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Abstract: Value-based distribution system reliability evaluation determines the worth of
reliability in terms of customer expected cost of interruption (ECOST). Accelerating the
accurate estimation of ECOST using advanced computation methods could be an important
feature in the distribution systems management tool. In fact, currently practice simulation
technique based on Monte Carlo (MC) method can provide accurate result. However, one
basic challenge related to the MC method is the high computational burden while a large
number of approximations is required to achieve a high accuracy. In this paper, a new
approach for the estimation of this reliability index is presented. This approach is based on
the novel Multilevel Monte Carlo method that can reduce huge computational cost needed for
estimating the index accurately. To illustrate the method, we study reliability evaluation of
distribution systems of Roy Billinton Test System. The impact on interruption costs
assessment associated with the network reinforcement, load types, time-varying load and
cost models are investigated. We conclude that significant savings in computational cost are
possible for these studies using the proposed method compared to the standard MC method.

Keywords: Interruption cost, Monte Carlo method, Multilevel Monte Carlo method, Speedup,
Distribution systems.

1 Introduction

It has been reported that approximately 80% of all customer interruptions occur due to
failures in the distribution systems [1]. The ultimate goal of distribution systems planning is to
decrease the impact of the failures for providing reliable and high-quality electricity supply to
customers at a reasonable rate. System customer expected interruption cost (ECOST)
evaluation shows the monetary worth of the interruptions which can assist in the decision of
reliability planning. However, a prominent problem in distribution systems planning studies is
the accurate and fast estimation of the ECOST.

Estimation of ECOST using average load and cost models can provide a result with a large
error. ECOST varies unevenly with the random nature of the failures and associated time-
varying load and cost models. Knowledge of the probability distributions associated with the
index can be used to more accurately estimate the ECOST rather than using only average
value. Conventionally used Monte Carlo (MC) method [2] can estimate ECOST by taking
account of its random nature. However, the limitation of the MC method is that large
computational burden arises for obtaining a high accuracy level. Therefore, the objective of
this research is to speed up the computation of ECOST estimation. A novel Multilevel Monte
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Carlo (MLMC) method [3] has been applied for this purpose. We verify the performance of
the proposed method by comparing to MC method in terms of computational efficiency and
accuracy. Using the proposed method, the following studies are carried out and presented in
the paper.

e Developing a general simulation framework based on MLMC method for ECOST
evaluation.

¢ Calculating the impacts of time-varying load and cost models on the estimation.

e Analyzing the effects of network reinforcement, complexity and load types on the
estimation process.

2 Value-based reliability evaluation

2.1 Generation of operating history

For estimating the operating history of any component, the stochastic model of component
Time-to-Failure (TTF) is first developed. Consider A; and r; are the failure rate and repair
time of component i, respectively. Also, consider the stochastic differential equation (SDE) of
TTF is driven by the Brownian motion [4]. If Sy;) is the TTF of an event i at a time ¢, then
SDE of TTF with defined drift u, volatility o and initial TTF can be modeled using the
Brownian motion W on the whole time interval [0, T] [5] as follows:

dS/'li(t) = ,LL[SM(Q, t]dt + O'[S/u'(t), t]dW, (1)

In this paper, the SDE is solved by Milstein discretisation scheme [6]. The discretisation
scheme with n time-steps, step size h = T/n and Brownian increments AW, could be written
as:

1
Saitm+1) = Saiem) + K[Saiamy, tm]h + 0[Saim), tm] AW + 7 0% [Saimy, tm] (AWEE = h), (2)

where AW, are the independent normally distributed random variables. AW,,, = W,,.1 — W;,
[m=0,.... ,n—1] and t,, =kh [k=0,..... ,n]. Using the above Eqn. (2), the operating
history of component i, T,; is generated as:

Tui = —Saim+1) (V) (3)

where U is a uniformly distributed random variable between [0,1].

2.2 Modeling of load

Usually load level of a specific customer type fluctuates due to the discrepancy between the
hourly consumption levels. In addition, seasonal inconsistency in the weather contributes
prominently to loading level diversity [7]. Evaluation of interruption cost based on average
load level without considering time-varying diversity does not reflect the time-varying nature
of system ECOST. Thus accurate approximation of ECOST needs the consideration of
modeling of loads throughout a 24-hour period depending on seasons.

