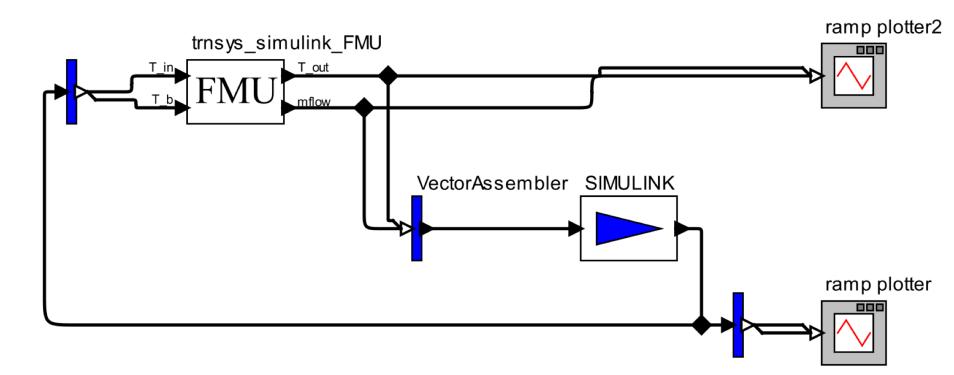
AEE INTEC

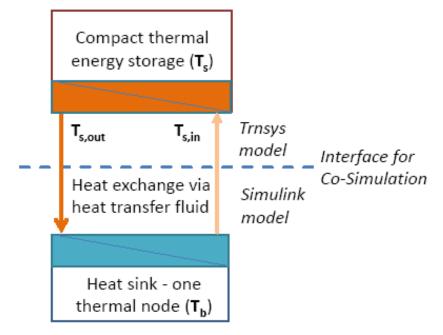
What is co-simulation?

• A coupling of several simulation tools (solvers)

What are its strengths/benefits?

- Cross-discipline collaboration (Each subsystem modelled in specialized tool)
- Cross-company collaboration
- Black box modelling / IP protection
- Coupling to hardware (X-in-the-loop)
- Parallelization (speedup with supercomputers)

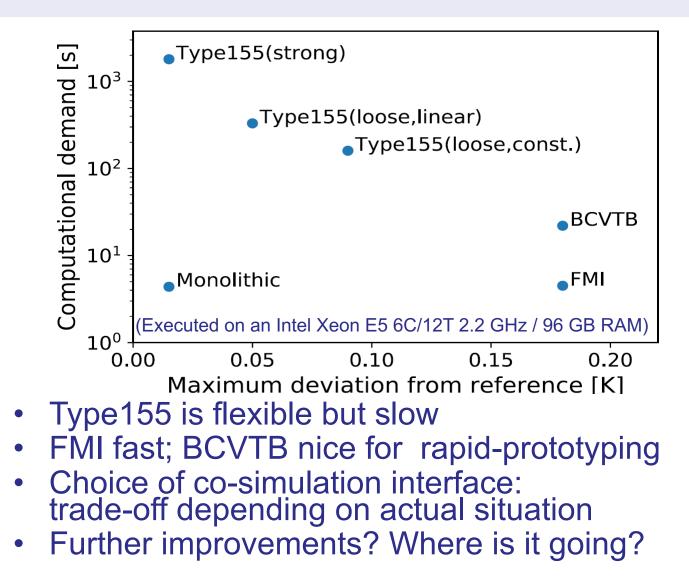

Background: Co-Simulation Example (BCVTB / FMU)


AEE INTEC

• timeStep: 1

- beginTime: 0
- endTime: 3600

Background: Co-Simulation Case Study


AEE INTEC

Model:

- Sorption heat storage (Trnsys)
- Heat sink (Simulink)
- Interface: heat transfer fluid

Assessment: (1) User-friendliness (2) Accuracy (3) Computational demand

Background: Co-Simulation Case Study II

AEE INTEC

Methodology: Delphi-Study

- Understood as complementary to literature research
- Solve interdisciplinary heterogeneous research issues
- Predict probable future scenarios

Preparation:

- Prepare Knowledge Resource Nomination Worksheet (KRNW), i.e. define categories
- Fill KRNW with names
- Define first contacts
- Rank expert according to qualification
- Invite experts to fill in the questionnaire

Interviews:

- 1st stage: Open and closed questions
- 2nd stage: Closed question based on first stage

Dalkey, N. & Helmer, O., (1963). An Experimental Application of the Delphi Method to the Use of Experts. Management Science, 9(3), pp.458–467 Hsu, C. & Sandford, B., (2007). The delphi technique: making sense of consensus. Practical Assessment, Research & Evaluation, 12(10), pp.1–8.