For modeling time-varying load L, (t) of a load point P at an hour t, annual peak load (Lyeqx).
weekly peak load as a percentage of annual peak (IW,), daily peak load as a percentage of
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weekly peak (D,,) and hourly peak load as a percentage of daily peak (H,) are formulated as

[8]:
Ly, (£) = Lypeak X Wy, X D,y X Hy (£), MW (4)

Consider, the interruption of load point P starts and ends at ts and te hours, respectively.
Then the average time-varying load level of this load point is evaluated as follows:

SiesHp(8)
Ly = Lypear X W, X D), X ﬁ MW (5)

2.3 Modeling of per unit interruption cost

For modeling customer per unit interruption cost based on average cost model (Cgy4), only
sector customer damage function (SCDF) [9] is analyzed to found the cost (C,) related to a
load point P interruption for a duration 7,,, i.e. C, = Cayy (7).

On the other hand, for modeling interruption cost C,(t) at an hour t based on time-varying
cost model, the multiplication of C,,,; from SCDF and weight factor W, (t) is used, i.e. C,,(t) =
Cavg X Wy (t). Then average time-varying cost level of a load point P for above failure period
can be formulated as:

t
YisesWp
te—ts+1’

Cp = Cang X ($/kW) (6)

2.4 Modeling of system ECOST

For a component failure i, the value of average outage rate B; could be calculated using the
following expression:

B; , (occ./yr) (7)

211\]1:1 Tui

where M is the number of times component i fails during whole simulation period and N is
the desired number of simulated periods.

For load point P, average outage rate F, is evaluated as follows by accumulating the outage
rate of all the failure events connected to this load point.

F, =Y, B;, (occ./yr) (8)

where n; denotes the number of outage events interrupting the service of the load point P.
Using Egns. (5), (6) and (8), overall distribution system ECOST can be evaluated as follows.

ECOST = ZZileLp Cp.- (k$/yr) 9

where n,, is the total number of supply points in the system.

3 Multilevel Monte Carlo Approach

In the MC method, the estimation of ECOST is carried out on a single fine grid level | =L
[10]. L is a nonnegative integer. Therefore, the relation between level and step size of Eqn. 2
can be written as h = 27LT. Since all the samples are run on the finest level, both the output
accuracy and computation time of the ECOST is high.
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On the other hand, the basic difference between MC and MLMC methods is that same output
value is estimated in the MLMC method using multiple levels as [ = 0,1, ... ... ,L. The whole
simulation is carried out starting from the coarsest level [ = 0 to the finest level [ = L. On
each level, expectations are calculated using different time-step size and number of samples
in such a way which could reduce the overall variance for a target accuracy level. Initially,
most of the samples are run on the coarsest level [ = 0. On the next level [ = 1, a correction
value is added that initiates to decrease the bias. Based on this correction value, the
expected difference from one level to the next fine level is added until the finest grid accuracy
is achieved. By this way, the less accurate estimate on the coarsest level is sequentially
corrected by the estimations on the subsequent fine levels. Due to the smaller value of the
difference, very few samples will be needed on finer levels to precisely estimate the expected
value. Let X denotes the system ECOST. X, is the approximation of E[X] and X; is the
approximation on level . If E[X,] is the expected value on the finest level i.e. E[X,] = E[X,4],
then the MLMC expectation can then be expressed as:

E[X,] = E[Xo] + Xi-1 E[X, — X,_1] = X0 E[Z)], (10)
The estimator for this expectation can be written as:

Iy, =20+ Xie1 21 = Yico 21 (11)
where Z, is an unbiased estimator for E[X,] using samples N, and Z, is the estimator for
E[X; — X;_4] using N; samples for [ > 1.

A 1 i
Zo =3 Ny Xg, (12)
5 _ 1N ® ®
Z _N_lzi:ll (Xll _Xlil); (13)
E[X; — X;_,] is approximated as E[le - X{1] E[le] and E[X[_,] are estimated on the fine
and coarse levels using different time-step sizes hy and h., respectively [6]. where
he =27'T, (14)
h, = 20T, (15)

The statistical properties of X; are unchanged whether the estimation of E[X; — X;_;] from
level (I—1) to | or E[X;4; — X;] from [ to (I + 1). This means that both E[X; — X;_;] and
E[X;,1 — X;] have the same expected value, i.e., E[le] = E[X[]. The convergence criteria of
the MLMC method is the target rms error which could be written as follows:

2 =Yl N7V, + [EX, — X)]2 (16)

To obtain an overall mean square error MSE < €2, both the variance and weak error of
MLMC estimator could be reduced below £2/2. The variance could be reduced by setting
optimal number of samples N, on each level as follows [3].

N, = 2672V /C (Bico Vi C). (17)

where the cost to compute one sample on the level [ is C;, = c;2"" for a constant c; and some
y > 0. y is the rate of computation cost increase with the level L.



15. Symposium Energieinnovation, 14. bis 16. Februar 2018, Technische Universitat Graz, www.EnInnov.TUGraz.at
ISBN 978-3-85125-586-7 DOl 10.3217/978-3-85125-586-7

For weak convergence, the test tries to confirm that [E(X, — X)]? < £2/2. Consider, the
convergence rate of E(X, — X) with [ for constant ¢, is measured by a positive value ¢, i.e.,
|E[X; = Xi—4]l <27 [3].

The remaining error is
E(XX,—X) =E[X, — X,_11/(2%* = 1) (18)
and the target convergence criterion is therefore
E[X, — X,_1]1/(2% = 1) < e/V/2. (19)

p is assumed as the convergence rate of variance with [ for a constant c, i.e., V; < c,27FL.

4 Methodology

In methodology, there are two phases. In the 1%t phase, the stochastic model of ECOST is
established on both coarse and fine levels. Initially, failure rate, repair/switching time of each
component of the distribution system are defined. Additionally, the values of sample size for
convergence test, initial sample size on each level, drift, volatility and target accuracy level
are defined. The model of a component is represented by up-down states. The operating
history of each component is generated according to the exponential probability distribution
using Eqn. (3). After this using Eqgn. (7), the value of each component average failure rate is
calculated. The value of each load point average failure rate is calculated by accumulating
the individual component value connected to the relevant load point by following Eqn. (8).
System ECOST is then computed using Eqn. (9). Using Eqgn. (5), time-varying load model of
each load point during failure period is established based on peak load, hourly, daily and
weekly load diversity factors. Similarly, time-varying cost model of each load point is
established based on SCDF and cost weight factors by following Eqn. (6). A flowchart of the
ECOST estimation on coarse and fine levels is shown in Figure 1(a).

In the 2" phase, overall MLMC estimator is calculated through satisfying the target
convergence criteria of the simulation. Initially, the finest grid level of simulation is set at L =
2. The number of samples N on each level is then determined using initial sample size. The
sum of ECOST values on coarse and fine levels is simultaneously updated. Then, absolute
average value of the index and variance are calculated on each level. The optimal sample
size N; on each level is determined based on Eqn. (17). Next, the optimal sample size on
each level is compared to the already computed N, on this level. If the N; is larger than N,
then the additional samples on each level are evaluated and the values of mean, variance on
each level are also updated. The purpose of determining the optimal N; is to make the
variance term of Eqn. (16) smaller than ¢2/2. The test for the weak convergence is
performed using Eqn. (19) which ensures the remaining bias error < £/+/2. If the bias error is
remained greater than £/+/2, then the finest level is reset as L = L + 1. The entire process is
repeated again until the target accuracy level is achieved. Finally, the combined multilevel
estimator for ECOST is computed using Eqgn. (11). A flowchart for convergence test is
presented in Figure 1(b).
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Figure 1. Flowchart (a) ECOST estimation on coarse and fine levels (b) Convergence test

A 4

5 Case studies and simulation results

5.1 Test system

A typical urban distribution system connected to Bus 2 (B2) of the Roy Billinton test system
(RBTS) [11] is proposed to conduct the case studies. Figure 2 presents the RBTS B2 system
which consists of four main feeder sections (FI, F2, F3 and F4) and 22 load points. Detailed
information of feeders, customers and loads are found in [11]. For both MC and MLMC
methods, a target accuracy level of 3% is specified. In all studies, the computations are
performed in a MATLAB platform using an Intel Core i7-4790 3.60 GHz processor.
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Figure 2. Distribution system for RBTS Bus 2

5.2 Test results

The variations of ECOST values and their estimation time demonstrate the effect of network
reinforcement on cost value and estimation time, as shown in Figure 3 and Table 2,
respectively. Six case studies are carried out as Table 1, where availability of protective
devices and switches are considered in various combinations. Figure 1 shows that the
maximum and minimum ECOST values are found in case B and E, respectively. In case E,
the availability of switches, fuses, alternative supply is considered with the restoration of low-
voltage transformer action by replacement. On the other hand, in case B, all these protective
equipment are unavailable with transformer action restoration by time-consuming repairing.
In fact, the more investment in the protective equipment reduces the interruption effect and
as a result the value of ECOST is also reduced.