Methodology: SWOT-AHP

- Additional closed questions to assess SWOT:
 - strengths
 - weaknesses
 - opportunities
 - threats
- Analytical hierarchy process (AHP):
 - Compare each of the factors with each other
 - Eliminate bias

Questionnaire Example: Closed Questions

Co-Simulation - applications, recent developments and future challenges

AEE INTEC

0%									
10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
General question	ns								
Where do you work	(?								
Choose one of the fo	ollowing answers	5							
Research/Aca	demia								
Industry									
Other									
No answer									

Questionnaire Example: SWOT AHP

Comparison of Strengths of co-simulation

How important do you consider the following three factors? Please compare the pairs of factors in the group "Strengths" and rate their relative importance.

9 = much more important; 1 = equally important

	muc mor imp 9		5	3	equ imp 1	ally ortant 3	5	7	muc more impo 9	
It supports cross-company cooperation (e.g., suppliers and system integrators can exchange virtual "trial components" before signing contracts)	0	•	0	0	0	0	0	0	0	Every sub-system can be implemented in a tool that meets the particular requirements for the domain, the structure of the model and the simulation algorithm
It supports cross-discipline developments	0	0	0	0	0	0	۲	0	0	Every sub-system can be implemented in a tool that meets the particular requirements for the domain, the structure of the model and the simulation algorithm
It supports cross-discipline developments	0	0	0	0	۲	0	0	0	0	It supports cross-company cooperation (e.g., suppliers and system integrators can exchange virtual "trial components" before signing contracts)

Results: Delphi-Study

- First round finished:
 - 13 participants
 - Many open questions
 - First results for SWOT
 - Results serve as foundation for closed questions in second round
- Second round:
 - 40 expert commitments
 - Questionnaire distributed
 - Results expected until March

Results: SWOT

Strengths	
Cross-discipline developments	38%
Cross-company cooperation	38%
Particular tool for each sub-system	54%
Parallelization (speedup)	8%
Distributed computation for e.g. portability issues	8%
Intellectual property protection	23%
Coupling to empirical models	8%
Solver optimization each subsystem	0%

(Experts were invited to name up to 3 most important factors in the first round)

Results: SWOT II

Weaknesses	
Computational performance	38%
Robustness	38%
Theoretical expertise in co-simulation required	15%
Various licenses required	31%
Expertise in all programs is required	23%
Standardization assumes only the "greatest common denominator" of individual tools	31%
Black box nature reduces functionality	15%

Results: SWOT III

Opportunities	
Acausal co-simulation standards	0%
Better communication between theoretical/numerical part, implementation and	040/
application/industry	31%
Growing community / industrial adoption	46%
User-friendly tools	31%
Increasing libraries complying standards	23%
Uncovering new theoretical research problems	8%
New markets for the exchange of models	15%

Results: SWOT IV

Threats	
Lack of exchange between theory / implementation / application	38%
Improvements in individual tools / ME	15%
Improper use due to insufficient knowledge	54%
IPR in conflict with functionality	8%
Incompatibility of standards / approaches	38%

Conclusion and Outlook

- AEE INTEC
- Challenges in the energy transition
- Co-simulation a promising approach:
 - cross-domain/company collaborative simulation
 - ready for IPR, HiL, HPC, ...
 - promising also for other fields (robotics, automotive...)
- Case studies conducted, questions remain
- Empirical study (Delphi, SWOT AHP):
 - solve interdisciplinary heterogeneous issues
 - predict probable future scenarios
- Results first round ready
- Outlook second round:
 - 40 expert commitments
 - Results expected until March

Thank you for your Attention