Table 2 shows the computational performance of the MC and MLMC methods for all case
studies. By comparing with the MC based estimation, the proposed method can estimate
ECOST with an acceptable accuracy and the proposed method is considerably more efficient
than standard MC. The maximum and minimum simulation times are required for case B and
E, respectively. In these cases, the percentage of time-saving using proposed method are
95.66% and 96.52%, respectively. The high value of output increases the computation time
for both methods which indicates the reinforcement effect in computation time.The MLMC
method improves the calculation efficiency of the MC simulation by reducing the number of
iterations on the finest level. For example, the proposed method requires 2262 iterations on
the finest level and the MC method needs about 15000 iterations for convergence in case A-
ECOST estimation. Due to a large number of samples, MC method provides ECOST with
noticeably high accuracy compared to the MLMC method.
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Table 1. Case studies for network reinforcement effect analysis

Case | Disconnecting Switches | Fuses | Alternative Supply | Transformer Action Restoration

A Yes Yes Yes Repairing
B No No No Repairing
C No Yes No Repairing
D Yes No Yes Repairing
E Yes Yes Yes Replacement
F Yes No No Repairing

Case F

Case E

Case D EMLMC =mMC

Case C

Case B

Case A

0 500 1000 1500
ECOST
Figure 3. ECOST (k$/yr) variation due to network reinforcement
Table 2. Effect of network reinforcement on cost estimation time
Method Case A Case B Case C Case D Case E Case F
MC (s) 35.23 1110.13 49.67 80.19 0.92 317.25

MLMC (s) 1.14 48.19 1.71 2.76 0.032 25.15

Figure 4 shows the effect of time-varying load and cost models in ECOST estimation while

considering

the starting of load point interruption at different times. Three different starting

time depending on peak and off-peak hours are considered here. It can be clearly seen from

Figure that

ECOST values vary with the failure starting time and there is a significant

difference when compared to average load and cost model based ECOST. At ts = 8 am, due
to the peak hours for almost all load types during this period, maximum ECOST is achieved.

16:00 PM =MLMC =MC
8:00 AM
1:00 AM
Average
6 160 260 360 4C|)0
ECOST

Figure 4. ECOST (k$/yr) variation due to time-varying load and cost models
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Table 3 shows the impacts of starting time on time-varying ECOST computation time using
MLMC and MC methods. The results obtained for the test system show that ECOST
computation cost will be varied for different starting times. It is possible to reduce the
computation time of a system by using the MLMC method. Overall, we can save more than
90% of estimation time compared to MC based estimation.

Table 3. Effect of time-varying load and cost models on computation time

Method Average 1:00 AM 8:00 AM 16:00 PM
MC (s) 35.23 15.87 134.37 25.43
MLMC (s) 1.14 0.51 5.04 0.87

Figure 5 presents the effects of network size and load types in ECOST variation. The RBTS
distribution systems connected to five load buses (Bus2 to Bus6) is considered for this
purpose [12]. It is seen that the maximum and minimum system ECOST values are found in
B3 and B6 systems, respectively. From Eqgn. (9), we can find that the amount of system
ECOST depends on the failure rate, load level and interruption cost of the connected load
points. In the B3 system, there are five types of loads such as residential, large users, small
industrial, commercial and office building users and the total amount of average load for all
44 load points is 52.63 MW. On the other hand, in the B6 system, there are four types of
loads such as residential, small industrial, commercial and agricultural and total amount of
average load for all 40 load points is 10.7155 MW. In most of the cases, average load level
per load point in the B3 system is higher than the B6 system. Due to having load points with
high interruption cost and duration in B3, it gives the large value of ECOST than the B6
system.

As displayed in Table 4, the maximum and minimum computation times are required for the
distribution systems connected to B3 and B6, respectively. In all cases, the percentage of
computation speedup is above 90%. For example, the proposed and MC method need 1.85
and 49.33 seconds, respectively for RBTS B5 system.

B6 EMLMC mMC
B5
B4
B3
B2
(I) 5IO 1(I)O 1£I30 2(I)0 2é0 3(I)O
ECOST

Figure 5. ECOST (k$/yr) variation due to network size and load types

Table 4. Effect of network size and load types on computation time

Method B2 B3 B4 B5 B6
MC (s) 35.23 69.27 49.33 47.40 27.06
MLMC (s) 1.14 3.65 1.85 1.58 0.9
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6 Conclusion

Accurate and fast evaluation of reliability worth value of the distribution system is very
important for its cost-effective planning, design, operation and power market structure. The
paper has presented a new method for customer interruption cost estimation based on the
Multilevel Monte Carlo method. The method can accelerate the estimation process by
providing all benefits of traditionally used Monte Carlo method. The effects of different
aspects are taken into consideration for accurate estimation such as network reinforcement,
time-varying cost and load models rather than considering only average load models and
customer damage function based cost models. The proposed method can be easily modified
for cost estimation by considering the momentary interruption and the effects of time-varying
weather dependent failure rates.
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